/*
xdrv_28_pcf8574.ino - PCF8574 I2C support for Tasmota
Copyright (C) 2021 Stefan Bode and Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_I2C
#ifdef USE_PCF8574
/*********************************************************************************************\
* PCF8574 - I2C IO Expander
*
* I2C Address: PCF8574 = 0x20 .. 0x27 (0x27 is not supported),
* PCF8574A = 0x39 .. 0x3F (0x38 is not supported)
*
* Start address and count can be overriden in user_config_override.h to allow better
* sharing of the I2C address space. Still the covered range must remains valid.
* A count of 0 can be used totaly disable any of the 2 ranges.
* By default, the following addresses are explicitly excluded (as per the docs) :
* - 0x27 and 0x37 are reserved for USE_DISPLAY_LCD in xdsp_01_lcd.ino
* - 0X38 is reserved for other sensors
* If the respective drivers are not used, overrides allows to recover those addresses
* If defined, USE_MCP230xx_ADDR is also always excluded
*
* Mode 1:
* See documentation.
*
* Mode 2:
* Allows easy configuration by using a sequential list of pins configured as Tasmota
* template and handle any input and output as configured GPIOs.
*
* Restrictions:
* - Uses incremental I2C addresses until template pin count reached
* - Max support for 28 switches (input), 32 buttons (input), 32 relays (output)
*
* Supported template fields:
* NAME - Template name
* BASE - Optional. 0 = use relative buttons and switches (default), 1 = use absolute buttons and switches
* GPIO - Sequential list of pin 1 and up with configured GPIO function
* Function Code Description
* ------------------- -------- ----------------------------------------
* None 0 Not used
* Button1..32 B 32..63 Button to Gnd with internal pullup
* Button_n1..32 Bn 64..95 Button to Gnd without internal pullup
* Button_i1..32 Bi 96..127 Button inverted to Vcc with internal pullup
* Button_in1..32 Bin 128..159 Button inverted to Vcc without internal pullup
* Switch1..28 S 160..187 Switch to Gnd with internal pullup
* Switch_n1..28 Sn 192..219 Switch to Gnd without internal pullup
* Relay1..32 R 224..255 Relay
* Relay_i1..32 Ri 256..287 Relay inverted
* Output_Hi Oh 3840 Fixed output high
* Output_lo Ol 3872 Fixed output low
*
* Prepare a template to be loaded either by:
* - a rule like: rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]} endon
* - a script like: >y{"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]}#
* - file called pcf8574.dat with contents: {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]}
*
* Inverted relays and buttons Ri8 Ri7 Ri6 Ri5 Ri4 Ri3 Ri2 Ri1 B1 B2 B3 B4 B5 B6 B7 B8
* {"NAME":"PCF8574 A=Ri8-1, B=B1-8","GPIO":[263,262,261,260,259,258,257,256,32,33,34,35,36,37,38,39]}
* B1 B2 B3 B4 Ri4 Ri3 Ri2 Ri1 B5 B6 B7 B8 Ri8 Ri7 Ri6 Ri5
* {"NAME":"PCF8574 A=B1-4,Ri4-1, B=B5-8,Ri8-5","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]}
\*********************************************************************************************/
#define XDRV_28 28
#define XI2C_02 2 // See I2CDEVICES.md
// PCF8574 address range from 0x20 to 0x26
#ifndef PCF8574_ADDR1
#define PCF8574_ADDR1 0x20 // PCF8574
#endif
#ifndef PCF8574_ADDR1_COUNT
#define PCF8574_ADDR1_COUNT 7
#endif
// PCF8574A address range from 0x39 to 0x3E
#ifndef PCF8574_ADDR2
#define PCF8574_ADDR2 0x39 // PCF8574A
#endif
#ifndef PCF8574_ADDR2_COUNT
#define PCF8574_ADDR2_COUNT 6
#endif
//#define USE_PCF8574_MODE2 // Enable Mode2 virtual relays/buttons/switches (+2k3 code)
//#define USE_PCF8574_SENSOR // Enable Mode1 inputs and outputs in SENSOR message (+0k2 code)
//#define USE_PCF8574_DISPLAYINPUT // Enable Mode1 inputs display in Web page (+0k2 code)
//#define USE_PCF8574_MQTTINPUT // Enable Mode1 MQTT message & rule process on input change detection : stat/%topic%/PCF8574_INP = {"Time":"2021-03-07T16:19:23+01:00","PCF8574-1_INP":{"D1":1}} (+0k5 code)
/*********************************************************************************************\
* PCF8574 support
\*********************************************************************************************/
// Consistency tests - Checked across the complete range for the PCF8574/PCF8574A to allow override
#if (PCF8574_ADDR1 < 0x20) || ((PCF8574_ADDR1 + PCF8574_ADDR1_COUNT - 1) > 0x27)
#error PCF8574_ADDR1 and/or PCF8574_ADDR1_COUNT badly overriden. Fix your user_config_override
#endif
#if (PCF8574_ADDR2 < 0x38) || ((PCF8574_ADDR2 + PCF8574_ADDR2_COUNT - 1) > 0x3F)
#error PCF8574_ADDR2 and/or PCF8574_ADDR2_COUNT badly overriden. Fix your user_config_override.
#endif
struct PCF8574 {
uint32_t relay_inverted;
uint32_t button_inverted;
uint8_t address[MAX_PCF8574];
uint8_t pin_mask[MAX_PCF8574] = { 0 };
#ifdef USE_PCF8574_MQTTINPUT
uint8_t last_input[MAX_PCF8574] = { 0 };
#endif
uint8_t max_connected_ports = 0; // Max numbers of devices comming from PCF8574 modules
uint8_t max_devices = 0; // Max numbers of PCF8574 modules
uint8_t mode;
uint8_t relay_max;
uint8_t relay_offset;
uint8_t button_max;
uint8_t switch_max;
int8_t button_offset;
int8_t switch_offset;
bool base;
bool interrupt;
} Pcf8574;
uint16_t *Pcf8574_pin = nullptr;
/*********************************************************************************************\
* PCF8574 - I2C
\*********************************************************************************************/
uint8_t Pcf8574Read(uint8_t idx) {
Wire.requestFrom(Pcf8574.address[idx], (uint8_t)1);
return Wire.read();
}
void Pcf8574Write(uint8_t idx) {
Wire.beginTransmission(Pcf8574.address[idx]);
Wire.write(Pcf8574.pin_mask[idx]);
Wire.endTransmission();
}
#ifdef USE_PCF8574_MODE2
bool Pcf8574DigitalRead(uint8_t pin) {
// pin 0 - 63
uint32_t chip = pin / 8;
uint32_t bit = pin % 8;
uint32_t value = Pcf8574Read(chip);
return value & (1 << bit);
}
void Pcf8574DigitalWrite(uint8_t pin, bool pin_value) {
// pin 0 - 63
// INPUT or INPUT_PULLUP = Pcf8574DigitalWrite(pin, 1);
// OUTPUT = Pcf8574DigitalWrite(pin, 0); or Pcf8574DigitalWrite(pin, 1);
uint32_t chip = pin / 8;
uint32_t bit = pin % 8;
uint32_t value = Pcf8574Read(chip);
value |= Pcf8574.pin_mask[chip]; // Restore inputs
if (pin_value) {
value |= 1 << bit;
} else {
value &= ~(1 << bit);
}
Wire.beginTransmission(Pcf8574.address[chip]);
Wire.write(value);
Wire.endTransmission();
}
void Pcf8574DigitalWriteConfig(uint8_t pin, bool pin_value) {
if (pin_value) {
bitSet(Pcf8574.pin_mask[pin / 8], pin % 8); // Save inputs
}
Pcf8574DigitalWrite(pin, pin_value);
}
/*********************************************************************************************\
* PCF8574 Mode 2 - Theo Arends
\*********************************************************************************************/
int Pcf8574Pin(uint32_t gpio, uint32_t index = 0);
int Pcf8574Pin(uint32_t gpio, uint32_t index) {
uint16_t real_gpio = gpio << 5;
uint16_t mask = 0xFFE0;
if (index < GPIO_ANY) {
real_gpio += index;
mask = 0xFFFF;
}
for (uint32_t i = 0; i <= Pcf8574.max_connected_ports; i++) {
if ((Pcf8574_pin[i] & mask) == real_gpio) {
return i; // Pin number configured for gpio
}
}
return -1; // No pin used for gpio
}
bool Pcf8574PinUsed(uint32_t gpio, uint32_t index = 0);
bool Pcf8574PinUsed(uint32_t gpio, uint32_t index) {
return (Pcf8574Pin(gpio, index) >= 0);
}
uint32_t Pcf8574GetPin(uint32_t lpin) {
if (lpin <= Pcf8574.max_connected_ports) {
return Pcf8574_pin[lpin];
} else {
return GPIO_NONE;
}
}
/*********************************************************************************************/
String Pcf8574TemplateLoadFile(void) {
String pcftmplt = "";
#ifdef USE_UFILESYS
pcftmplt = TfsLoadString("/pcf8574.dat");
#endif // USE_UFILESYS
#ifdef USE_RULES
if (!pcftmplt.length()) {
pcftmplt = RuleLoadFile("PCF8574.DAT");
}
#endif // USE_RULES
#ifdef USE_SCRIPT
if (!pcftmplt.length()) {
pcftmplt = ScriptLoadSection(">y");
}
#endif // USE_SCRIPT
return pcftmplt;
}
bool Pcf8574LoadTemplate(void) {
String pcftmplt = Pcf8574TemplateLoadFile();
uint32_t len = pcftmplt.length() +1;
if (len < 7) { return false; } // No PcfTmplt found
JsonParser parser((char*)pcftmplt.c_str());
JsonParserObject root = parser.getRootObject();
if (!root) { return false; }
// rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B12345678,B=Ri87654321","GPIO":[32,33,34,35,36,37,38,39,263,262,261,260,259,258,257,256]} endon
// rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B1234,Ri4321,B=B5678,Ri8765","GPIO":[32,33,34,35,259,258,257,256,36,37,38,39,263,262,261,260]} endon
// rule3 on file#pcf8574.dat do {"NAME":"PCF8574 A=B3456,Ri6543,B=B78910,Ri10987","BASE":1,"GPIO":[34,35,36,37,261,260,259,258,38,39,40,41,265,264,263,262]} endon
JsonParserToken val = root[PSTR(D_JSON_BASE)];
if (val) {
Pcf8574.base = (val.getUInt()) ? true : false;
}
val = root[PSTR(D_JSON_NAME)];
if (val) {
AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Base %d, Template '%s'"), Pcf8574.base, val.getStr());
}
JsonParserArray arr = root[PSTR(D_JSON_GPIO)];
if (arr) {
uint32_t pin = 0;
for (pin; pin < Pcf8574.max_connected_ports; pin++) { // Max number of detected chip pins
// if (0 == (pin % 8)) { Pcf8574.pin_mask[pin / 8] = 0; } // Reset config for next 8-pins
JsonParserToken val = arr[pin];
if (!val) { break; }
uint16_t mpin = val.getUInt();
if (mpin) { // Above GPIO_NONE
if ((mpin >= AGPIO(GPIO_SWT1)) && (mpin < (AGPIO(GPIO_SWT1) + MAX_SWITCHES_SET))) {
Pcf8574.switch_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP
}
else if ((mpin >= AGPIO(GPIO_SWT1_NP)) && (mpin < (AGPIO(GPIO_SWT1_NP) + MAX_SWITCHES_SET))) {
mpin -= (AGPIO(GPIO_SWT1_NP) - AGPIO(GPIO_SWT1));
Pcf8574.switch_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT
}
else if ((mpin >= AGPIO(GPIO_KEY1)) && (mpin < (AGPIO(GPIO_KEY1) + MAX_KEYS_SET))) {
Pcf8574.button_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP
}
else if ((mpin >= AGPIO(GPIO_KEY1_NP)) && (mpin < (AGPIO(GPIO_KEY1_NP) + MAX_KEYS_SET))) {
mpin -= (AGPIO(GPIO_KEY1_NP) - AGPIO(GPIO_KEY1));
Pcf8574.button_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT
}
else if ((mpin >= AGPIO(GPIO_KEY1_INV)) && (mpin < (AGPIO(GPIO_KEY1_INV) + MAX_KEYS_SET))) {
bitSet(Pcf8574.button_inverted, mpin - AGPIO(GPIO_KEY1_INV));
mpin -= (AGPIO(GPIO_KEY1_INV) - AGPIO(GPIO_KEY1));
Pcf8574.button_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT_PULLUP
}
else if ((mpin >= AGPIO(GPIO_KEY1_INV_NP)) && (mpin < (AGPIO(GPIO_KEY1_INV_NP) + MAX_KEYS_SET))) {
bitSet(Pcf8574.button_inverted, mpin - AGPIO(GPIO_KEY1_INV_NP));
mpin -= (AGPIO(GPIO_KEY1_INV_NP) - AGPIO(GPIO_KEY1));
Pcf8574.button_max++;
Pcf8574DigitalWriteConfig(pin, 1); // INPUT
}
else if ((mpin >= AGPIO(GPIO_REL1)) && (mpin < (AGPIO(GPIO_REL1) + MAX_RELAYS_SET))) {
Pcf8574.relay_max++;
// Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1)
}
else if ((mpin >= AGPIO(GPIO_REL1_INV)) && (mpin < (AGPIO(GPIO_REL1_INV) + MAX_RELAYS_SET))) {
bitSet(Pcf8574.relay_inverted, mpin - AGPIO(GPIO_REL1_INV));
mpin -= (AGPIO(GPIO_REL1_INV) - AGPIO(GPIO_REL1));
Pcf8574.relay_max++;
// Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT - Leave unchanged to fix restart and power on spikes (default is 1)
}
else if (mpin == AGPIO(GPIO_OUTPUT_HI)) {
Pcf8574DigitalWriteConfig(pin, 1); // OUTPUT
}
else if (mpin == AGPIO(GPIO_OUTPUT_LO)) {
Pcf8574DigitalWriteConfig(pin, 0); // OUTPUT
}
else { mpin = 0; }
Pcf8574_pin[pin] = mpin;
}
if ((Pcf8574.switch_max >= MAX_SWITCHES_SET) ||
(Pcf8574.button_max >= MAX_KEYS_SET) ||
(Pcf8574.relay_max >= MAX_RELAYS_SET)) {
AddLog(LOG_LEVEL_INFO, PSTR("PCF: Max reached (S%d/B%d/R%d)"), Pcf8574.switch_max, Pcf8574.button_max, Pcf8574.relay_max);
break;
}
}
Pcf8574.max_connected_ports = pin; // Max number of configured pins
}
return true;
}
void Pcf8574ServiceInput(void) {
Pcf8574.interrupt = false;
// This works with no interrupt too
uint32_t pin_offset = 0;
for (uint32_t chip = 0; chip < Pcf8574.max_devices; chip++) {
uint32_t gpio = Pcf8574Read(chip); // Reset interrupt
uint32_t mask = 1;
for (uint32_t pin = 0; pin < 8; pin++) {
uint32_t state = ((gpio & mask) != 0);
uint32_t lpin = Pcf8574GetPin(pin_offset + pin); // 0 for None, 32 for KEY1, 160 for SWT1, 224 for REL1
uint32_t index = lpin & 0x001F; // Max 32 buttons or switches
lpin = BGPIO(lpin); // UserSelectablePins number
if (GPIO_KEY1 == lpin) {
ButtonSetVirtualPinState(Pcf8574.button_offset + index, (state != bitRead(Pcf8574.button_inverted, index)));
// Pcf8574DigitalWrite(pin_offset + pin, 1); // INPUT and reset interrupt
}
else if (GPIO_SWT1 == lpin) {
SwitchSetVirtualPinState(Pcf8574.switch_offset + index, state);
// Pcf8574DigitalWrite(pin_offset + pin, 1); // INPUT and reset interrupt
}
mask <<= 1;
}
pin_offset += 8;
}
}
static void IRAM_ATTR Pcf8574InputIsr(void) {
Pcf8574.interrupt = true;
}
void Pcf8574Init(void) {
if (Pcf8574.button_max || Pcf8574.switch_max) {
if (PinUsed(GPIO_PCF8574_INT)) {
pinMode(Pin(GPIO_PCF8574_INT), INPUT_PULLUP);
attachInterrupt(Pin(GPIO_PCF8574_INT), Pcf8574InputIsr, CHANGE);
}
}
}
void Pcf8574Power(void) {
// XdrvMailbox.index = 32-bit rpower bit mask
// Use absolute relay indexes unique with main template
power_t rpower = XdrvMailbox.index;
uint32_t relay_max = TasmotaGlobal.devices_present;
if (!Pcf8574.base) {
// Use relative and sequential relay indexes
rpower >>= Pcf8574.relay_offset;
relay_max = Pcf8574.relay_max;
}
DevicesPresentNonDisplayOrLight(relay_max); // Skip display and/or light(s)
for (uint32_t index = 0; index < relay_max; index++) {
power_t state = rpower &1;
if (Pcf8574PinUsed(GPIO_REL1, index)) {
uint32_t pin = Pcf8574Pin(GPIO_REL1, index) & 0x3F; // Fix possible overflow over 63 gpios
Pcf8574DigitalWrite(pin, bitRead(Pcf8574.relay_inverted, index) ? !state : state);
}
rpower >>= 1; // Select next power
}
}
bool Pcf8574AddButton(void) {
// XdrvMailbox.index = button/switch index
uint32_t index = XdrvMailbox.index;
if (!Pcf8574.base) {
// Use relative and sequential button indexes
if (Pcf8574.button_offset < 0) { Pcf8574.button_offset = index; }
index -= Pcf8574.button_offset;
if (index >= Pcf8574.button_max) { return false; }
} else {
// Use absolute button indexes unique with main template
if (!Pcf8574PinUsed(GPIO_KEY1, index)) { return false; }
Pcf8574.button_offset = 0;
}
XdrvMailbox.index = (Pcf8574DigitalRead(Pcf8574Pin(GPIO_KEY1, index)) != bitRead(Pcf8574.button_inverted, index));
return true;
}
bool Pcf8574AddSwitch(void) {
// XdrvMailbox.index = button/switch index
uint32_t index = XdrvMailbox.index;
if (!Pcf8574.base) {
// Use relative and sequential switch indexes
if (Pcf8574.switch_offset < 0) { Pcf8574.switch_offset = index; }
index -= Pcf8574.switch_offset;
if (index >= Pcf8574.switch_max) { return false; }
} else {
// Use absolute switch indexes unique with main template
if (!Pcf8574PinUsed(GPIO_SWT1, index)) { return false; }
Pcf8574.switch_offset = 0;
}
XdrvMailbox.index = Pcf8574DigitalRead(Pcf8574Pin(GPIO_SWT1, index));
return true;
}
#endif // USE_PCF8574_MODE2
/*********************************************************************************************\
* PCF8574 Mode 1 - Stefan Bode
\*********************************************************************************************/
void Pcf8574SwitchRelay(void) {
uint32_t devices_present = TasmotaGlobal.devices_present - Pcf8574.relay_offset;
for (uint32_t i = 0; i < devices_present; i++) {
uint8_t relay_state = bitRead(XdrvMailbox.index, Pcf8574.relay_offset + i);
if (Pcf8574.max_devices > 0 && Pcf8574_pin[i] < 99) {
uint8_t board = Pcf8574_pin[i]>>3;
uint8_t pin = Pcf8574_pin[i]&0x7;
uint8_t oldpinmask = Pcf8574.pin_mask[board];
uint8_t _val = bitRead(TasmotaGlobal.rel_inverted, Pcf8574.relay_offset + i) ? !relay_state : relay_state;
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay %d=%d => PCF-%d.D%d=%d"), i, relay_state, board +1, pin, _val);
bitWrite(Pcf8574.pin_mask[board], pin, _val);
if (oldpinmask != Pcf8574.pin_mask[board]) {
Pcf8574Write(board);
}
//else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: SwitchRelay skipped"));
}
}
}
#ifdef USE_PCF8574_MQTTINPUT
void Pcf8574CheckForInputChange(void) {
for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) {
uint8_t input_mask = ~Settings->pcf8574_config[idx]; // Invert to 1 = input
uint8_t input = Pcf8574Read(idx) & input_mask;
uint8_t last_input = Pcf8574.last_input[idx];
if (input != last_input) { // Don't scan bits if no change (EVERY_50_MS !)
for (uint32_t pin = 0 ; pin < 8 ; ++pin) {
if (bitRead(input_mask,pin) && bitRead(input,pin) != bitRead(last_input,pin)) {
ResponseTime_P(PSTR(",\"PCF8574%c%d_INP\":{\"D%i\":%i}}"), IndexSeparator(), idx +1, pin, bitRead(input,pin));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR("PCF8574_INP"));
if (Settings->flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/SENSOR in addition to stat/%topic%/RESULT
MqttPublishSensor();
}
}
Pcf8574.last_input[idx] = input;
}
}
}
}
#endif // USE_PCF8574_MQTTINPUT
void Pcf8574ModuleInitMode1(void) {
for (uint32_t i = 0; i < Pcf8574.max_connected_ports; i++) {
Pcf8574_pin[i] = 99;
}
Pcf8574.max_connected_ports = 0; // Reset no of devices
for (uint32_t idx = 0; idx < Pcf8574.max_devices; idx++) { // suport up to 8 boards PCF8574
uint8_t gpio = Pcf8574Read(idx);
// Insure the input pins are actually writen a 1 for proper input operation
Pcf8574.pin_mask[idx] = gpio | ~Settings->pcf8574_config[idx];
Pcf8574Write(idx); // Write back to the register
#ifdef USE_PCF8574_MQTTINPUT
Pcf8574.last_input[idx] = gpio & ~Settings->pcf8574_config[idx];
#endif // USE_PCF8574_MQTTINPUT
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: PCF-%d config=0x%02x, gpio=0x%02X"), idx +1, Settings->pcf8574_config[idx], gpio);
for (uint32_t i = 0; i < 8; i++, gpio>>=1) {
uint8_t _result = Settings->pcf8574_config[idx] >> i &1;
uint32_t devices_present = TasmotaGlobal.devices_present - Pcf8574.relay_offset;
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: I2C shift i %d: %d. Powerstate: %d, devices_present: %d"), i,_result, Settings->power>>i&1, devices_present);
if (_result > 0) {
Pcf8574_pin[devices_present] = i + 8 * idx;
bitWrite(TasmotaGlobal.rel_inverted, TasmotaGlobal.devices_present, Settings->flag3.pcf8574_ports_inverted); // SetOption81 - Invert all ports on PCF8574 devices
if (!Settings->flag.save_state && !Settings->flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Set power from from chip state"));
uint8_t power_state = Settings->flag3.pcf8574_ports_inverted ? 1 & ~gpio : 1 & gpio;
bitWrite(TasmotaGlobal.power, TasmotaGlobal.devices_present, power_state);
bitWrite(Settings->power, TasmotaGlobal.devices_present, power_state);
}
//else AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: DON'T set power from chip state"));
UpdateDevicesPresent(1);
Pcf8574.max_connected_ports++;
}
}
}
//AddLog(LOG_LEVEL_DEBUG, PSTR("PCF: Settings->power=0x%08X, TasmotaGlobal.power=0x%08X"), Settings->power, TasmotaGlobal.power);
AddLog(LOG_LEVEL_INFO, PSTR("PCF: Total devices %d, PCF8574 output ports %d"), Pcf8574.max_devices, Pcf8574.max_connected_ports);
}
/*********************************************************************************************\
* Presentation
\*********************************************************************************************/
#ifdef USE_WEBSERVER
#define WEB_HANDLE_PCF8574 "pcf"
const char HTTP_BTN_MENU_PCF8574[] PROGMEM =
"
";
const char HTTP_FORM_I2C_PCF8574_1[] PROGMEM =
"