/*
xdrv_52_3_berry_native.ino - Berry scripting language, native fucnctions
Copyright (C) 2021 Stephan Hadinger, Berry language by Guan Wenliang https://github.com/Skiars/berry
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_BERRY
#include
#include
const uint32_t BERRY_MAX_LOGS = 16; // max number of print output recorded when outside of REPL, used to avoid infinite grow of logs
/*********************************************************************************************\
* Return C callback from index
*
\*********************************************************************************************/
extern "C" {
int32_t l_get_cb(struct bvm *vm);
int32_t l_get_cb(struct bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc >= 2 && be_isint(vm, 2)) {
int32_t idx = be_toint(vm, 2);
if (idx >= 0 && idx < ARRAY_SIZE(berry_callback_array)) {
const berry_callback_t c_ptr = berry_callback_array[idx];
be_pushcomptr(vm, (void*) c_ptr);
be_return(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
* import tasmota
*
* tasmota.get_free_heap() -> int
* tasmota.publish(topic:string, payload:string[, retain:bool]) -> nil
* tasmota.cmd(command:string) -> string
* tasmota.get_option(index:int) -> int
* tasmota.millis([delay:int]) -> int
* tasmota.time_reached(timer:int) -> bool
* tasmota.yield() -> nil
*
* tasmota.get_light([index:int = 0]) -> map
* tasmota.get_power([index:int = 0]) -> bool
* tasmota.set_power(idx:int, power:bool) -> bool or nil
* tasmota.set_light(idx:int, values:map) -> map
*
\*********************************************************************************************/
extern "C" {
// Berry: `tasmota.publish(topic, payload [,retain]) -> nil``
//
int32_t l_publish(struct bvm *vm);
int32_t l_publish(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 3 && be_isstring(vm, 2) && (be_isstring(vm, 3) || be_isinstance(vm, 3))) { // 2 mandatory string arguments
if (top == 3 || (top == 4 && be_isbool(vm, 4))) { // 3rd optional argument must be bool
const char * topic = be_tostring(vm, 2);
const char * payload = nullptr;
size_t payload_len = 0;
if (be_isstring(vm, 3)) {
payload = be_tostring(vm, 3);
payload_len = strlen(payload);
} else {
be_getglobal(vm, "bytes"); /* get the bytes class */ /* TODO eventually replace with be_getbuiltin */
if (be_isderived(vm, 3)) {
payload = (const char *) be_tobytes(vm, 3, &payload_len);
}
}
bool retain = false;
if (top == 4) {
retain = be_tobool(vm, 4);
}
if (!payload) { be_raise(vm, "value_error", "Empty payload"); }
MqttPublishPayload(topic, payload, payload_len, retain);
be_return_nil(vm); // Return
}
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.publish_result(payload:string, subtopic:string) -> nil``
//
int32_t l_publish_result(struct bvm *vm);
int32_t l_publish_result(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 3 && be_isstring(vm, 2) && be_isstring(vm, 3)) { // 2 mandatory string arguments
const char * payload = be_tostring(vm, 2);
const char * subtopic = be_tostring(vm, 3);
Response_P(PSTR("%s"), payload);
be_pop(vm, top);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, subtopic);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `tasmota.cmd(command:string) -> string`
//
int32_t l_cmd(struct bvm *vm);
int32_t l_cmd(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * command = be_tostring(vm, 2);
be_pop(vm, 2); // clear the stack before calling, because of re-entrant call to Berry in a Rule
ExecuteCommand(command, SRC_BERRY);
be_pushstring(vm, ResponseData());
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.millis([delay:int]) -> int
//
int32_t l_millis(struct bvm *vm);
int32_t l_millis(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1 || (top == 2 && be_isint(vm, 2))) { // only 1 argument of type string accepted
uint32_t delay = 0;
if (top == 2) {
delay = be_toint(vm, 2);
}
uint32_t ret_millis = millis() + delay;
be_pushint(vm, ret_millis);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.get_option(index:int) -> int
//
int32_t l_getoption(struct bvm *vm);
int32_t l_getoption(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
uint32_t opt = GetOption(be_toint(vm, 2));
be_pushint(vm, opt);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.time_reached(timer:int) -> bool
//
int32_t l_timereached(struct bvm *vm);
int32_t l_timereached(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
bool reached = TimeReached(timer);
be_pushbool(vm, reached);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.time_reached(timer:int) -> bool
//
int32_t l_rtc(struct bvm *vm);
int32_t l_rtc(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) { // no argument (instance only)
be_newobject(vm, "map");
map_insert_int(vm, "utc", Rtc.utc_time);
map_insert_int(vm, "local", Rtc.local_time);
map_insert_int(vm, "restart", Rtc.restart_time);
map_insert_int(vm, "timezone", Rtc.time_timezone);
be_pop(vm, 1);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.memory() -> map
//
int32_t l_memory(struct bvm *vm);
int32_t l_memory(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) { // no argument (instance only)
be_newobject(vm, "map");
map_insert_int(vm, "flash", ESP.getFlashChipSize() / 1024);
map_insert_int(vm, "program", ESP_getSketchSize() / 1024);
map_insert_int(vm, "program_free", ESP.getFreeSketchSpace() / 1024);
map_insert_int(vm, "heap_free", ESP_getFreeHeap() / 1024);
int32_t freeMaxMem = 100 - (int32_t)(ESP_getMaxAllocHeap() * 100 / ESP_getFreeHeap());
map_insert_int(vm, "frag", freeMaxMem);
if (UsePSRAM()) {
map_insert_int(vm, "psram", ESP.getPsramSize() / 1024);
map_insert_int(vm, "psram_free", ESP.getFreePsram() / 1024);
}
be_pop(vm, 1);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.wifi() -> map
//
int32_t l_wifi(struct bvm *vm);
int32_t l_wifi(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) { // no argument (instance only)
be_newobject(vm, "map");
if (Settings->flag4.network_wifi) {
int32_t rssi = WiFi.RSSI();
map_insert_int(vm, "rssi", rssi);
map_insert_int(vm, "quality", WifiGetRssiAsQuality(rssi));
#if LWIP_IPV6
String ipv6_addr = WifiGetIPv6();
if (ipv6_addr != "") {
map_insert_str(vm, "ip6", ipv6_addr.c_str());
}
#endif
if (static_cast(WiFi.localIP()) != 0) {
map_insert_str(vm, "mac", WiFi.macAddress().c_str());
map_insert_str(vm, "ip", WiFi.localIP().toString().c_str());
}
}
be_pop(vm, 1);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.eth() -> map
//
int32_t l_eth(struct bvm *vm);
int32_t l_eth(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 1) { // no argument (instance only)
be_newobject(vm, "map");
#ifdef USE_ETHERNET
if (static_cast(EthernetLocalIP()) != 0) {
map_insert_str(vm, "mac", EthernetMacAddress().c_str());
map_insert_str(vm, "ip", EthernetLocalIP().toString().c_str());
}
#endif
be_pop(vm, 1);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_time_dump(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
time_t ts = be_toint(vm, 2);
struct tm *t = gmtime(&ts);
be_newobject(vm, "map");
map_insert_int(vm, "year", t->tm_year + 1900);
map_insert_int(vm, "month", t->tm_mon + 1);
map_insert_int(vm, "day", t->tm_mday);
map_insert_int(vm, "hour", t->tm_hour);
map_insert_int(vm, "min", t->tm_min);
map_insert_int(vm, "sec", t->tm_sec);
map_insert_int(vm, "weekday", t->tm_wday);
be_pop(vm, 1);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_strftime(bvm *vm) {
int32_t argc = be_top(vm); // Get the number of arguments
if (argc == 3 && be_isstring(vm, 2) && be_isint(vm, 3)) {
const char * format = be_tostring(vm, 2);
time_t ts = be_toint(vm, 3);
struct tm *t = gmtime(&ts);
char s[64] = {0};
strftime(s, sizeof(s), format, t);
be_pushstring(vm, s);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: tasmota.delay(timer:int) -> nil
//
int32_t l_delay(struct bvm *vm);
int32_t l_delay(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) { // only 1 argument of type string accepted
uint32_t timer = be_toint(vm, 2);
delay(timer);
be_return_nil(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
// Berry: `yield() -> nil`
// ESP object
int32_t l_yield(bvm *vm);
int32_t l_yield(bvm *vm) {
optimistic_yield(10);
be_return_nil(vm);
}
// Berry: tasmota.scale_uint(int * 5) -> int
//
int32_t l_scaleuint(struct bvm *vm);
int32_t l_scaleuint(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 6 && be_isint(vm, 2) && be_isint(vm, 3) && be_isint(vm, 4) && be_isint(vm, 5) && be_isint(vm, 6)) { // only 1 argument of type string accepted
int32_t v = be_toint(vm, 2);
int32_t from1 = be_toint(vm, 3);
int32_t from2 = be_toint(vm, 4);
int32_t to1 = be_toint(vm, 5);
int32_t to2 = be_toint(vm, 6);
int32_t ret = changeUIntScale(v, from1, from2, to1, to2);
be_pushint(vm, ret);
be_return(vm);
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmnd(bvm *vm);
int32_t l_respCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
Response_P("%s", msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndStr(bvm *vm);
int32_t l_respCmndStr(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2) {
const char *msg = be_tostring(vm, 2);
ResponseCmndChar(msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
int32_t l_respCmndDone(bvm *vm);
int32_t l_respCmndDone(bvm *vm) {
ResponseCmndDone();
be_return_nil(vm);
}
int32_t l_respCmndError(bvm *vm);
int32_t l_respCmndError(bvm *vm) {
ResponseCmndError();
be_return_nil(vm);
}
int32_t l_respCmndFailed(bvm *vm);
int32_t l_respCmndFailed(bvm *vm) {
ResponseCmndFailed();
be_return_nil(vm);
}
// update XdrvMailbox.command with actual command
int32_t l_resolveCmnd(bvm *vm);
int32_t l_resolveCmnd(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
strlcpy(XdrvMailbox.command, msg, CMDSZ);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// Response_append
int32_t l_respAppend(bvm *vm);
int32_t l_respAppend(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
ResponseAppend_P(PSTR("%s"), msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// web append with decimal conversion
int32_t l_webSend(bvm *vm);
int32_t l_webSend(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
WSContentSend_P(PSTR("%s"), msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// web append with decimal conversion
int32_t l_webSendDecimal(bvm *vm);
int32_t l_webSendDecimal(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isstring(vm, 2)) {
const char *msg = be_tostring(vm, 2);
WSContentSend_PD(PSTR("%s"), msg);
be_return_nil(vm); // Return nil when something goes wrong
}
be_raise(vm, kTypeError, nullptr);
}
// get power
int32_t l_getpower(bvm *vm);
int32_t l_getpower(bvm *vm) {
be_newobject(vm, "list");
for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) {
be_pushbool(vm, bitRead(TasmotaGlobal.power, i));
be_data_push(vm, -2);
be_pop(vm, 1);
}
be_pop(vm, 1);
be_return(vm); // Return
}
int32_t l_setpower(bvm *vm);
int32_t l_setpower(bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isint(vm, 2) && be_isbool(vm, 3)) {
int32_t idx = be_toint(vm, 2);
bool power = be_tobool(vm, 3);
if ((idx >= 0) && (idx < TasmotaGlobal.devices_present)) {
ExecuteCommandPower(idx + 1, (power) ? POWER_ON : POWER_OFF, SRC_BERRY);
be_pushbool(vm, power);
be_return(vm); // Return
} else {
be_return_nil(vm);
}
}
be_raise(vm, kTypeError, nullptr);
}
// get power
int32_t l_getswitch(bvm *vm);
int32_t l_getswitch(bvm *vm) {
be_newobject(vm, "list");
for (uint32_t i = 0; i < MAX_SWITCHES; i++) {
if (PinUsed(GPIO_SWT1, i)) {
be_pushbool(vm, Switch.virtual_state[i] == PRESSED);
be_data_push(vm, -2);
be_pop(vm, 1);
}
}
be_pop(vm, 1);
be_return(vm); // Return
}
#ifdef USE_I2C
// I2C specific
// Berry: `i2c_enabled(index:int) -> bool` is I2C device enabled
int32_t l_i2cenabled(struct bvm *vm);
int32_t l_i2cenabled(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 2 && be_isint(vm, 2)) {
int32_t index = be_toint(vm, 2);
bool enabled = I2cEnabled(index);
be_pushbool(vm, enabled);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
#else // USE_I2C
int32_t l_i2cenabled(struct bvm *vm) __attribute__ ((weak, alias ("b_wire_i2cmissing")));
#endif // USE_I2C
}
/*********************************************************************************************\
* Native functions mapped to Berry functions
*
* log(msg:string [,log_level:int]) ->nil
*
\*********************************************************************************************/
extern "C" {
// Berry: `log(msg:string [,log_level:int]) ->nil`
// Logs the string at LOG_LEVEL_INFO (loglevel=2)
// We allow this function to be called as a method or a direct function
// if the first argument is an instance, we remove it
int32_t l_logInfo(struct bvm *vm);
int32_t l_logInfo(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top >= 2 && be_isstring(vm, 2)) { // only 1 argument of type string accepted
const char * msg = be_tostring(vm, 2);
uint32_t log_level = LOG_LEVEL_INFO;
if (top >= 3 && be_isint(vm, 3)) {
log_level = be_toint(vm, 3);
if (log_level > LOG_LEVEL_DEBUG_MORE) { log_level = LOG_LEVEL_DEBUG_MORE; }
}
AddLog(log_level, PSTR("%s"), msg);
be_return(vm); // Return
}
be_return_nil(vm); // Return nil when something goes wrong
}
// Berry: `getFreeHeap() -> int`
// ESP object
int32_t l_getFreeHeap(bvm *vm);
int32_t l_getFreeHeap(bvm *vm) {
be_pushint(vm, ESP.getFreeHeap());
be_return(vm);
}
// Berry: `save(file:string, f:closure) -> bool`
int32_t l_save(struct bvm *vm);
int32_t l_save(struct bvm *vm) {
int32_t top = be_top(vm); // Get the number of arguments
if (top == 3 && be_isstring(vm, 2) && be_isclosure(vm, 3)) { // only 1 argument of type string accepted
const char *fname = be_tostring(vm, 2);
int32_t ret = be_savecode(vm, fname);
be_pushint(vm, ret);
be_return(vm); // Return
}
be_raise(vm, kTypeError, nullptr);
}
}
// called as a replacement to Berry `print()`
void berry_log(const char * berry_buf);
void berry_log(const char * berry_buf) {
const char * pre_delimiter = nullptr; // do we need to prepend a delimiter if no REPL command
if (!berry.repl_active) {
// if no REPL in flight, we limit the number of logs
if (berry.log.log.length() == 0) {
pre_delimiter = BERRY_CONSOLE_CMD_DELIMITER;
}
if (berry.log.log.length() >= BERRY_MAX_LOGS) {
berry.log.log.remove(berry.log.log.head());
}
}
// AddLog(LOG_LEVEL_INFO, PSTR("[Add to log] %s"), berry_buf);
berry.log.addString(berry_buf, pre_delimiter, "\n");
AddLog(LOG_LEVEL_INFO, PSTR("%s"), berry_buf);
}
const uint16_t LOGSZ = 128; // Max number of characters in log line
extern "C" {
void berry_log_C(const char * berry_buf, ...) {
// To save stack space support logging for max text length of 128 characters
char log_data[LOGSZ];
va_list arg;
va_start(arg, berry_buf);
uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg);
va_end(arg);
if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more
berry_log(log_data);
}
}
void berry_log_P(const char * berry_buf, ...) {
// To save stack space support logging for max text length of 128 characters
char log_data[LOGSZ];
va_list arg;
va_start(arg, berry_buf);
uint32_t len = ext_vsnprintf_P(log_data, LOGSZ-3, berry_buf, arg);
va_end(arg);
if (len+3 > LOGSZ) { strcat(log_data, "..."); } // Actual data is more
berry_log(log_data);
}
#endif // USE_BERRY