/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #define XDRV_23 23 const char kZbCommands[] PROGMEM = D_PRFX_ZB "|" // prefix #ifdef USE_ZIGBEE_ZNP D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEEZNPRECEIVE "|" #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP D_CMND_ZIGBEE_EZSP_SEND "|" D_CMND_ZIGBEE_EZSP_RECEIVE "|" D_CMND_ZIGBEE_EZSP_LISTEN "|" #endif // USE_ZIGBEE_EZSP D_CMND_ZIGBEE_PERMITJOIN "|" D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|" D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_INFO "|" D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND "|" D_CMND_ZIGBEE_UNBIND "|" D_CMND_ZIGBEE_PING "|" D_CMND_ZIGBEE_MODELID "|" D_CMND_ZIGBEE_LIGHT "|" D_CMND_ZIGBEE_OCCUPANCY "|" D_CMND_ZIGBEE_RESTORE "|" D_CMND_ZIGBEE_BIND_STATE "|" D_CMND_ZIGBEE_MAP "|" D_CMND_ZIGBEE_CONFIG "|" D_CMND_ZIGBEE_DATA ; void (* const ZigbeeCommand[])(void) PROGMEM = { #ifdef USE_ZIGBEE_ZNP &CmndZbZNPSend, &CmndZbZNPReceive, #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP &CmndZbEZSPSend, &CmndZbEZSPReceive, &CmndZbEZSPListen, #endif // USE_ZIGBEE_EZSP &CmndZbPermitJoin, &CmndZbStatus, &CmndZbReset, &CmndZbSend, &CmndZbProbe, &CmndZbInfo, &CmndZbForget, &CmndZbSave, &CmndZbName, &CmndZbBind, &CmndZbUnbind, &CmndZbPing, &CmndZbModelId, &CmndZbLight, &CmndZbOccupancy, &CmndZbRestore, &CmndZbBindState, &CmndZbMap, &CmndZbConfig, CmndZbData, }; /********************************************************************************************/ // Initialize internal structures void ZigbeeInit(void) { // #pragma GCC diagnostic push // #pragma GCC diagnostic ignored "-Winvalid-offsetof" // Serial.printf(">>> offset %d %d %d\n", Z_offset(Z_Data_Light, dimmer), Z_offset(Z_Data_Light, x), Z_offset(Z_Data_Thermo, temperature)); // #pragma GCC diagnostic pop // Check if settings in Flash are set if (PinUsed(GPIO_ZIGBEE_RX) && PinUsed(GPIO_ZIGBEE_TX)) { if (0 == Settings.zb_channel) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Randomizing Zigbee parameters, please check with 'ZbConfig'")); uint64_t mac64 = 0; // stuff mac address into 64 bits WiFi.macAddress((uint8_t*) &mac64); uint32_t esp_id = ESP_getChipId(); #ifdef ESP8266 uint32_t flash_id = ESP.getFlashChipId(); #else // ESP32 uint32_t flash_id = 0; #endif // ESP8266 or ESP32 uint16_t pan_id = (mac64 & 0x3FFF); if (0x0000 == pan_id) { pan_id = 0x0001; } // avoid extreme values if (0x3FFF == pan_id) { pan_id = 0x3FFE; } // avoid extreme values Settings.zb_pan_id = pan_id; Settings.zb_ext_panid = 0xCCCCCCCC00000000L | (mac64 & 0x00000000FFFFFFFFL); Settings.zb_precfgkey_l = (mac64 << 32) | (esp_id << 16) | flash_id; Settings.zb_precfgkey_h = (mac64 << 32) | (esp_id << 16) | flash_id; Settings.zb_channel = USE_ZIGBEE_CHANNEL; Settings.zb_txradio_dbm = USE_ZIGBEE_TXRADIO_DBM; } if (Settings.zb_txradio_dbm < 0) { Settings.zb_txradio_dbm = -Settings.zb_txradio_dbm; #ifdef USE_ZIGBEE_EZSP EZ_reset_config = true; // force reconfigure of EZSP #endif SettingsSave(2); } #ifdef USE_ZIGBEE_EZSP // Check the I2C EEprom Wire.beginTransmission(USE_ZIGBEE_ZBBRIDGE_EEPROM); uint8_t error = Wire.endTransmission(); if (0 == error) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZBBridge EEPROM found at address 0x%02X"), USE_ZIGBEE_ZBBRIDGE_EEPROM); zigbee.eeprom_present = true; } #endif } // update commands with the current settings #ifdef USE_ZIGBEE_ZNP ZNP_UpdateConfig(Settings.zb_channel, Settings.zb_pan_id, Settings.zb_ext_panid, Settings.zb_precfgkey_l, Settings.zb_precfgkey_h); #endif #ifdef USE_ZIGBEE_EZSP EZ_UpdateConfig(Settings.zb_channel, Settings.zb_pan_id, Settings.zb_ext_panid, Settings.zb_precfgkey_l, Settings.zb_precfgkey_h, Settings.zb_txradio_dbm); #endif ZigbeeInitSerial(); } /*********************************************************************************************\ * Commands \*********************************************************************************************/ #ifdef USE_ZIGBEE_ZNP // Do a factory reset of the CC2530 const unsigned char ZIGBEE_FACTORY_RESET[] PROGMEM = { Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 /* len */, 0x01 /* STARTOPT_CLEAR_CONFIG */}; //"2605030101"; // Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 len, 0x01 STARTOPT_CLEAR_CONFIG #endif // USE_ZIGBEE_ZNP void CmndZbReset(void) { if (ZigbeeSerial) { switch (XdrvMailbox.payload) { case 1: #ifdef USE_ZIGBEE_ZNP ZigbeeZNPSend(ZIGBEE_FACTORY_RESET, sizeof(ZIGBEE_FACTORY_RESET)); #endif // USE_ZIGBEE_ZNP eraseZigbeeDevices(); case 2: // fall through Settings.zb_txradio_dbm = - abs(Settings.zb_txradio_dbm); TasmotaGlobal.restart_flag = 2; #ifdef USE_ZIGBEE_ZNP ResponseCmndChar_P(PSTR(D_JSON_ZIGBEE_CC2530 " " D_JSON_RESET_AND_RESTARTING)); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP ResponseCmndChar_P(PSTR(D_JSON_ZIGBEE_EZSP " " D_JSON_RESET_AND_RESTARTING)); #endif // USE_ZIGBEE_EZSP break; default: ResponseCmndChar_P(PSTR("1 or 2 to reset")); } } } /********************************************************************************************/ // // High-level function // Send a command specified as an HEX string for the workload. // The target endpoint is computed if zero, i.e. sent to the first known endpoint of the device. // // Inputs: // - shortaddr: 16-bits short address, or 0x0000 if group address // - groupaddr: 16-bits group address, or 0x0000 if unicast using shortaddr // - endpoint: 8-bits target endpoint (source is always 0x01), if 0x00, it will be guessed from ZbStatus information (basically the first endpoint of the device) // - clusterSpecific: boolean, is the message general cluster or cluster specific, used to create the FC byte of ZCL // - clusterIf: 16-bits cluster number // - param: pointer to HEX string for payload, should not be nullptr // Returns: None // void zigbeeZCLSendStr(uint16_t shortaddr, uint16_t groupaddr, uint8_t endpoint, bool clusterSpecific, uint16_t manuf, uint16_t cluster, uint8_t cmd, const char *param) { size_t size = param ? strlen(param) : 0; SBuffer buf((size+2)/2); // actual bytes buffer for data if (param) { while (*param) { uint8_t code = parseHex_P(¶m, 2); buf.add8(code); } } if ((0 == endpoint) && (BAD_SHORTADDR != shortaddr)) { // endpoint is not specified, let's try to find it from shortAddr, unless it's a group address endpoint = zigbee_devices.findFirstEndpoint(shortaddr); //AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint); } AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZbSend: shortaddr 0x%04X, groupaddr 0x%04X, cluster 0x%04X, endpoint 0x%02X, cmd 0x%02X, data %s"), shortaddr, groupaddr, cluster, endpoint, cmd, param); if ((0 == endpoint) && (BAD_SHORTADDR != shortaddr)) { // endpoint null is ok for group address AddLog_P(LOG_LEVEL_INFO, PSTR("ZbSend: unspecified endpoint")); return; } // everything is good, we can send the command uint8_t seq = zigbee_devices.getNextSeqNumber(shortaddr); ZigbeeZCLSend_Raw(ZigbeeZCLSendMessage({ shortaddr, groupaddr, cluster /*cluster*/, endpoint, cmd, manuf, /* manuf */ clusterSpecific /* not cluster specific */, true /* response */, false /* discover route */, seq, /* zcl transaction id */ buf.getBuffer(), buf.len() })); // now set the timer, if any, to read back the state later if (clusterSpecific) { #ifndef USE_ZIGBEE_NO_READ_ATTRIBUTES // read back attribute value unless it is disabled sendHueUpdate(shortaddr, groupaddr, cluster, endpoint); #endif } } // Special encoding for multiplier: // multiplier == 0: ignore // multiplier == 1: ignore // multiplier > 0: divide by the multiplier // multiplier < 0: multiply by the -multiplier (positive) void ZbApplyMultiplier(double &val_d, int8_t multiplier) { if ((0 != multiplier) && (1 != multiplier)) { if (multiplier > 0) { // inverse of decoding val_d = val_d / multiplier; } else { val_d = val_d * (-multiplier); } } } // // Write Tuya-Moes attribute // bool ZbTuyaWrite(SBuffer & buf, const Z_attribute & attr, uint8_t transid) { double val_d = attr.getFloat(); const char * val_str = attr.getStr(); if (attr.key_is_str) { return false; } // couldn't find attr if so skip if (attr.isNum() && (1 != attr.attr_multiplier)) { ZbApplyMultiplier(val_d, attr.attr_multiplier); } buf.add8(0); // status buf.add8(transid); // transid buf.add16(attr.key.id.attr_id); // dp buf.add8(0); // fn int32_t res = encodeSingleAttribute(buf, val_d, val_str, attr.attr_type); if (res < 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Error for Tuya attribute type %04X/%04X '0x%02X'"), attr.key.id.cluster, attr.key.id.attr_id, attr.attr_type); return false; } return true; } // // Send Attribute Write, apply mutlipliers before // bool ZbAppendWriteBuf(SBuffer & buf, const Z_attribute & attr, bool prepend_status_ok) { double val_d = attr.getFloat(); const char * val_str = attr.getStr(); if (attr.key_is_str) { return false; } // couldn't find attr if so skip if (attr.isNum() && (1 != attr.attr_multiplier)) { ZbApplyMultiplier(val_d, attr.attr_multiplier); } // push the value in the buffer buf.add16(attr.key.id.attr_id); // prepend with attribute identifier if (prepend_status_ok) { buf.add8(Z_SUCCESS); // status OK = 0x00 } buf.add8(attr.attr_type); // prepend with attribute type int32_t res = encodeSingleAttribute(buf, val_d, val_str, attr.attr_type); if (res < 0) { // remove the attribute type we just added // buf.setLen(buf.len() - (operation == ZCL_READ_ATTRIBUTES_RESPONSE ? 4 : 3)); AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Unsupported attribute type %04X/%04X '0x%02X'"), attr.key.id.cluster, attr.key.id.attr_id, attr.attr_type); return false; } return true; } // // Parse "Report", "Write", "Response" or "Config" attribute // Operation is one of: ZCL_REPORT_ATTRIBUTES (0x0A), ZCL_WRITE_ATTRIBUTES (0x02) or ZCL_READ_ATTRIBUTES_RESPONSE (0x01) // void ZbSendReportWrite(class JsonParserToken val_pubwrite, class ZigbeeZCLSendMessage & packet) { SBuffer buf(200); // buffer to store the binary output of attibutes if (nullptr == XdrvMailbox.command) { XdrvMailbox.command = (char*) ""; // prevent a crash when calling ReponseCmndChar and there was no previous command } // iterate on keys for (auto key : val_pubwrite.getObject()) { JsonParserToken value = key.getValue(); Z_attribute attr; attr.setKeyName(key.getStr()); if (Z_parseAttributeKey(attr)) { // Buffer ready, do some sanity checks // all attributes must use the same cluster if (0xFFFF == packet.cluster) { packet.cluster = attr.key.id.cluster; // set the cluster for this packet } else if (packet.cluster != attr.key.id.cluster) { ResponseCmndChar_P(PSTR("No more than one cluster id per command")); return; } } else { if (attr.key_is_str) { Response_P(PSTR("{\"%s\":\"%s'%s'\"}"), XdrvMailbox.command, PSTR("Unknown attribute "), key); return; } if (Zunk == attr.attr_type) { Response_P(PSTR("{\"%s\":\"%s'%s'\"}"), XdrvMailbox.command, PSTR("Unknown attribute type for attribute "), key); return; } } // copy value from input to attribute, in numerical or string format if (value.isStr()) { attr.setStr(value.getStr()); } else if (value.isNum()) { attr.setFloat(value.getFloat()); } double val_d = 0; // I try to avoid `double` but this type capture both float and (u)int32_t without prevision loss const char* val_str = ""; // variant as string //////////////////////////////////////////////////////////////////////////////// // Split encoding depending on message if (packet.cmd != ZCL_CONFIGURE_REPORTING) { if ((packet.cluster == 0XEF00) && (packet.cmd == ZCL_WRITE_ATTRIBUTES)) { // special case of Tuya / Moes attributes if (buf.len() > 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Only 1 attribute allowed for Tuya")); return; } packet.clusterSpecific = true; packet.cmd = 0x00; if (!ZbTuyaWrite(buf, attr, zigbee_devices.getNextSeqNumber(packet.shortaddr))) { return; // error } } else if (!ZbAppendWriteBuf(buf, attr, packet.cmd == ZCL_READ_ATTRIBUTES_RESPONSE)) { // general case return; // error } } else { // //////////////////////////////////////////////////////////////////////////////// // ZCL_CONFIGURE_REPORTING if (!value.isObject()) { ResponseCmndChar_P(PSTR("Config requires JSON objects")); return; } JsonParserObject attr_config = value.getObject(); bool attr_direction = false; uint32_t dir = attr_config.getUInt(PSTR("DirectionReceived"), 0); if (dir) { attr_direction = true; } // read MinInterval and MaxInterval, default to 0xFFFF if not specified uint16_t attr_min_interval = attr_config.getUInt(PSTR("MinInterval"), 0xFFFF); uint16_t attr_max_interval = attr_config.getUInt(PSTR("MaxInterval"), 0xFFFF); // read ReportableChange JsonParserToken val_attr_rc = attr_config[PSTR("ReportableChange")]; if (val_attr_rc) { val_d = val_attr_rc.getFloat(); val_str = val_attr_rc.getStr(); ZbApplyMultiplier(val_d, attr.attr_multiplier); } // read TimeoutPeriod uint16_t attr_timeout = attr_config.getUInt(PSTR("TimeoutPeriod"), 0x0000); bool attr_discrete = Z_isDiscreteDataType(attr.attr_type); // all fields are gathered, output the butes into the buffer, ZCL 2.5.7.1 // common bytes buf.add8(attr_direction ? 0x01 : 0x00); buf.add16(attr.key.id.attr_id); if (attr_direction) { buf.add16(attr_timeout); } else { buf.add8(attr.attr_type); buf.add16(attr_min_interval); buf.add16(attr_max_interval); if (!attr_discrete) { int32_t res = encodeSingleAttribute(buf, val_d, val_str, attr.attr_type); if (res < 0) { Response_P(PSTR("{\"%s\":\"%s'%s' 0x%02X\"}"), XdrvMailbox.command, PSTR("Unsupported attribute type "), key, attr.attr_type); return; } } } } } // did we have any attribute? if (0 == buf.len()) { ResponseCmndChar_P(PSTR("No attribute in list")); return; } // all good, send the packet packet.transacId = zigbee_devices.getNextSeqNumber(packet.shortaddr); packet.msg = buf.getBuffer(); packet.len = buf.len(); ZigbeeZCLSend_Raw(packet); ResponseCmndDone(); } // Parse the "Send" attribute and send the command void ZbSendSend(class JsonParserToken val_cmd, uint16_t device, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint16_t manuf) { uint8_t cmd = 0; String cmd_str = ""; // the actual low-level command, either specified or computed const char *cmd_s = ""; // pointer to payload string bool clusterSpecific = true; static char delim[] = ", "; // delimiters for parameters // probe the type of the argument // If JSON object, it's high level commands // If String, it's a low level command if (val_cmd.isObject()) { // we have a high-level command JsonParserObject cmd_obj = val_cmd.getObject(); int32_t cmd_size = cmd_obj.size(); if (cmd_size > 1) { Response_P(PSTR("Only 1 command allowed (%d)"), cmd_size); return; } else if (1 == cmd_size) { // We have exactly 1 command, parse it JsonParserKey key = cmd_obj.getFirstElement(); JsonParserToken value = key.getValue(); uint32_t x = 0, y = 0, z = 0; uint16_t cmd_var; uint16_t local_cluster_id; const __FlashStringHelper* tasmota_cmd = zigbeeFindCommand(key.getStr(), &local_cluster_id, &cmd_var); if (tasmota_cmd) { cmd_str = tasmota_cmd; } else { Response_P(PSTR("Unrecognized zigbee command: %s"), key.getStr()); return; } // check cluster if (0xFFFF == cluster) { cluster = local_cluster_id; } else if (cluster != local_cluster_id) { ResponseCmndChar_P(PSTR("No more than one cluster id per command")); return; } // parse the JSON value, depending on its type fill in x,y,z if (value.isNum()) { x = value.getUInt(); // automatic conversion to 0/1 // if (value.is()) { // // x = value.as() ? 1 : 0; // } else if // } else if (value.is()) { // x = value.as(); } else { // if non-bool or non-int, trying char* const char *s_const = value.getStr(nullptr); // const char *s_const = value.as(); if (s_const != nullptr) { char s[strlen(s_const)+1]; strcpy(s, s_const); if ((nullptr != s) && (0x00 != *s)) { // ignore any null or empty string, could represent 'null' json value char *sval = strtok(s, delim); if (sval) { x = ZigbeeAliasOrNumber(sval); sval = strtok(nullptr, delim); if (sval) { y = ZigbeeAliasOrNumber(sval); sval = strtok(nullptr, delim); if (sval) { z = ZigbeeAliasOrNumber(sval); } } } } } } //AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_template = %s"), cmd_str.c_str()); if (0xFF == cmd_var) { // if command number is a variable, replace it with x cmd = x; x = y; // and shift other variables y = z; } else { cmd = cmd_var; // or simply copy the cmd number } cmd_str = zigbeeCmdAddParams(cmd_str.c_str(), x, y, z); // fill in parameters //AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_final = %s"), cmd_str.c_str()); cmd_s = cmd_str.c_str(); } else { // we have zero command, pass through until last error for missing command } } else if (val_cmd.isStr()) { // low-level command // Now parse the string to extract cluster, command, and payload // Parse 'cmd' in the form "AAAA_BB/CCCCCCCC" or "AAAA!BB/CCCCCCCC" // where AA is the cluster number, BBBB the command number, CCCC... the payload // First delimiter is '_' for a global command, or '!' for a cluster specific command const char * data = val_cmd.getStr(); uint16_t local_cluster_id = parseHex(&data, 4); // check cluster if (0xFFFF == cluster) { cluster = local_cluster_id; } else if (cluster != local_cluster_id) { ResponseCmndChar_P(PSTR("No more than one cluster id per command")); return; } // delimiter if (('_' == *data) || ('!' == *data)) { if ('_' == *data) { clusterSpecific = false; } data++; } else { ResponseCmndChar_P(PSTR("Wrong delimiter for payload")); return; } // parse cmd number cmd = parseHex(&data, 2); // move to end of payload // delimiter is optional if ('/' == *data) { data++; } // skip delimiter cmd_s = data; } else { // we have an unsupported command type, just ignore it and fallback to missing command } AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZigbeeZCLSend device: 0x%04X, group: 0x%04X, endpoint:%d, cluster:0x%04X, cmd:0x%02X, send:\"%s\""), device, groupaddr, endpoint, cluster, cmd, cmd_s); zigbeeZCLSendStr(device, groupaddr, endpoint, clusterSpecific, manuf, cluster, cmd, cmd_s); ResponseCmndDone(); } // Parse the "Send" attribute and send the command void ZbSendRead(JsonParserToken val_attr, ZigbeeZCLSendMessage & packet) { // ZbSend {"Device":"0xF289","Cluster":0,"Endpoint":3,"Read":5} // ZbSend {"Device":"0xF289","Cluster":"0x0000","Endpoint":"0x0003","Read":"0x0005"} // ZbSend {"Device":"0xF289","Cluster":0,"Endpoint":3,"Read":[5,6,7,4]} // ZbSend {"Device":"0xF289","Endpoint":3,"Read":{"ModelId":true}} // ZbSend {"Device":"0xF289","Read":{"ModelId":true}} // ZbSend {"Device":"0xF289","ReadConig":{"Power":true}} // ZbSend {"Device":"0xF289","Cluster":6,"Endpoint":3,"ReadConfig":0} // params size_t attrs_len = 0; uint8_t* attrs = nullptr; // empty string is valid size_t attr_item_len = 2; // how many bytes per attribute, standard for "Read" size_t attr_item_offset = 0; // how many bytes do we offset to store attribute if (ZCL_READ_REPORTING_CONFIGURATION == packet.cmd) { attr_item_len = 3; attr_item_offset = 1; } if (val_attr.isArray()) { // value is an array [] JsonParserArray attr_arr = val_attr.getArray(); attrs_len = attr_arr.size() * attr_item_len; attrs = (uint8_t*) calloc(attrs_len, 1); uint32_t i = 0; for (auto value : attr_arr) { uint16_t val = value.getUInt(); i += attr_item_offset; attrs[i++] = val & 0xFF; attrs[i++] = val >> 8; i += attr_item_len - 2 - attr_item_offset; // normally 0 } } else if (val_attr.isObject()) { // value is an object {} JsonParserObject attr_obj = val_attr.getObject(); attrs_len = attr_obj.size() * attr_item_len; attrs = (uint8_t*) calloc(attrs_len, 1); uint32_t actual_attr_len = 0; // iterate on keys for (auto key : attr_obj) { JsonParserToken value = key.getValue(); bool found = false; // scan attributes to find by name, and retrieve type for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t local_attr_id = pgm_read_word(&converter->attribute); uint16_t local_cluster_id = CxToCluster(pgm_read_byte(&converter->cluster_short)); // uint8_t local_type_id = pgm_read_byte(&converter->type); if ((pgm_read_word(&converter->name_offset)) && (0 == strcasecmp_P(key.getStr(), Z_strings + pgm_read_word(&converter->name_offset)))) { // match name // check if there is a conflict with cluster // TODO if (!(value.getBool()) && attr_item_offset) { // If value is false (non-default) then set direction to 1 (for ReadConfig) attrs[actual_attr_len] = 0x01; } actual_attr_len += attr_item_offset; attrs[actual_attr_len++] = local_attr_id & 0xFF; attrs[actual_attr_len++] = local_attr_id >> 8; actual_attr_len += attr_item_len - 2 - attr_item_offset; // normally 0 found = true; // check cluster if (0xFFFF == packet.cluster) { packet.cluster = local_cluster_id; } else if (packet.cluster != local_cluster_id) { ResponseCmndChar_P(PSTR("No more than one cluster id per command")); if (attrs) { free(attrs); } return; } break; // found, exit loop } } if (!found) { AddLog_P(LOG_LEVEL_INFO, PSTR("ZIG: Unknown attribute name (ignored): %s"), key); } } attrs_len = actual_attr_len; } else { // value is a literal if (0xFFFF != packet.cluster) { uint16_t val = val_attr.getUInt(); attrs_len = attr_item_len; attrs = (uint8_t*) calloc(attrs_len, 1); attrs[0 + attr_item_offset] = val & 0xFF; // little endian attrs[1 + attr_item_offset] = val >> 8; } } if (attrs_len > 0) { // all good, send the packet packet.transacId = zigbee_devices.getNextSeqNumber(packet.shortaddr); packet.msg = attrs; packet.len = attrs_len; ZigbeeZCLSend_Raw(packet); ResponseCmndDone(); } else { ResponseCmndChar_P(PSTR("Missing parameters")); } if (attrs) { free(attrs); } } // // Command `ZbSend` // // Examples: // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"0006/0000":0}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"Power":0}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"AqaraRotate":0}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"AqaraRotate":12.5}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"006/0000%39":12.5}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"AnalogInApplicationType":1000000}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"TimeZone":-1000000}} // ZbSend {"Device":"0x0000","Endpoint":1,"Write":{"Manufacturer":"Tasmota","ModelId":"Tasmota Z2T Router"}} void CmndZbSend(void) { // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":1} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"3"} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"0xFF"} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":null} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":false} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":true} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"true"} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"ShutterClose":null} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":1} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"1,2"} } // ZbSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"0x1122,0xFFEE"} } if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } JsonParser parser(XdrvMailbox.data); JsonParserObject root = parser.getRootObject(); if (!root) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; } // params uint16_t device = BAD_SHORTADDR; // BAD_SHORTADDR is broadcast, so considered invalid uint16_t groupaddr = 0x0000; // group address valid only if device == BAD_SHORTADDR uint16_t cluster = 0xFFFF; // no default uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint uint16_t manuf = 0x0000; // Manuf Id in ZCL frame // parse "Device" and "Group" JsonParserToken val_device = root[PSTR(D_CMND_ZIGBEE_DEVICE)]; if (val_device) { device = zigbee_devices.parseDeviceFromName(val_device.getStr(), true).shortaddr; if (BAD_SHORTADDR == device) { ResponseCmndChar_P(PSTR("Invalid parameter")); return; } } if (BAD_SHORTADDR == device) { // if not found, check if we have a group JsonParserToken val_group = root[PSTR(D_CMND_ZIGBEE_GROUP)]; if (val_group) { groupaddr = val_group.getUInt(); } else { // no device nor group ResponseCmndChar_P(PSTR("Unknown device")); return; } } // from here, either device has a device shortaddr, or if BAD_SHORTADDR then use group address // Note: groupaddr == 0 is valid // read other parameters cluster = root.getUInt(PSTR(D_CMND_ZIGBEE_CLUSTER), cluster); endpoint = root.getUInt(PSTR(D_CMND_ZIGBEE_ENDPOINT), endpoint); manuf = root.getUInt(PSTR(D_CMND_ZIGBEE_MANUF), manuf); // infer endpoint if (BAD_SHORTADDR == device) { endpoint = 0xFF; // endpoint not used for group addresses, so use a dummy broadcast endpoint } else if (0 == endpoint) { // if it was not already specified, try to guess it endpoint = zigbee_devices.findFirstEndpoint(device); AddLog_P(LOG_LEVEL_DEBUG, PSTR("ZIG: guessing endpoint %d"), endpoint); } if (0 == endpoint) { // after this, if it is still zero, then it's an error ResponseCmndChar_P(PSTR("Missing endpoint")); return; } // from here endpoint is valid and non-zero // cluster may be already specified or 0xFFFF JsonParserToken val_cmd = root[PSTR(D_CMND_ZIGBEE_SEND)]; JsonParserToken val_read = root[PSTR(D_CMND_ZIGBEE_READ)]; JsonParserToken val_write = root[PSTR(D_CMND_ZIGBEE_WRITE)]; JsonParserToken val_publish = root[PSTR(D_CMND_ZIGBEE_REPORT)]; JsonParserToken val_response = root[PSTR(D_CMND_ZIGBEE_RESPONSE)]; JsonParserToken val_read_config = root[PSTR(D_CMND_ZIGBEE_READ_CONFIG)]; JsonParserToken val_config = root[PSTR(D_CMND_ZIGBEE_CONFIG)]; uint32_t multi_cmd = ((bool)val_cmd) + ((bool)val_read) + ((bool)val_write) + ((bool)val_publish) + ((bool)val_response) + ((bool)val_read_config) + ((bool)val_config); if (multi_cmd > 1) { ResponseCmndChar_P(PSTR("Can only have one of: 'Send', 'Read', 'Write', 'Report', 'Reponse', 'ReadConfig' or 'Config'")); return; } // from here we have one and only one command // collate information in a ready to send packet ZigbeeZCLSendMessage packet({ device, groupaddr, cluster /*cluster*/, endpoint, ZCL_READ_ATTRIBUTES, manuf, /* manuf */ false /* not cluster specific */, false /* no response */, false /* discover route */, 0, /* zcl transaction id */ nullptr, 0 }); if (val_cmd) { // "Send":{...commands...} // we accept either a string or a JSON object ZbSendSend(val_cmd, device, groupaddr, cluster, endpoint, manuf); } else if (val_read) { // "Read":{...attributes...}, "Read":attribute or "Read":[...attributes...] // we accept eitehr a number, a string, an array of numbers/strings, or a JSON object packet.cmd = ZCL_READ_ATTRIBUTES; ZbSendRead(val_read, packet); } else if (val_write) { // only KSON object if (!val_write.isObject()) { ResponseCmndChar_P(PSTR("Missing parameters")); return; } // "Write":{...attributes...} packet.cmd = ZCL_WRITE_ATTRIBUTES; ZbSendReportWrite(val_write, packet); } else if (val_publish) { // "Publish":{...attributes...} // only KSON object if (!val_publish.isObject()) { ResponseCmndChar_P(PSTR("Missing parameters")); return; } packet.cmd = ZCL_REPORT_ATTRIBUTES; ZbSendReportWrite(val_publish, packet); } else if (val_response) { // "Report":{...attributes...} // only KSON object if (!val_response.isObject()) { ResponseCmndChar_P(PSTR("Missing parameters")); return; } packet.cmd = ZCL_READ_ATTRIBUTES_RESPONSE; ZbSendReportWrite(val_response, packet); } else if (val_read_config) { // "ReadConfg":{...attributes...}, "ReadConfg":attribute or "ReadConfg":[...attributes...] // we accept eitehr a number, a string, an array of numbers/strings, or a JSON object packet.cmd = ZCL_READ_REPORTING_CONFIGURATION; ZbSendRead(val_read_config, packet); } else if (val_config) { // "Config":{...attributes...} // only JSON object if (!val_config.isObject()) { ResponseCmndChar_P(PSTR("Missing parameters")); return; } packet.cmd = ZCL_CONFIGURE_REPORTING; ZbSendReportWrite(val_config, packet); } else { Response_P(PSTR("Missing zigbee 'Send', 'Write', 'Report' or 'Response'")); return; } } // // Command `ZbBind` // void ZbBindUnbind(bool unbind) { // false = bind, true = unbind // ZbBind {"Device":"", "Endpoint":, "Cluster":, "ToDevice":"", "ToEndpoint":, "ToGroup": } // ZbUnbind {"Device":"", "Endpoint":, "Cluster":, "ToDevice":"", "ToEndpoint":, "ToGroup": } // local endpoint is always 1, IEEE addresses are calculated if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } JsonParser parser(XdrvMailbox.data); JsonParserObject root = parser.getRootObject(); if (!root) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; } // params uint16_t dstDevice = BAD_SHORTADDR; // BAD_SHORTADDR is broadcast, so considered invalid uint64_t dstLongAddr = 0; uint8_t endpoint = 0x00; // 0x00 is invalid for the src endpoint uint8_t toendpoint = 0x01; // default dest endpoint to 0x01 uint16_t toGroup = 0x0000; // group address uint16_t cluster = 0; // cluster 0 is default // Information about source device: "Device", "Endpoint", "Cluster" // - the source endpoint must have a known IEEE address const Z_Device & src_device = zigbee_devices.parseDeviceFromName(root.getStr(PSTR(D_CMND_ZIGBEE_DEVICE), nullptr), true); if (!src_device.valid()) { ResponseCmndChar_P(PSTR("Unknown source device")); return; } // check if IEEE address is known uint64_t srcLongAddr = src_device.longaddr; if (0 == srcLongAddr) { ResponseCmndChar_P(PSTR("Unknown source IEEE address")); return; } // look for source endpoint endpoint = root.getUInt(PSTR(D_CMND_ZIGBEE_ENDPOINT), endpoint); if (0 == endpoint) { endpoint = zigbee_devices.findFirstEndpoint(src_device.shortaddr); } // look for source cluster JsonParserToken val_cluster = root[PSTR(D_CMND_ZIGBEE_CLUSTER)]; if (val_cluster) { cluster = val_cluster.getUInt(cluster); // first convert as number if (0 == cluster) { zigbeeFindAttributeByName(val_cluster.getStr(), &cluster, nullptr, nullptr); } } // Or Group Address - we don't need a dstEndpoint in this case JsonParserToken to_group = root[PSTR("ToGroup")]; if (to_group) { toGroup = to_group.getUInt(toGroup); } // Either Device address // In this case the following parameters are mandatory // - "ToDevice" and the device must have a known IEEE address // - "ToEndpoint" JsonParserToken dst_device = root[PSTR("ToDevice")]; // If no target is specified, we default to coordinator 0x0000 if ((!to_group) && (!dst_device)) { dstDevice = 0x0000; dstLongAddr = localIEEEAddr; toendpoint = 1; } if (dst_device) { const Z_Device & dstDevice = zigbee_devices.parseDeviceFromName(dst_device.getStr(nullptr), true); if (!dstDevice.valid()) { ResponseCmndChar_P(PSTR("Unknown dest device")); return; } dstLongAddr = dstDevice.longaddr; } if (!to_group) { if (0 == dstLongAddr) { ResponseCmndChar_P(PSTR("Unknown dest IEEE address")); return; } toendpoint = root.getUInt(PSTR("ToEndpoint"), toendpoint); } // make sure we don't have conflicting parameters if (to_group && dst_device) { ResponseCmndChar_P(PSTR("Cannot have both \"ToDevice\" and \"ToGroup\"")); return; } #ifdef USE_ZIGBEE_ZNP SBuffer buf(34); buf.add8(Z_SREQ | Z_ZDO); if (unbind) { buf.add8(ZDO_UNBIND_REQ); } else { buf.add8(ZDO_BIND_REQ); } buf.add16(src_device.shortaddr); buf.add64(srcLongAddr); buf.add8(endpoint); buf.add16(cluster); if (!to_group) { buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT buf.add64(dstLongAddr); buf.add8(toendpoint); } else { buf.add8(Z_Addr_Group); // DstAddrMode - 0x01 = GROUP_ADDRESS buf.add16(toGroup); } ZigbeeZNPSend(buf.getBuffer(), buf.len()); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP SBuffer buf(24); // ZDO message payload (see Zigbee spec 2.4.3.2.2) buf.add64(srcLongAddr); buf.add8(endpoint); buf.add16(cluster); if (!to_group) { buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT buf.add64(dstLongAddr); buf.add8(toendpoint); } else { buf.add8(Z_Addr_Group); // DstAddrMode - 0x01 = GROUP_ADDRESS buf.add16(toGroup); } EZ_SendZDO(src_device.shortaddr, unbind ? ZDO_UNBIND_REQ : ZDO_BIND_REQ, buf.buf(), buf.len()); #endif // USE_ZIGBEE_EZSP ResponseCmndDone(); } // // Command ZbBind // void CmndZbBind(void) { ZbBindUnbind(false); } // // Command ZbBind // void CmndZbUnbind(void) { ZbBindUnbind(true); } void CmndZbBindState_or_Map(uint16_t zdo_cmd) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } uint16_t shortaddr = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true).shortaddr; if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; } uint8_t index = XdrvMailbox.index - 1; // change default 1 to 0 #ifdef USE_ZIGBEE_ZNP SBuffer buf(10); buf.add8(Z_SREQ | Z_ZDO); // 25 buf.add8(zdo_cmd); // 33 buf.add16(shortaddr); // shortaddr buf.add8(index); // StartIndex = 0 ZigbeeZNPSend(buf.getBuffer(), buf.len()); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP // ZDO message payload (see Zigbee spec 2.4.3.3.4) uint8_t buf[] = { index }; // index = 0 EZ_SendZDO(shortaddr, zdo_cmd, buf, sizeof(buf)); #endif // USE_ZIGBEE_EZSP ResponseCmndDone(); } // // Command `ZbBindState` // `ZbBindState` as index if it does not fit. If default, `1` starts at the beginning // void CmndZbBindState(void) { #ifdef USE_ZIGBEE_ZNP CmndZbBindState_or_Map(ZDO_MGMT_BIND_REQ); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP CmndZbBindState_or_Map(ZDO_Mgmt_Bind_req); #endif // USE_ZIGBEE_EZSP } // // Command `ZbMap` // `ZbMap` as index if it does not fit. If default, `1` starts at the beginning // void CmndZbMap(void) { #ifdef USE_ZIGBEE_ZNP CmndZbBindState_or_Map(ZDO_MGMT_LQI_REQ); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP CmndZbBindState_or_Map(ZDO_Mgmt_Lqi_req); #endif // USE_ZIGBEE_EZSP } // Probe a specific device to get its endpoints and supported clusters void CmndZbProbe(void) { CmndZbProbeOrPing(true); } // // Common code for `ZbProbe` and `ZbPing` // void CmndZbProbeOrPing(boolean probe) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } uint16_t shortaddr = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true).shortaddr; if (BAD_SHORTADDR == shortaddr) { ResponseCmndChar_P(PSTR("Unknown device")); return; } // everything is good, we can send the command Z_SendIEEEAddrReq(shortaddr); if (probe) { Z_SendActiveEpReq(shortaddr); } ResponseCmndDone(); } // Ping a device, actually a simplified version of ZbProbe void CmndZbPing(void) { CmndZbProbeOrPing(false); } // // Command `ZbName` // Specify, read or erase a Friendly Name // void CmndZbName(void) { // Syntax is: // ZbName , - assign a friendly name // ZbName - display the current friendly name // ZbName , - remove friendly name // // Where can be: short_addr, long_addr, device_index, friendly_name if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } // check if parameters contain a comma ',' char *p; strtok_r(XdrvMailbox.data, ",", &p); // parse first part, Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, false); // it's the only case where we create a new device if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } if (p == nullptr) { const char * friendlyName = device.friendlyName; Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), device.shortaddr, friendlyName ? friendlyName : ""); } else { if (strlen(p) > 32) { p[32] = 0x00; } // truncate to 32 chars max device.setFriendlyName(p); Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), device.shortaddr, p); } } // // Command `ZbName` // Specify, read or erase a ModelId, only for debug purposes // void CmndZbModelId(void) { // Syntax is: // ZbName , - assign a friendly name // ZbName - display the current friendly name // ZbName , - remove friendly name // // Where can be: short_addr, long_addr, device_index, friendly_name if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } // check if parameters contain a comma ',' char *p; strtok_r(XdrvMailbox.data, ",", &p); // parse first part, Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } if (p == nullptr) { const char * modelId = device.modelId; Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_MODELID "\":\"%s\"}}"), device.shortaddr, modelId ? modelId : ""); } else { device.setModelId(p); Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_MODELID "\":\"%s\"}}"), device.shortaddr, p); } } // // Command `ZbLight` // Specify, read or erase a Light type for Hue/Alexa integration void CmndZbLight(void) { // Syntax is: // ZbLight , - assign a bulb type 0-5 // ZbLight - display the current bulb type and status // // Where can be: short_addr, long_addr, device_index, friendly_name if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } // check if parameters contain a comma ',' char *p; strtok_r(XdrvMailbox.data, ", ", &p); // parse first part, Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } if (p) { int8_t bulbtype = strtol(p, nullptr, 10); if (bulbtype > 5) { bulbtype = 5; } if (bulbtype < -1) { bulbtype = -1; } device.setLightChannels(bulbtype); } Z_attribute_list attr_list; device.jsonLightState(attr_list); device.jsonPublishAttrList(PSTR(D_PRFX_ZB D_CMND_ZIGBEE_LIGHT), attr_list); // publish as ZbReceived ResponseCmndDone(); } // // Command `ZbOccupancy` // Specify, read or erase the Occupancy detector configuration void CmndZbOccupancy(void) { // Syntax is: // ZbOccupancy , - set the occupancy time-out // ZbOccupancy - display the configuration // // List of occupancy time-outs: // 0xF = default (90 s) // 0x0 = no time-out // 0x1 = 15 s // 0x2 = 30 s // 0x3 = 45 s // 0x4 = 60 s // 0x5 = 75 s // 0x6 = 90 s -- default // 0x7 = 105 s // 0x8 = 120 s // Where can be: short_addr, long_addr, device_index, friendly_name if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } // check if parameters contain a comma ',' char *p; strtok_r(XdrvMailbox.data, ", ", &p); // parse first part, Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } int8_t occupancy_time = -1; if (p) { Z_Data_PIR & pir = (Z_Data_PIR&) device.data.getByType(Z_Data_Type::Z_PIR); occupancy_time = strtol(p, nullptr, 10); pir.setTimeoutSeconds(occupancy_time); zigbee_devices.dirty(); } else { const Z_Data_PIR & pir_found = (const Z_Data_PIR&) device.data.find(Z_Data_Type::Z_PIR); if (&pir_found != nullptr) { occupancy_time = pir_found.getTimeoutSeconds(); } } Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_OCCUPANCY "\":%d}"), occupancy_time); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_LIGHT)); ResponseCmndDone(); } // // Command `ZbForget` // Remove an old Zigbee device from the list of known devices, use ZigbeeStatus to know all registered devices // void CmndZbForget(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } // everything is good, we can send the command if (zigbee_devices.removeDevice(device.shortaddr)) { ResponseCmndDone(); } else { ResponseCmndChar_P(PSTR("Unknown device")); } } // // Command `ZbInfo` // Display all information known about a device, this equivalent to `2bStatus3` with a simpler JSON output // void CmndZbInfo(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } // everything is good, we can send the command Z_attribute_list attr_list; device.jsonDumpSingleDevice(attr_list, 3, false); // don't add Device/Name device.jsonPublishAttrList(PSTR(D_JSON_ZIGBEE_INFO), attr_list); // publish as ZbReceived ResponseCmndDone(); } // // Command `ZbSave` // Save Zigbee information to flash // void CmndZbSave(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } switch (XdrvMailbox.payload) { case 2: // save only data hibernateAllData(); break; case -1: // dump configuration loadZigbeeDevices(true); // dump only break; case -2: // dump data dumpZigbeeDevicesData(); break; default: saveZigbeeDevices(); break; } ResponseCmndDone(); } // Restore a device configuration previously exported via `ZbStatus2`` // Format: // Either the entire `ZbStatus3` export, or an array or just the device configuration. // If array, if can contain multiple devices // ZbRestore {"ZbStatus3":[{"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}]} // ZbRestore [{"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]}] // ZbRestore {"Device":"0x5ADF","Name":"Petite_Lampe","IEEEAddr":"0x90FD9FFFFE03B051","ModelId":"TRADFRI bulb E27 WS opal 980lm","Manufacturer":"IKEA of Sweden","Endpoints":["0x01","0xF2"]} void CmndZbRestore(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } JsonParser parser(XdrvMailbox.data); JsonParserToken root = parser.getRoot(); if (!parser || !(root.isObject() || root.isArray())) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; } // Check is root contains `ZbStatus` key, if so change the root JsonParserToken zbstatus = root.getObject().findStartsWith(PSTR("ZbStatus")); if (zbstatus) { root = zbstatus; } // check if the root is an array if (root.isArray()) { JsonParserArray arr = JsonParserArray(root); for (const auto elt : arr) { // call restore on each item if (elt.isObject()) { int32_t res = zigbee_devices.deviceRestore(JsonParserObject(elt)); if (res < 0) { ResponseCmndChar_P(PSTR("Restore failed")); return; } } } } else if (root.isObject()) { int32_t res = zigbee_devices.deviceRestore(JsonParserObject(root)); if (res < 0) { ResponseCmndChar_P(PSTR("Restore failed")); return; } // call restore on a single object } else { ResponseCmndChar_P(PSTR("Missing parameters")); return; } ResponseCmndDone(); } // // Command `ZbPermitJoin` // Allow or Deny pairing of new Zigbee devices // void CmndZbPermitJoin(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } uint32_t payload = XdrvMailbox.payload; uint8_t duration = 60; // default 60s if (payload <= 0) { duration = 0; } // ZNP Version #ifdef USE_ZIGBEE_ZNP if (99 == payload) { duration = 0xFF; // unlimited time } SBuffer buf(34); buf.add8(Z_SREQ | Z_ZDO); // 25 buf.add8(ZDO_MGMT_PERMIT_JOIN_REQ); // 36 buf.add8(0x0F); // AddrMode buf.add16(0xFFFC); // DstAddr buf.add8(duration); buf.add8(0x00); // TCSignificance ZigbeeZNPSend(buf.getBuffer(), buf.len()); #endif // USE_ZIGBEE_ZNP // EZSP VERSION #ifdef USE_ZIGBEE_EZSP if (99 == payload) { ResponseCmndChar_P(PSTR("Unlimited time not supported")); return; } SBuffer buf(3); buf.add16(EZSP_permitJoining); buf.add8(duration); ZigbeeEZSPSendCmd(buf.getBuffer(), buf.len()); // send ZDO_Mgmt_Permit_Joining_req to all routers buf.setLen(0); buf.add8(duration); buf.add8(0x01); // TC_Significance - This field shall always have a value of 1, indicating a request to change the Trust Center policy. If a frame is received with a value of 0, it shall be treated as having a value of 1. EZ_SendZDO(0xFFFC, ZDO_Mgmt_Permit_Joining_req, buf.buf(), buf.len()); // Set Timer after the end of the period, and reset a non-expired previous timer if (duration > 0) { // Log pairing mode enabled Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{\"Status\":21,\"Message\":\"Pairing mode enabled\"}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); zigbee.permit_end_time = millis() + duration * 1000; AddLog_P(LOG_LEVEL_INFO, "zigbee.permit_end_time = %d", zigbee.permit_end_time); } else { zigbee.permit_end_time = millis(); } #endif // USE_ZIGBEE_EZSP ResponseCmndDone(); } #ifdef USE_ZIGBEE_EZSP // // `ZbListen`: add a multicast group to listen to // Overcomes a current limitation that EZSP only shows messages from multicast groups it listens too // // Ex: `ZbListen 99`, `ZbListen2 100` void CmndZbEZSPListen(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } int32_t index = XdrvMailbox.index; // 0 is reserved for group 0 (auto-config) int32_t group = XdrvMailbox.payload; if (group <= 0) { group = 0; } else if (group > 0xFFFF) { group = 0xFFFF; } SBuffer buf(8); buf.add16(EZSP_setMulticastTableEntry); buf.add8(index); buf.add16(group); // group buf.add8(0x01); // endpoint buf.add8(0x00); // network index ZigbeeEZSPSendCmd(buf.getBuffer(), buf.len()); ResponseCmndDone(); } void ZigbeeGlowPermitJoinLight(void) { static const uint16_t cycle_time = 1000; // cycle up and down in 1000 ms static const uint16_t half_cycle_time = cycle_time / 2; // cycle up and down in 1000 ms if (zigbee.permit_end_time) { uint16_t led_power = 0; // turn led off // permit join is ongoing if (TimeReached(zigbee.permit_end_time)) { zigbee.permit_end_time = 0; // disable timer Z_PermitJoinDisable(); } else { uint32_t millis_to_go = millis() - zigbee.permit_end_time; uint32_t sub_second = millis_to_go % cycle_time; if (sub_second <= half_cycle_time) { led_power = changeUIntScale(sub_second, 0, half_cycle_time, 0, 1023); } else { led_power = changeUIntScale(sub_second, half_cycle_time, cycle_time, 1023, 0); } led_power = ledGamma10_10(led_power); } // change the led state uint32_t led_pin = Pin(GPIO_LEDLNK); if (led_pin < 99) { analogWrite(led_pin, TasmotaGlobal.ledlnk_inverted ? 1023 - led_power : led_power); } } } #endif // USE_ZIGBEE_EZSP // // Command `ZbStatus` // void CmndZbStatus(void) { if (ZigbeeSerial) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } String dump; Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); if (XdrvMailbox.data_len > 0) { if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } dump = zigbee_devices.dumpDevice(XdrvMailbox.index, device); } else { if (XdrvMailbox.index >= 2) { ResponseCmndChar_P(PSTR("Unknown device")); return; } dump = zigbee_devices.dumpDevice(XdrvMailbox.index, *(Z_Device*)nullptr); } Response_P(PSTR("{\"%s%d\":%s}"), XdrvMailbox.command, XdrvMailbox.index, dump.c_str()); } } // // Command `ZbData` // void CmndZbData(void) { if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } // check if parameters contain a comma ',' char *p; strtok_r(XdrvMailbox.data, ",", &p); // parse first part, Z_Device & device = zigbee_devices.parseDeviceFromName(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (!device.valid()) { ResponseCmndChar_P(PSTR("Unknown device")); return; } if (p) { // set ZbData const SBuffer buf = SBuffer::SBufferFromHex(p, strlen(p)); hydrateDeviceData(device, buf, 0, buf.len()); } else { // non-JSON, export current data // ZbData 0x1234 // ZbData Device_Name hibernateDeviceData(device, true); // log } ResponseCmndDone(); } // // Command `ZbConfig` // void CmndZbConfig(void) { // ZbConfig // ZbConfig {"Channel":11,"PanID":"0x1A63","ExtPanID":"0xCCCCCCCCCCCCCCCC","KeyL":"0x0F0D0B0907050301L","KeyH":"0x0D0C0A0806040200L"} uint8_t zb_channel = Settings.zb_channel; uint16_t zb_pan_id = Settings.zb_pan_id; uint64_t zb_ext_panid = Settings.zb_ext_panid; uint64_t zb_precfgkey_l = Settings.zb_precfgkey_l; uint64_t zb_precfgkey_h = Settings.zb_precfgkey_h; int8_t zb_txradio_dbm = Settings.zb_txradio_dbm; // if (zigbee.init_phase) { ResponseCmndChar_P(PSTR(D_ZIGBEE_NOT_STARTED)); return; } RemoveSpace(XdrvMailbox.data); if (strlen(XdrvMailbox.data) > 0) { JsonParser parser(XdrvMailbox.data); JsonParserObject root = parser.getRootObject(); if (!root) { ResponseCmndChar_P(PSTR(D_JSON_INVALID_JSON)); return; } // Channel zb_channel = root.getUInt(PSTR("Channel"), zb_channel); zb_pan_id = root.getUInt(PSTR("PanID"), zb_pan_id); zb_ext_panid = root.getULong(PSTR("ExtPanID"), zb_ext_panid); zb_precfgkey_l = root.getULong(PSTR("KeyL"), zb_precfgkey_l); zb_precfgkey_h = root.getULong(PSTR("KeyH"), zb_precfgkey_h); zb_txradio_dbm = root.getInt(PSTR("TxRadio"), zb_txradio_dbm); if (zb_channel < 11) { zb_channel = 11; } if (zb_channel > 26) { zb_channel = 26; } // if network key is zero, we generate a truly random key with a hardware generator from ESP if ((0 == zb_precfgkey_l) && (0 == zb_precfgkey_h)) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "generating random Zigbee network key")); zb_precfgkey_l = (uint64_t)HwRandom() << 32 | HwRandom(); zb_precfgkey_h = (uint64_t)HwRandom() << 32 | HwRandom(); } // Check if a parameter was changed after all if ( (zb_channel != Settings.zb_channel) || (zb_pan_id != Settings.zb_pan_id) || (zb_ext_panid != Settings.zb_ext_panid) || (zb_precfgkey_l != Settings.zb_precfgkey_l) || (zb_precfgkey_h != Settings.zb_precfgkey_h) || (zb_txradio_dbm != Settings.zb_txradio_dbm) ) { Settings.zb_channel = zb_channel; Settings.zb_pan_id = zb_pan_id; Settings.zb_ext_panid = zb_ext_panid; Settings.zb_precfgkey_l = zb_precfgkey_l; Settings.zb_precfgkey_h = zb_precfgkey_h; Settings.zb_txradio_dbm = zb_txradio_dbm; TasmotaGlobal.restart_flag = 2; // save and reboot } } // display the current or new configuration char hex_ext_panid[20] = "0x"; Uint64toHex(zb_ext_panid, &hex_ext_panid[2], 64); char hex_precfgkey_l[20] = "0x"; Uint64toHex(zb_precfgkey_l, &hex_precfgkey_l[2], 64); char hex_precfgkey_h[20] = "0x"; Uint64toHex(zb_precfgkey_h, &hex_precfgkey_h[2], 64); // {"ZbConfig":{"Channel":11,"PanID":"0x1A63","ExtPanID":"0xCCCCCCCCCCCCCCCC","KeyL":"0x0F0D0B0907050301L","KeyH":"0x0D0C0A0806040200L"}} Response_P(PSTR("{\"" D_PRFX_ZB D_JSON_ZIGBEE_CONFIG "\":{" "\"Channel\":%d" ",\"PanID\":\"0x%04X\"" ",\"ExtPanID\":\"%s\"" ",\"KeyL\":\"%s\"" ",\"KeyH\":\"%s\"" ",\"TxRadio\":%d" "}}"), zb_channel, zb_pan_id, hex_ext_panid, hex_precfgkey_l, hex_precfgkey_h, zb_txradio_dbm); } /*********************************************************************************************\ * Presentation \*********************************************************************************************/ extern "C" { // comparator function used to sort Zigbee devices by alphabetical order (if friendlyname) // then by shortaddr if they don't have friendlyname int device_cmp(const void * a, const void * b) { const Z_Device &dev_a = zigbee_devices.devicesAt(*(uint8_t*)a); const Z_Device &dev_b = zigbee_devices.devicesAt(*(uint8_t*)b); const char * fn_a = dev_a.friendlyName; const char * fn_b = dev_b.friendlyName; if (fn_a && fn_b) { return strcasecmp(fn_a, fn_b); } else if (!fn_a && !fn_b) { return (int32_t)dev_a.shortaddr - (int32_t)dev_b.shortaddr; } else { if (fn_a) return -1; else return 1; } } // Convert seconds to a string representing days, hours or minutes present in the n-value. // The string will contain the most coarse time only, rounded down (61m == 01h, 01h37m == 01h). // Inputs: // - n: uint32_t representing some number of seconds // - result: a buffer of suitable size (7 bytes would represent the entire solution space // for UINT32_MAX including the trailing null-byte, or "49710d") // - result_len: A numeric value representing the total length of the result buffer // Returns: // - The number of characters that would have been written were result sufficiently large // - negatve number on encoding error from snprintf // int convert_seconds_to_dhm(uint32_t n, char *result, size_t result_len){ char fmtstr[] = "%02dmhd"; // Don't want this in progmem, because we mutate it. uint32_t conversions[3] = {24 * 3600, 3600, 60}; uint32_t value; for(int i = 0; i < 3; ++i) { value = n / conversions[i]; if(value > 0) { fmtstr[4] = fmtstr[6-i]; break; } n = n % conversions[i]; } // Null-terminate the string at the last "valid" index, removing any excess zero values. fmtstr[5] = '\0'; return snprintf(result, result_len, fmtstr, value); } } void ZigbeeShow(bool json) { if (json) { return; #ifdef USE_WEBSERVER } else { uint32_t zigbee_num = zigbee_devices.devicesSize(); if (!zigbee_num) { return; } if (zigbee_num > 255) { zigbee_num = 255; } WSContentSend_P(PSTR("{t}")); // Terminate current two column table and open new table WSContentSend_P(PSTR( "" )); // sort elements by name, then by id uint8_t sorted_idx[zigbee_num]; for (uint32_t i = 0; i < zigbee_num; i++) { sorted_idx[i] = i; } qsort(sorted_idx, zigbee_num, sizeof(sorted_idx[0]), device_cmp); uint32_t now = Rtc.utc_time; for (uint32_t i = 0; i < zigbee_num; i++) { const Z_Device &device = zigbee_devices.devicesAt(sorted_idx[i]); uint16_t shortaddr = device.shortaddr; char *name = (char*) device.friendlyName; char sdevice[33]; if (nullptr == name) { snprintf_P(sdevice, sizeof(sdevice), PSTR(D_DEVICE " 0x%04X"), shortaddr); name = sdevice; } char sbatt[64]; snprintf_P(sbatt, sizeof(sbatt), PSTR(" ")); if (device.validBatteryPercent()) { snprintf_P(sbatt, sizeof(sbatt), PSTR(""), device.batterypercent, changeUIntScale(device.batterypercent, 0, 100, 0, 14) ); } uint32_t num_bars = 0; char slqi[4]; slqi[0] = '-'; slqi[1] = '\0'; if (device.validLqi()){ num_bars = changeUIntScale(device.lqi, 0, 254, 0, 4); snprintf_P(slqi, sizeof(slqi), PSTR("%d"), device.lqi); } WSContentSend_PD(PSTR( "" "%s" // name "%s" // sbatt (Battery Indicator) "
" // slqi ), shortaddr, device.modelId ? device.modelId : "", device.manufacturerId ? device.manufacturerId : "", name, sbatt, slqi); if(device.validLqi()) { for(uint32_t j = 0; j < 4; ++j) { WSContentSend_PD(PSTR(""), j, (num_bars < j) ? PSTR(" o30") : PSTR("")); } } char dhm[16]; // len("🕗" + "49710d" + '\0') == 16 snprintf_P(dhm, sizeof(dhm), PSTR(" ")); if(device.validLastSeen()){ snprintf_P(dhm, sizeof(dhm), PSTR("🕗")); convert_seconds_to_dhm(now - device.last_seen, &dhm[9], 7); } WSContentSend_PD(PSTR( "
" // Close LQI "%s{e}" // dhm (Last Seen) ), dhm ); // Sensors const Z_Data_Thermo & thermo = device.data.find(); if (&thermo != nullptr) { bool validTemp = thermo.validTemperature(); bool validTempTarget = thermo.validTempTarget(); bool validThSetpoint = thermo.validThSetpoint(); bool validHumidity = thermo.validHumidity(); bool validPressure = thermo.validPressure(); if (validTemp || validTempTarget || validThSetpoint || validHumidity || validPressure) { WSContentSend_P(PSTR("┆")); if (validTemp) { char buf[12]; dtostrf(thermo.getTemperature() / 100.0f, 3, 1, buf); WSContentSend_PD(PSTR(" ☀️ %s°C"), buf); } if (validTempTarget) { char buf[12]; dtostrf(thermo.getTempTarget() / 100.0f, 3, 1, buf); WSContentSend_PD(PSTR(" 🎯 %s°C"), buf); } if (validThSetpoint) { WSContentSend_PD(PSTR(" ⚙️ %d%%"), thermo.getThSetpoint()); } if (validHumidity) { WSContentSend_P(PSTR(" 💧 %d%%"), (uint16_t)(thermo.getHumidity() / 100.0f + 0.5f)); } if (validPressure) { WSContentSend_P(PSTR(" ⛅ %d hPa"), thermo.getPressure()); } WSContentSend_P(PSTR("{e}")); } } // Light, switches and plugs const Z_Data_OnOff & onoff = device.data.find(); bool onoff_display = (&onoff != nullptr) ? onoff.validPower() : false; const Z_Data_Light & light = device.data.find(); bool light_display = (&light != nullptr) ? light.validDimmer() : false; const Z_Data_Plug & plug = device.data.find(); if (onoff_display || light_display || (&plug != nullptr)) { int8_t channels = device.getLightChannels(); if (channels < 0) { channels = 5; } // if number of channel is unknown, display all known attributes WSContentSend_P(PSTR("┆")); if (onoff_display) { WSContentSend_P(PSTR(" %s"), onoff.getPower() ? PSTR(D_ON) : PSTR(D_OFF)); } if (&light != nullptr) { if (light.validDimmer() && (channels >= 1)) { WSContentSend_P(PSTR(" 🔅 %d%%"), changeUIntScale(light.getDimmer(),0,254,0,100)); } if (light.validCT() && ((channels == 2) || (channels == 5))) { uint32_t ct_k = (((1000000 / light.getCT()) + 25) / 50) * 50; WSContentSend_P(PSTR(" %dK"), light.getCT(), ct_k); } if (light.validHue() && light.validSat() && (channels >= 3)) { uint8_t r,g,b; uint8_t sat = changeUIntScale(light.getSat(), 0, 254, 0, 255); // scale to 0..255 LightStateClass::HsToRgb(light.getHue(), sat, &r, &g, &b); WSContentSend_P(PSTR(" #%02X%02X%02X"), r,g,b,r,g,b); } else if (light.validX() && light.validY() && (channels >= 3)) { uint8_t r,g,b; LightStateClass::XyToRgb(light.getX() / 65535.0f, light.getY() / 65535.0f, &r, &g, &b); WSContentSend_P(PSTR(" #%02X%02X%02X"), r,g,b,r,g,b); } } if (&plug != nullptr) { bool validMainsVoltage = plug.validMainsVoltage(); bool validMainsPower = plug.validMainsPower(); if (validMainsVoltage || validMainsPower) { WSContentSend_P(PSTR(" ⚡ ")); if (validMainsVoltage) { WSContentSend_P(PSTR(" %dV"), plug.getMainsVoltage()); } if (validMainsPower) { WSContentSend_P(PSTR(" %dW"), plug.getMainsPower()); } } } WSContentSend_P(PSTR("{e}")); } } WSContentSend_P(PSTR("{t}")); // Terminate current multi column table and open new table #endif } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv23(uint8_t function) { bool result = false; if (zigbee.active) { switch (function) { case FUNC_EVERY_50_MSECOND: if (!zigbee.init_phase) { zigbee_devices.runTimer(); } break; case FUNC_LOOP: #ifdef USE_ZIGBEE_EZSP if (ZigbeeUploadXmodem()) { return false; } #endif if (ZigbeeSerial) { ZigbeeInputLoop(); ZigbeeOutputLoop(); // send any outstanding data #ifdef USE_ZIGBEE_EZSP ZigbeeGlowPermitJoinLight(); #endif // USE_ZIGBEE_EZSP } if (zigbee.state_machine) { ZigbeeStateMachine_Run(); } break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: ZigbeeShow(false); break; #ifdef USE_ZIGBEE_EZSP // GUI xmodem case FUNC_WEB_ADD_HANDLER: WebServer_on(PSTR("/" WEB_HANDLE_ZIGBEE_XFER), HandleZigbeeXfer); break; #endif // USE_ZIGBEE_EZSP #endif // USE_WEBSERVER case FUNC_PRE_INIT: ZigbeeInit(); break; case FUNC_COMMAND: result = DecodeCommand(kZbCommands, ZigbeeCommand); break; } } return result; } #endif // USE_ZIGBEE