/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ZIGBEE
// Ensure persistence of devices into Flash
//
// Structure:
// (from file info):
// uint16 - start address in Flash (offset)
// uint16 - length in bytes (makes sure parsing stops)
//
// First byte:
// 0x00 - Empty or V3 format
// 0x01-0xFE - Legacy format
// 0xFF - invalid
//
//
// V1 Legacy
// =========
// File structure:
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
// uint8 - number of endpoints
// [Array of endpoints]
// uint8 - endpoint number
// uint16 - profileID of the endpoint
// Array of uint8 - clusters In codes, 0xFF end marker
// Array of uint8 - clusters Out codes, 0xFF end marker
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
// reserved for extensions
// -- V2 --
// int8_t - zigbee profile of the device
//
// =======================
// v3 with version number
// File structure:
//
// uint8 - number of devices, 0=none, 0xFF=invalid entry (probably Flash was erased)
//
// [Array of devices]
// [Offset = 2]
// uint8 - length of device record
// uint16 - short address
// uint64 - long IEEE address
//
// str - ModelID (null terminated C string, 32 chars max)
// str - Manuf (null terminated C string, 32 chars max)
// str - FriendlyName (null terminated C string, 32 chars max)
//
// [Array of endpoints]
// uint8 - endpoint number, 0xFF marks the end of endpoints
// uint8[] - list of configuration bytes, 0xFF marks the end
// i.e. 0xFF-0xFF marks the end of the array of endpoints
//
// Memory footprint
#ifdef ESP8266
const static uint16_t z_spi_start_sector = 0xFF; // Force last bank of first MB
const static uint8_t* z_spi_start = (uint8_t*) 0x402FF000; // 0x402FF000
const static uint8_t* z_dev_start = z_spi_start + 0x0800; // 0x402FF800 - 2KB
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0800;
const static size_t z_block_len = 0x0800; // 2kb
#else // ESP32
uint8_t* z_dev_start;
const static size_t z_spi_len = 0x1000; // 4kb blocks
const static size_t z_block_offset = 0x0000; // No offset needed
const static size_t z_block_len = 0x1000; // 4kb
#endif
// Each entry consumes 8 bytes
class Z_Flashentry {
public:
uint32_t name; // simple 4 letters name. Currently 'zig1', 'zig2'. 0xFFFFFFFF if not entry
uint16_t len; // len of object in bytes, 0xFFFF if no entry
uint16_t start; // address of start, 0xFFFF if empty, must be aligned on 128 bytes boundaries
};
class Z_Flashdirectory {
public:
// 8 bytes header
uint32_t magic; // magic value 'Tsmt' to check that the block is initialized
uint32_t clock; // clock vector to discard entries that are made before this one. This should be incremented by 1 for each new entry (future anti-weavering)
// entries, 14*8 = 112 bytes
Z_Flashentry entries[14];
uint32_t name; // simple 4 letters name. Currently 'skey', 'crt ', 'crt1', 'crt2'
uint16_t len; // len of object
uint16_t reserved; // align on 4 bytes boundary
// link to next entry, none for now, but may be used for anti-weavering
uint16_t next_dir; // 0xFFFF if none
uint16_t reserved1; // must be 0xFFFF
uint32_t reserved2; // must be 0xFFFFFFFF
};
const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian
const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2
const static size_t Z_MAX_FLASH = z_block_len - sizeof(Z_Flashentry); // 2040
bool hibernateDeviceConfiguration(SBuffer & buf, const class Z_Data_Set & data, uint8_t endpoint) {
bool found = false;
for (auto & elt : data) {
if (endpoint == elt.getEndpoint()) {
buf.add8(elt.getConfigByte());
found = true;
}
}
return found;
}
class SBuffer hibernateDevicev2(const struct Z_Device &device) {
SBuffer buf(128);
buf.add8(0x00); // overall length, will be updated later
buf.add16(device.shortaddr);
buf.add64(device.longaddr);
char *names[3] = { device.modelId, device.manufacturerId, device.friendlyName };
for (uint32_t i=0; i 32) { len = 32; } // max 32 chars
buf.addBuffer(p, len);
}
buf.add8(0x00); // end of string marker
}
// check if we need to write fake endpoint 0x00
buf.add8(0x00);
if (hibernateDeviceConfiguration(buf, device.data, 0)) {
buf.add8(0xFF); // end of configuration
} else {
buf.setLen(buf.len()-1); // remove 1 byte header
}
// scan endpoints
for (uint32_t i=0; i 32) { devices_size = 32; } // arbitrarily limit to 32 devices, for now
buf.add8(devices_size); // number of devices
for (uint32_t i = 0; i < devices_size; i++) {
const Z_Device & device = zigbee_devices.devicesAt(i);
const SBuffer buf_device = hibernateDevicev2(device);
buf.addBuffer(buf_device);
}
size_t buf_len = buf.len();
if (buf_len > 2040) {
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Devices list too big to fit in Flash (%d)"), buf_len);
}
return buf;
}
// parse a single string from the saved data
// if something wrong happens, returns nullptr to ignore the string
// Index d is incremented to just after the string
const char * hydrateSingleString(const SBuffer & buf, uint32_t *d) {
size_t s_len = buf.strlen(*d);
const char * ptr = s_len ? buf.charptr(*d) : "";
*d += s_len + 1;
return ptr;
}
void hydrateSingleDevice(const SBuffer & buf_d, uint32_t version) {
uint32_t d = 1; // index in device buffer
uint16_t shortaddr = buf_d.get16(d); d += 2;
uint64_t longaddr = buf_d.get64(d); d += 8;
size_t buf_len = buf_d.len();
Z_Device & device = zigbee_devices.updateDevice(shortaddr, longaddr); // update device's addresses
if (1 == version) {
uint32_t endpoints = buf_d.get8(d++);
for (uint32_t j = 0; j < endpoints; j++) {
uint8_t ep = buf_d.get8(d++);
// uint16_t ep_profile = buf_d.get16(d); d += 2;
device.addEndpoint(ep);
// in clusters
while (d < buf_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
// ignore
}
// out clusters
while (d < buf_len) { // safe guard against overflow
uint8_t ep_cluster = buf_d.get8(d++);
if (0xFF == ep_cluster) { break; } // end of block
// ignore
}
}
}
// ModelId
device.setModelId(hydrateSingleString(buf_d, &d));
// ManufID
device.setManufId(hydrateSingleString(buf_d, &d));
// FriendlyName
device.setFriendlyName(hydrateSingleString(buf_d, &d));
if (d >= buf_len) { return; }
// Hue bulbtype - if present
if (1 == version) {
device.setLightChannels(buf_d.get8(d));
d++;
} else if (2 == version) {
// v2 parser
while (d < buf_len) {
uint8_t ep = buf_d.get8(d++);
if (0xFF == ep) { break; } // ep 0xFF marks the end of the endpoints
if (ep > 240) { ep = 0xFF; } // ep == 0xFF means ignore
device.addEndpoint(ep); // it will ignore invalid endpoints
while (d < buf_len) {
uint8_t config_type = buf_d.get8(d++);
if (0xFF == config_type) { break; } // 0xFF marks the end of congiguration
uint8_t config = config_type & 0x0F;
Z_Data_Type type = (Z_Data_Type) (config_type >> 4);
// set the configuration
if (ep != 0xFF) {
Z_Data & z_data = device.data.getByType(type, ep);
if (&z_data != nullptr) {
z_data.setConfig(config);
Z_Data_Set::updateData(z_data);
}
}
}
}
}
}
void hydrateDevices(const SBuffer &buf, uint32_t version) {
uint32_t buf_len = buf.len();
if (buf_len <= 10) { return; }
uint32_t k = 0; // byte index in global buffer
uint32_t num_devices = buf.get8(k++);
for (uint32_t i = 0; (i < num_devices) && (k < buf_len); i++) {
uint32_t dev_record_len = buf.get8(k);
SBuffer buf_d = buf.subBuffer(k, dev_record_len);
hydrateSingleDevice(buf_d, version);
// next iteration
k += dev_record_len;
}
}
// dump = true, only dump to logs, don't actually load
void loadZigbeeDevices(bool dump_only = false) {
#ifdef ESP32
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
ZigbeeRead(&spi_buffer, z_spi_len);
z_dev_start = spi_buffer;
#endif // ESP32
Z_Flashentry flashdata;
memcpy_P(&flashdata, z_dev_start, sizeof(Z_Flashentry));
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Memory %d"), ESP_getFreeHeap());
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Zigbee signature in Flash: %08X - %d"), flashdata.name, flashdata.len);
// Check the signature
if ( ((flashdata.name == ZIGB_NAME1) || (flashdata.name == ZIGB_NAME2))
&& (flashdata.len > 0)) {
uint16_t buf_len = flashdata.len;
uint32_t version = (flashdata.name == ZIGB_NAME2) ? 2 : 1;
// parse what seems to be a valid entry
SBuffer buf(buf_len);
buf.addBuffer(z_dev_start + sizeof(Z_Flashentry), buf_len);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee devices data in Flash v%d (%d bytes)"), version, buf_len);
if (dump_only) {
size_t buf_len = buf.len();
if (buf_len > 192) { buf_len = 192; }
AddLogBuffer(LOG_LEVEL_INFO, buf.getBuffer(), buf_len);
// Serial.printf(">> Buffer=");
// for (uint32_t i=0; i Z_MAX_FLASH) {
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Buffer too big to fit in Flash (%d bytes)"), buf_len);
return;
}
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
#ifdef ESP8266
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
#else // ESP32
ZigbeeRead(&spi_buffer, z_spi_len);
#endif // ESP8266 - ESP32
Z_Flashentry *flashdata = (Z_Flashentry*)(spi_buffer + z_block_offset);
flashdata->name = ZIGB_NAME2; // v2
flashdata->len = buf_len;
flashdata->start = 0;
memcpy(spi_buffer + z_block_offset + sizeof(Z_Flashentry), buf.getBuffer(), buf_len);
// buffer is now ready, write it back
#ifdef ESP8266
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data store in Flash (0x%08X - %d bytes)"), z_dev_start, buf_len);
#else // ESP32
ZigbeeWrite(&spi_buffer, z_spi_len);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved (%d bytes)"), buf_len);
#endif // ESP8266 - ESP32
free(spi_buffer);
}
// Erase the flash area containing the ZigbeeData
void eraseZigbeeDevices(void) {
zigbee_devices.clean(); // avoid writing data to flash after erase
#ifdef ESP8266
// first copy SPI buffer into ram
uint8_t *spi_buffer = (uint8_t*) malloc(z_spi_len);
if (!spi_buffer) {
AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Cannot allocate 4KB buffer"));
return;
}
// copy the flash into RAM to make local change, and write back the whole buffer
ESP.flashRead(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
// Fill the Zigbee area with 0xFF
memset(spi_buffer + z_block_offset, 0xFF, z_block_len);
// buffer is now ready, write it back
if (ESP.flashEraseSector(z_spi_start_sector)) {
ESP.flashWrite(z_spi_start_sector * SPI_FLASH_SEC_SIZE, (uint32_t*) spi_buffer, SPI_FLASH_SEC_SIZE);
}
free(spi_buffer);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (0x%08X - %d bytes)"), z_dev_start, z_block_len);
#else // ESP32
ZigbeeErase();
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased (%d bytes)"), z_block_len);
#endif // ESP8266 - ESP32
}
#endif // USE_ZIGBEE