/* support_tasmota.ino - Core support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ const char kSleepMode[] PROGMEM = "Dynamic|Normal"; const char kPrefixes[] PROGMEM = D_CMND "|" D_STAT "|" D_TELE; char* Format(char* output, const char* input_p, int size) { char *token; uint32_t digits = 0; char input[strlen_P(input_p)+1]; // copy from PMEM to RAM strcpy_P(input, input_p); if (strchr(input, '%') != nullptr) { strlcpy(output, input, size); token = strtok(output, "%"); if (strchr(input, '%') == input) { output[0] = '\0'; } else { token = strtok(nullptr, ""); } if (token != nullptr) { digits = atoi(token); if (digits) { char tmp[size]; if (strchr(token, 'd')) { snprintf_P(tmp, size, PSTR("%s%c0%dd"), output, '%', digits); snprintf_P(output, size, tmp, ESP_getChipId() & 0x1fff); // %04d - short chip ID in dec, like in hostname } else { String mac_address = NetworkUniqueId(); if (digits > 12) { digits = 12; } String mac_part = mac_address.substring(12 - digits); snprintf_P(output, size, PSTR("%s%s"), output, mac_part.c_str()); // %01X .. %12X - mac address in hex } } else { if (strchr(token, 'd')) { snprintf_P(output, size, PSTR("%s%d"), output, ESP_getChipId()); // %d - full chip ID in dec digits = 8; } } } } if (!digits) { strlcpy(output, input, size); } return output; } char* GetOtaUrl(char *otaurl, size_t otaurl_size) { if (strstr(SettingsText(SET_OTAURL), "%04d") != nullptr) { // OTA url contains placeholder for chip ID snprintf(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId() & 0x1fff); } else if (strstr(SettingsText(SET_OTAURL), "%d") != nullptr) { // OTA url contains placeholder for chip ID snprintf_P(otaurl, otaurl_size, SettingsText(SET_OTAURL), ESP_getChipId()); } else { strlcpy(otaurl, SettingsText(SET_OTAURL), otaurl_size); } return otaurl; } String ResolveToken(const char* input) { String resolved = input; resolved.replace(F("%hostname%"), TasmotaGlobal.hostname); resolved.replace(F("%id%"), NetworkUniqueId()); return resolved; } char* GetTopic_P(char *stopic, uint32_t prefix, char *topic, const char* subtopic) { /* prefix 0 = Cmnd prefix 1 = Stat prefix 2 = Tele prefix 4 = Cmnd fallback prefix 5 = Stat fallback prefix 6 = Tele fallback prefix 8 = Cmnd topic prefix 9 = Stat topic prefix 10 = Tele topic */ char romram[CMDSZ]; String fulltopic; snprintf_P(romram, sizeof(romram), subtopic); if (TasmotaGlobal.fallback_topic_flag || (prefix > 3)) { bool fallback = (prefix < 8); prefix &= 3; char stemp[11]; fulltopic = GetTextIndexed(stemp, sizeof(stemp), prefix, kPrefixes); fulltopic += F("/"); if (fallback) { fulltopic += TasmotaGlobal.mqtt_client; fulltopic += F("_fb"); // cmnd/_fb } else { fulltopic += (const __FlashStringHelper *)topic; // cmnd/ } } else { fulltopic = SettingsText(SET_MQTT_FULLTOPIC); if ((0 == prefix) && (-1 == fulltopic.indexOf(FPSTR(MQTT_TOKEN_PREFIX)))) { fulltopic += F("/"); fulltopic += FPSTR(MQTT_TOKEN_PREFIX); // Need prefix for commands to handle mqtt topic loops } for (uint32_t i = 0; i < MAX_MQTT_PREFIXES; i++) { if (!strlen(SettingsText(SET_MQTTPREFIX1 + i))) { char temp[TOPSZ]; SettingsUpdateText(SET_MQTTPREFIX1 + i, GetTextIndexed(temp, sizeof(temp), i, kPrefixes)); } } fulltopic.replace(FPSTR(MQTT_TOKEN_PREFIX), SettingsText(SET_MQTTPREFIX1 + prefix)); fulltopic.replace(FPSTR(MQTT_TOKEN_TOPIC), (const __FlashStringHelper *)topic); fulltopic = ResolveToken(fulltopic.c_str()); } fulltopic.replace(F("#"), ""); fulltopic.replace(F("//"), "/"); if (!fulltopic.endsWith("/")) { fulltopic += "/"; } snprintf_P(stopic, TOPSZ, PSTR("%s%s"), fulltopic.c_str(), romram); return stopic; } char* GetGroupTopic_P(char *stopic, const char* subtopic, uint32_t itopic) { // SetOption75 0: %prefix%/nothing/%topic% = cmnd/nothing//# // SetOption75 1: cmnd/ return GetTopic_P(stopic, (Settings->flag3.grouptopic_mode) ? CMND +8 : CMND, SettingsText(itopic), subtopic); // SetOption75 - GroupTopic replaces %topic% (0) or fixed topic cmnd/grouptopic (1) } char* GetFallbackTopic_P(char *stopic, const char* subtopic) { return GetTopic_P(stopic, CMND +4, nullptr, subtopic); } char* GetStateText(uint32_t state) { if (state >= MAX_STATE_TEXT) { state = 1; } return SettingsText(SET_STATE_TXT1 + state); } /*********************************************************************************************\ * Zero-cross support \*********************************************************************************************/ //#define DEBUG_ZEROCROSS void ZeroCrossMomentStart(void) { if (!TasmotaGlobal.zc_interval) { return; } #ifdef DEBUG_ZEROCROSS uint32_t dbg_interval = TasmotaGlobal.zc_interval; uint32_t dbg_zctime = TasmotaGlobal.zc_time; uint32_t dbg_starttime = micros(); #endif uint32_t trigger_moment = TasmotaGlobal.zc_time + TasmotaGlobal.zc_interval - TasmotaGlobal.zc_offset - TasmotaGlobal.zc_code_offset; while (TimeReachedUsec(trigger_moment)) { // Trigger moment already passed so try next trigger_moment += TasmotaGlobal.zc_interval; } while (!TimeReachedUsec(trigger_moment)) {} // Wait for trigger moment #ifdef DEBUG_ZEROCROSS uint32_t dbg_endtime = micros(); AddLog(LOG_LEVEL_DEBUG, PSTR("ZCD: CodeExecTime %d, StartTime %u, EndTime %u, ZcTime %u, Interval %d"), dbg_endtime - dbg_starttime, dbg_starttime, dbg_endtime, dbg_zctime, dbg_interval); #endif TasmotaGlobal.zc_code_offset = micros(); } void ZeroCrossMomentEnd(void) { if (!TasmotaGlobal.zc_interval) { return; } TasmotaGlobal.zc_code_offset = (micros() - TasmotaGlobal.zc_code_offset) / 2; #ifdef DEBUG_ZEROCROSS AddLog(LOG_LEVEL_DEBUG, PSTR("ZCD: CodeExecTime %d"), TasmotaGlobal.zc_code_offset * 2); #endif } void IRAM_ATTR ZeroCrossIsr(void) { uint32_t time = micros(); TasmotaGlobal.zc_interval = ((int32_t) (time - TasmotaGlobal.zc_time)); TasmotaGlobal.zc_time = time; } void ZeroCrossInit(uint32_t offset) { if (PinUsed(GPIO_ZEROCROSS)) { TasmotaGlobal.zc_offset = offset; uint32_t gpio = Pin(GPIO_ZEROCROSS); pinMode(gpio, INPUT_PULLUP); attachInterrupt(gpio, ZeroCrossIsr, CHANGE); AddLog(LOG_LEVEL_INFO, PSTR("ZCD: Activated")); // Zero-cross detection activated } } /********************************************************************************************/ void SetLatchingRelay(power_t lpower, uint32_t state) { // TasmotaGlobal.power xx00 - toggle REL1 (Off) and REL3 (Off) - device 1 Off, device 2 Off // TasmotaGlobal.power xx01 - toggle REL2 (On) and REL3 (Off) - device 1 On, device 2 Off // TasmotaGlobal.power xx10 - toggle REL1 (Off) and REL4 (On) - device 1 Off, device 2 On // TasmotaGlobal.power xx11 - toggle REL2 (On) and REL4 (On) - device 1 On, device 2 On static power_t latching_power = 0; // Power state at latching start if (state && !TasmotaGlobal.latching_relay_pulse) { // Set latching relay to power if previous pulse has finished latching_power = lpower; TasmotaGlobal.latching_relay_pulse = 2; // max 200mS (initiated by stateloop()) } for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { uint32_t port = (i << 1) + ((latching_power >> i) &1); DigitalWrite(GPIO_REL1, port, bitRead(TasmotaGlobal.rel_inverted, port) ? !state : state); } } void SetDevicePower(power_t rpower, uint32_t source) { ShowSource(source); TasmotaGlobal.last_source = source; if (POWER_ALL_ALWAYS_ON == Settings->poweronstate) { // All on and stay on TasmotaGlobal.power = (1 << TasmotaGlobal.devices_present) -1; rpower = TasmotaGlobal.power; } if (Settings->flag.interlock) { // Allow only one or no relay set - CMND_INTERLOCK - Enable/disable interlock for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { power_t mask = 1; uint32_t count = 0; for (uint32_t j = 0; j < TasmotaGlobal.devices_present; j++) { if ((Settings->interlock[i] & mask) && (rpower & mask)) { count++; } mask <<= 1; } if (count > 1) { mask = ~Settings->interlock[i]; // Turn interlocked group off as there would be multiple relays on TasmotaGlobal.power &= mask; rpower &= mask; } } } if (rpower) { // Any power set TasmotaGlobal.last_power = rpower; } XdrvMailbox.index = rpower; XdrvCall(FUNC_SET_POWER); // Signal power state XsnsCall(FUNC_SET_POWER); // Signal power state XdrvMailbox.index = rpower; XdrvMailbox.payload = source; if (XdrvCall(FUNC_SET_DEVICE_POWER)) { // Set power state and stop if serviced // Serviced } #ifdef ESP8266 else if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { Serial.write(0xA0); Serial.write(0x04); Serial.write(rpower &0xFF); Serial.write(0xA1); Serial.write('\n'); Serial.flush(); } else if (EXS_RELAY == TasmotaGlobal.module_type) { SetLatchingRelay(rpower, 1); } #endif // ESP8266 else { ZeroCrossMomentStart(); for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { power_t state = rpower &1; if (i < MAX_RELAYS) { DigitalWrite(GPIO_REL1, i, bitRead(TasmotaGlobal.rel_inverted, i) ? !state : state); } rpower >>= 1; } ZeroCrossMomentEnd(); } } void RestorePower(bool publish_power, uint32_t source) { if (TasmotaGlobal.power != TasmotaGlobal.last_power) { TasmotaGlobal.power = TasmotaGlobal.last_power; SetDevicePower(TasmotaGlobal.power, source); if (publish_power) { MqttPublishAllPowerState(); } } } void SetAllPower(uint32_t state, uint32_t source) { // state 0 = POWER_OFF = Relay Off // state 1 = POWER_ON = Relay On (turn off after Settings->pulse_timer * 100 mSec if enabled) // state 2 = POWER_TOGGLE = Toggle relay // state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState // state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState // state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState // state 16 = POWER_SHOW_STATE = Show power state bool publish_power = true; if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) { state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE publish_power = false; } if ((state >= POWER_OFF) && (state <= POWER_TOGGLE)) { power_t all_on = (1 << TasmotaGlobal.devices_present) -1; switch (state) { case POWER_OFF: TasmotaGlobal.power = 0; break; case POWER_ON: TasmotaGlobal.power = all_on; break; case POWER_TOGGLE: TasmotaGlobal.power ^= all_on; // Complement current state } SetDevicePower(TasmotaGlobal.power, source); } if (publish_power) { MqttPublishAllPowerState(); } } void SetPowerOnState(void) { #ifdef ESP8266 if (MOTOR == TasmotaGlobal.module_type) { Settings->poweronstate = POWER_ALL_ON; // Needs always on else in limbo! } #endif // ESP8266 if (POWER_ALL_ALWAYS_ON == Settings->poweronstate) { SetDevicePower(1, SRC_RESTART); } else { if ((ResetReason() == REASON_DEFAULT_RST) || (ResetReason() == REASON_EXT_SYS_RST)) { switch (Settings->poweronstate) { case POWER_ALL_OFF: case POWER_ALL_OFF_PULSETIME_ON: TasmotaGlobal.power = 0; SetDevicePower(TasmotaGlobal.power, SRC_RESTART); break; case POWER_ALL_ON: // All on TasmotaGlobal.power = (1 << TasmotaGlobal.devices_present) -1; SetDevicePower(TasmotaGlobal.power, SRC_RESTART); break; case POWER_ALL_SAVED_TOGGLE: TasmotaGlobal.power = (Settings->power & ((1 << TasmotaGlobal.devices_present) -1)) ^ POWER_MASK; if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(TasmotaGlobal.power, SRC_RESTART); } break; case POWER_ALL_SAVED: TasmotaGlobal.power = Settings->power & ((1 << TasmotaGlobal.devices_present) -1); if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(TasmotaGlobal.power, SRC_RESTART); } break; } } else { TasmotaGlobal.power = Settings->power & ((1 << TasmotaGlobal.devices_present) -1); if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart SetDevicePower(TasmotaGlobal.power, SRC_RESTART); } } } // Issue #526 and #909 for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { if (!Settings->flag3.no_power_feedback) { // SetOption63 - Don't scan relay power state at restart - #5594 and #5663 if ((i < MAX_RELAYS) && PinUsed(GPIO_REL1, i)) { bitWrite(TasmotaGlobal.power, i, digitalRead(Pin(GPIO_REL1, i)) ^ bitRead(TasmotaGlobal.rel_inverted, i)); } } if (bitRead(TasmotaGlobal.power, i) || (POWER_ALL_OFF_PULSETIME_ON == Settings->poweronstate)) { SetPulseTimer(i % MAX_PULSETIMERS, Settings->pulse_timer[i % MAX_PULSETIMERS]); } } TasmotaGlobal.blink_powersave = TasmotaGlobal.power; } void UpdateLedPowerAll() { for (uint32_t i = 0; i < TasmotaGlobal.leds_present; i++) { SetLedPowerIdx(i, bitRead(TasmotaGlobal.led_power, i)); } } void SetLedPowerIdx(uint32_t led, uint32_t state) { /* // Fix legacy led support 20211016 (Notice: legacy led supports TWO leds max) if (!PinUsed(GPIO_LEDLNK) && (0 == led)) { // Legacy - LED1 is link led only if LED2 is present if (PinUsed(GPIO_LED1, 1)) { led = 1; } } */ if (PinUsed(GPIO_LED1, led)) { uint32_t mask = 1 << led; if (state) { state = 1; TasmotaGlobal.led_power |= mask; } else { TasmotaGlobal.led_power &= (0xFF ^ mask); } uint16_t pwm = 0; if (bitRead(Settings->ledpwm_mask, led)) { #ifdef USE_LIGHT pwm = changeUIntScale(ledGamma10(state ? Settings->ledpwm_on : Settings->ledpwm_off), 0, 1023, 0, Settings->pwm_range); // gamma corrected #else //USE_LIGHT pwm = changeUIntScale((uint16_t)(state ? Settings->ledpwm_on : Settings->ledpwm_off), 0, 255, 0, Settings->pwm_range); // linear #endif //USE_LIGHT analogWrite(Pin(GPIO_LED1, led), bitRead(TasmotaGlobal.led_inverted, led) ? Settings->pwm_range - pwm : pwm); } else { DigitalWrite(GPIO_LED1, led, bitRead(TasmotaGlobal.led_inverted, led) ? !state : state); } } #ifdef USE_BUZZER if (led == 0) { BuzzerSetStateToLed(state); } #endif // USE_BUZZER } void SetLedPower(bool state) { if (!PinUsed(GPIO_LEDLNK)) { // Legacy - Only use LED1 and/or LED2 /* SetLedPowerIdx(0, state); */ // Fix legacy led support 20211016 (Notice: legacy led supports TWO leds max) uint32_t led = (PinUsed(GPIO_LED1, 1)) ? 1 : 0; SetLedPowerIdx(led, state); } else { power_t mask = 1; for (uint32_t i = 0; i < TasmotaGlobal.leds_present; i++) { // Map leds to power bool tstate = (TasmotaGlobal.power & mask); SetLedPowerIdx(i, tstate); mask <<= 1; } } } void SetLedPowerAll(uint32_t state) { for (uint32_t i = 0; i < TasmotaGlobal.leds_present; i++) { SetLedPowerIdx(i, state); } } void SetLedLink(uint32_t state) { int led_pin = Pin(GPIO_LEDLNK); uint32_t led_inv = TasmotaGlobal.ledlnk_inverted; if (-1 == led_pin) { // Legacy - LED1 is status SetLedPowerIdx(0, state); } else if (led_pin >= 0) { if (state) { state = 1; } digitalWrite(led_pin, (led_inv) ? !state : state); } #ifdef USE_BUZZER BuzzerSetStateToLed(state); #endif // USE_BUZZER } void SetPulseTimer(uint32_t index, uint32_t time) { TasmotaGlobal.pulse_timer[index] = (time > 111) ? millis() + (1000 * (time - 100)) : (time > 0) ? millis() + (100 * time) : 0L; } uint32_t GetPulseTimer(uint32_t index) { long time = TimePassedSince(TasmotaGlobal.pulse_timer[index]); if (time < 0) { time *= -1; return (time > 11100) ? (time / 1000) + 100 : (time > 0) ? time / 100 : 0; } return 0; } /********************************************************************************************/ bool SendKey(uint32_t key, uint32_t device, uint32_t state) { // key 0 = KEY_BUTTON = button_topic // key 1 = KEY_SWITCH = switch_topic // state 0 = POWER_OFF = off // state 1 = POWER_ON = on // state 2 = POWER_TOGGLE = toggle // state 3 = POWER_HOLD = hold // state 4 = POWER_INCREMENT = button still pressed // state 5 = POWER_INV = button released // state 6 = POWER_CLEAR = button released // state 7 = POWER_RELEASE = button released // state 9 = CLEAR_RETAIN = clear retain flag // state 10 = POWER_DELAYED = button released delayed char stopic[TOPSZ]; char scommand[CMDSZ]; char key_topic[TOPSZ]; bool result = false; uint32_t device_save = device; char *tmp = (key) ? SettingsText(SET_MQTT_SWITCH_TOPIC) : SettingsText(SET_MQTT_BUTTON_TOPIC); Format(key_topic, tmp, sizeof(key_topic)); if (Settings->flag.mqtt_enabled && MqttIsConnected() && (strlen(key_topic) != 0) && strcmp(key_topic, "0")) { // SetOption3 - Enable MQTT if (!key && (device > TasmotaGlobal.devices_present)) { device = 1; // Only allow number of buttons up to number of devices } GetTopic_P(stopic, CMND, key_topic, GetPowerDevice(scommand, device, sizeof(scommand), (key + Settings->flag.device_index_enable))); // cmnd/switchtopic/POWERx - SetOption26 - Switch between POWER or POWER1 if (CLEAR_RETAIN == state) { ResponseClear(); } else { if ((Settings->flag3.button_switch_force_local || // SetOption61 - Force local operation when button/switch topic is set !strcmp(TasmotaGlobal.mqtt_topic, key_topic) || !strcmp(SettingsText(SET_MQTT_GRP_TOPIC), key_topic)) && (POWER_TOGGLE == state)) { state = ~(TasmotaGlobal.power >> (device -1)) &1; // POWER_OFF or POWER_ON } Response_P(GetStateText(state)); } #ifdef USE_DOMOTICZ if (!(DomoticzSendKey(key, device, state, ResponseLength()))) { #endif // USE_DOMOTICZ MqttPublish(stopic, ((key) ? Settings->flag.mqtt_switch_retain // CMND_SWITCHRETAIN : Settings->flag.mqtt_button_retain) && // CMND_BUTTONRETAIN (state != POWER_HOLD || !Settings->flag3.no_hold_retain)); // SetOption62 - Don't use retain flag on HOLD messages #ifdef USE_DOMOTICZ } #endif // USE_DOMOTICZ result = !Settings->flag3.button_switch_force_local; // SetOption61 - Force local operation when button/switch topic is set } else { Response_P(PSTR("{\"%s%d\":{\"State\":%d}}"), (key) ? PSTR("Switch") : PSTR("Button"), device, state); result = XdrvRulesProcess(0); } #ifdef USE_PWM_DIMMER if (PWM_DIMMER != TasmotaGlobal.module_type || (!result && !Settings->flag3.mqtt_buttons)) { #endif // USE_PWM_DIMMER int32_t payload_save = XdrvMailbox.payload; XdrvMailbox.payload = device_save << 24 | key << 16 | state << 8 | device; XdrvCall(FUNC_ANY_KEY); XdrvMailbox.payload = payload_save; #ifdef USE_PWM_DIMMER if (PWM_DIMMER == TasmotaGlobal.module_type) result = true; } #endif // USE_PWM_DIMMER return result; } void ExecuteCommandPower(uint32_t device, uint32_t state, uint32_t source) { // device = Relay number 1 and up // state 0 = POWER_OFF = Relay Off // state 1 = POWER_ON = Relay On (turn off after Settings->pulse_timer * 100 mSec if enabled) // state 2 = POWER_TOGGLE = Toggle relay // state 3 = POWER_BLINK = Blink relay // state 4 = POWER_BLINK_STOP = Stop blinking relay // state 8 = POWER_OFF_NO_STATE = Relay Off and no publishPowerState // state 9 = POWER_ON_NO_STATE = Relay On and no publishPowerState // state 10 = POWER_TOGGLE_NO_STATE = Toggle relay and no publishPowerState // state 16 = POWER_SHOW_STATE = Show power state // ShowSource(source); #ifdef USE_SONOFF_IFAN if (IsModuleIfan()) { TasmotaGlobal.blink_mask &= 1; // No blinking on the fan relays Settings->flag.interlock = 0; // No interlock mode as it is already done by the microcontroller - CMND_INTERLOCK - Enable/disable interlock Settings->pulse_timer[1] = 0; // No pulsetimers on the fan relays Settings->pulse_timer[2] = 0; Settings->pulse_timer[3] = 0; } #endif // USE_SONOFF_IFAN bool publish_power = true; if ((state >= POWER_OFF_NO_STATE) && (state <= POWER_TOGGLE_NO_STATE)) { state &= 3; // POWER_OFF, POWER_ON or POWER_TOGGLE publish_power = false; } if ((device < 1) || (device > TasmotaGlobal.devices_present)) { device = 1; } TasmotaGlobal.active_device = device; if (state != POWER_SHOW_STATE) { SetPulseTimer((device -1) % MAX_PULSETIMERS, 0); } static bool interlock_mutex = false; // Interlock power command pending power_t mask = 1 << (device -1); // Device to control if (state <= POWER_TOGGLE) { if ((TasmotaGlobal.blink_mask & mask)) { TasmotaGlobal.blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); } if (Settings->flag.interlock && // CMND_INTERLOCK - Enable/disable interlock !interlock_mutex && ((POWER_ON == state) || ((POWER_TOGGLE == state) && !(TasmotaGlobal.power & mask))) ) { interlock_mutex = true; // Clear all but masked relay in interlock group if new set requested bool perform_interlock_delay = false; for (uint32_t i = 0; i < MAX_INTERLOCKS; i++) { if (Settings->interlock[i] & mask) { // Find interlock group for (uint32_t j = 0; j < TasmotaGlobal.devices_present; j++) { power_t imask = 1 << j; if ((Settings->interlock[i] & imask) && (TasmotaGlobal.power & imask) && (mask != imask)) { ExecuteCommandPower(j +1, POWER_OFF, SRC_IGNORE); perform_interlock_delay = true; } } break; // An interlocked relay is only present in one group so quit } } if (perform_interlock_delay) { delay(50); // Add some delay to make sure never have more than one relay on } interlock_mutex = false; } #ifdef USE_DEVICE_GROUPS power_t old_power = TasmotaGlobal.power; #endif // USE_DEVICE_GROUPS switch (state) { case POWER_OFF: { TasmotaGlobal.power &= (POWER_MASK ^ mask); break; } case POWER_ON: TasmotaGlobal.power |= mask; break; case POWER_TOGGLE: TasmotaGlobal.power ^= mask; } #ifdef USE_DEVICE_GROUPS if (TasmotaGlobal.power != old_power && SRC_REMOTE != source && SRC_RETRY != source) { power_t dgr_power = TasmotaGlobal.power; if (Settings->flag4.multiple_device_groups) { // SetOption88 - Enable relays in separate device groups dgr_power = (dgr_power >> (device - 1)) & 1; } SendDeviceGroupMessage(device, DGR_MSGTYP_UPDATE, DGR_ITEM_POWER, dgr_power); } #endif // USE_DEVICE_GROUPS SetDevicePower(TasmotaGlobal.power, source); #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(device); #endif // USE_DOMOTICZ #ifdef USE_KNX KnxUpdatePowerState(device, TasmotaGlobal.power); #endif // USE_KNX if (publish_power && Settings->flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT MqttPublishTeleState(); } // Restart PulseTime if powered On SetPulseTimer((device -1) % MAX_PULSETIMERS, (((POWER_ALL_OFF_PULSETIME_ON == Settings->poweronstate) ? ~TasmotaGlobal.power : TasmotaGlobal.power) & mask) ? Settings->pulse_timer[(device -1) % MAX_PULSETIMERS] : 0); } else if (POWER_BLINK == state) { if (!(TasmotaGlobal.blink_mask & mask)) { TasmotaGlobal.blink_powersave = (TasmotaGlobal.blink_powersave & (POWER_MASK ^ mask)) | (TasmotaGlobal.power & mask); // Save state TasmotaGlobal.blink_power = (TasmotaGlobal.power >> (device -1))&1; // Prep to Toggle } TasmotaGlobal.blink_timer = millis() + 100; TasmotaGlobal.blink_counter = ((!Settings->blinkcount) ? 64000 : (Settings->blinkcount *2)) +1; TasmotaGlobal.blink_mask |= mask; // Set device mask MqttPublishPowerBlinkState(device); return; } else if (POWER_BLINK_STOP == state) { bool flag = (TasmotaGlobal.blink_mask & mask); TasmotaGlobal.blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(device); if (flag) { ExecuteCommandPower(device, (TasmotaGlobal.blink_powersave >> (device -1))&1, SRC_IGNORE); // Restore state } return; } if (publish_power) { MqttPublishPowerState(device); } } void StopAllPowerBlink(void) { power_t mask; for (uint32_t i = 1; i <= TasmotaGlobal.devices_present; i++) { mask = 1 << (i -1); if (TasmotaGlobal.blink_mask & mask) { TasmotaGlobal.blink_mask &= (POWER_MASK ^ mask); // Clear device mask MqttPublishPowerBlinkState(i); ExecuteCommandPower(i, (TasmotaGlobal.blink_powersave >> (i -1))&1, SRC_IGNORE); // Restore state } } } void MqttShowPWMState(void) { ResponseAppend_P(PSTR("\"" D_CMND_PWM "\":{")); bool first = true; for (uint32_t i = 0; i < MAX_PWMS; i++) { if (PinUsed(GPIO_PWM1, i)) { ResponseAppend_P(PSTR("%s\"" D_CMND_PWM "%d\":%d"), first ? "" : ",", i+1, Settings->pwm_value[i]); first = false; } } ResponseJsonEnd(); } void MqttShowState(void) { char stemp1[TOPSZ]; ResponseAppendTime(); ResponseAppend_P(PSTR(",\"" D_JSON_UPTIME "\":\"%s\",\"UptimeSec\":%u"), GetUptime().c_str(), UpTime()); #ifdef ESP8266 #ifdef USE_ADC_VCC dtostrfd((double)ESP.getVcc()/1000, 3, stemp1); ResponseAppend_P(PSTR(",\"" D_JSON_VCC "\":%s"), stemp1); #endif // USE_ADC_VCC #endif // ESP8266 ResponseAppend_P(PSTR(",\"" D_JSON_HEAPSIZE "\":%d,\"SleepMode\":\"%s\",\"Sleep\":%u,\"LoadAvg\":%u,\"MqttCount\":%u"), ESP_getFreeHeap1024(), GetTextIndexed(stemp1, sizeof(stemp1), Settings->flag3.sleep_normal, kSleepMode), // SetOption60 - Enable normal sleep instead of dynamic sleep TasmotaGlobal.sleep, TasmotaGlobal.loop_load_avg, MqttConnectCount()); for (uint32_t i = 1; i <= TasmotaGlobal.devices_present; i++) { #ifdef USE_LIGHT if ((LightDevice()) && (i >= LightDevice())) { if (i == LightDevice()) { ResponseLightState(1); } // call it only once } else { #endif ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetPowerDevice(stemp1, i, sizeof(stemp1), Settings->flag.device_index_enable), // SetOption26 - Switch between POWER or POWER1 GetStateText(bitRead(TasmotaGlobal.power, i-1))); #ifdef USE_SONOFF_IFAN if (IsModuleIfan()) { ResponseAppend_P(PSTR(",\"" D_CMND_FANSPEED "\":%d"), GetFanspeed()); break; } #endif // USE_SONOFF_IFAN #ifdef USE_LIGHT } #endif } if (TasmotaGlobal.pwm_present) { ResponseAppend_P(PSTR(",")); MqttShowPWMState(); } if (!TasmotaGlobal.global_state.wifi_down) { int32_t rssi = WiFi.RSSI(); ResponseAppend_P(PSTR(",\"" D_JSON_WIFI "\":{\"" D_JSON_AP "\":%d,\"" D_JSON_SSID "\":\"%s\",\"" D_JSON_BSSID "\":\"%s\",\"" D_JSON_CHANNEL "\":%d,\"" D_JSON_WIFI_MODE "\":\"11%c\",\"" D_JSON_RSSI "\":%d,\"" D_JSON_SIGNAL "\":%d,\"" D_JSON_LINK_COUNT "\":%d,\"" D_JSON_DOWNTIME "\":\"%s\"}"), Settings->sta_active +1, EscapeJSONString(SettingsText(SET_STASSID1 + Settings->sta_active)).c_str(), WiFi.BSSIDstr().c_str(), WiFi.channel(), pgm_read_byte(&kWifiPhyMode[WiFi.getPhyMode() & 0x3]), WifiGetRssiAsQuality(rssi), rssi, WifiLinkCount(), WifiDowntime().c_str()); } ResponseJsonEnd(); } void MqttPublishTeleState(void) { ResponseClear(); MqttShowState(); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_STATE), Settings->flag5.mqtt_state_retain); XdrvRulesProcess(1); } void TempHumDewShow(bool json, bool pass_on, const char *types, float f_temperature, float f_humidity) { if (json) { ResponseAppend_P(PSTR(",\"%s\":{"), types); ResponseAppendTHD(f_temperature, f_humidity); ResponseJsonEnd(); #ifdef USE_DOMOTICZ if (pass_on) { DomoticzTempHumPressureSensor(f_temperature, f_humidity); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (pass_on) { KnxSensor(KNX_TEMPERATURE, f_temperature); KnxSensor(KNX_HUMIDITY, f_humidity); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_THD(types, f_temperature, f_humidity); #endif // USE_WEBSERVER } } String GetSwitchText(uint32_t i) { String switch_text = ""; if (i < MAX_SWITCHES_TXT) { switch_text = SettingsText(SET_SWITCH_TXT1 + i); } if ('\0' == switch_text[0]) { switch_text = F(D_JSON_SWITCH); switch_text += String(i+1); } return switch_text; } bool MqttShowSensor(bool call_show_sensor) { ResponseAppendTime(); int json_data_start = ResponseLength(); for (uint32_t i = 0; i < MAX_SWITCHES; i++) { #ifdef USE_TM1638 if (PinUsed(GPIO_SWT1, i) || (PinUsed(GPIO_TM1638CLK) && PinUsed(GPIO_TM1638DIO) && PinUsed(GPIO_TM1638STB))) { #else if (PinUsed(GPIO_SWT1, i)) { #endif // USE_TM1638 ResponseAppend_P(PSTR(",\"%s\":\"%s\""), GetSwitchText(i).c_str(), GetStateText(SwitchState(i))); } } XsnsCall(FUNC_JSON_APPEND); XdrvCall(FUNC_JSON_APPEND); if (TasmotaGlobal.global_update && Settings->flag.mqtt_add_global_info) { if ((TasmotaGlobal.humidity > 0) || !isnan(TasmotaGlobal.temperature_celsius) || (TasmotaGlobal.pressure_hpa != 0)) { uint32_t add_comma = 0; ResponseAppend_P(PSTR(",\"Global\":{")); if (!isnan(TasmotaGlobal.temperature_celsius)) { float t = ConvertTempToFahrenheit(TasmotaGlobal.temperature_celsius); ResponseAppend_P(PSTR("\"" D_JSON_TEMPERATURE "\":%*_f"), Settings->flag2.temperature_resolution, &t); add_comma++; } if (TasmotaGlobal.humidity > 0) { ResponseAppend_P(PSTR("%s\"" D_JSON_HUMIDITY "\":%*_f"), (add_comma)?",":"", Settings->flag2.humidity_resolution, &TasmotaGlobal.humidity); add_comma++; } if (2 == add_comma) { float dewpoint = CalcTempHumToDew(TasmotaGlobal.temperature_celsius, TasmotaGlobal.humidity); ResponseAppend_P(PSTR("%s\"" D_JSON_DEWPOINT "\":%*_f"), (add_comma)?",":"", Settings->flag2.temperature_resolution, &dewpoint); } if (TasmotaGlobal.pressure_hpa != 0) { float p = ConvertPressure(TasmotaGlobal.pressure_hpa); float s = ConvertPressureForSeaLevel(TasmotaGlobal.pressure_hpa); ResponseAppend_P(PSTR("%s\"" D_JSON_PRESSURE "\":%*_f,\"" D_JSON_PRESSUREATSEALEVEL "\":%*_f"), (add_comma)?",":"", Settings->flag2.pressure_resolution, &p, Settings->flag2.pressure_resolution, &s); } ResponseJsonEnd(); } } bool json_data_available = (ResponseLength() - json_data_start); if (ResponseContains_P(PSTR(D_JSON_PRESSURE))) { ResponseAppend_P(PSTR(",\"" D_JSON_PRESSURE_UNIT "\":\"%s\""), PressureUnit().c_str()); } if (ResponseContains_P(PSTR(D_JSON_TEMPERATURE))) { ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE_UNIT "\":\"%c\""), TempUnit()); } if (ResponseContains_P(PSTR(D_JSON_SPEED)) && Settings->flag2.speed_conversion) { ResponseAppend_P(PSTR(",\"" D_JSON_SPEED_UNIT "\":\"%s\""), SpeedUnit().c_str()); } ResponseJsonEnd(); if (call_show_sensor && json_data_available) { XdrvCall(FUNC_SHOW_SENSOR); } return json_data_available; } void MqttPublishSensor(void) { ResponseClear(); if (MqttShowSensor(true)) { MqttPublishTeleSensor(); } } void MqttPublishTeleperiodSensor(void) { ResponseClear(); if (MqttShowSensor(true)) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings->flag.mqtt_sensor_retain); // CMND_SENSORRETAIN XdrvRulesProcess(1); } } /*********************************************************************************************\ * State loops \*********************************************************************************************/ /*-------------------------------------------------------------------------------------------*\ * Every second \*-------------------------------------------------------------------------------------------*/ void PerformEverySecond(void) { TasmotaGlobal.uptime++; if (POWER_CYCLE_TIME == TasmotaGlobal.uptime) { UpdateQuickPowerCycle(false); } if (BOOT_LOOP_TIME == TasmotaGlobal.uptime) { RtcRebootReset(); Settings->last_module = Settings->module; #ifdef USE_DEEPSLEEP if (!(DeepSleepEnabled() && !Settings->flag3.bootcount_update)) { // SetOption76 - (Deepsleep) Enable incrementing bootcount (1) when deepsleep is enabled #endif Settings->bootcount++; // Moved to here to stop flash writes during start-up AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_BOOT_COUNT " %d"), Settings->bootcount); #ifdef USE_DEEPSLEEP } #endif } if (TasmotaGlobal.mqtt_cmnd_blocked_reset) { TasmotaGlobal.mqtt_cmnd_blocked_reset--; if (!TasmotaGlobal.mqtt_cmnd_blocked_reset) { TasmotaGlobal.mqtt_cmnd_blocked = 0; // Clean up MQTT cmnd loop block } } if (TasmotaGlobal.seriallog_timer) { TasmotaGlobal.seriallog_timer--; if (!TasmotaGlobal.seriallog_timer) { if (TasmotaGlobal.seriallog_level) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SERIAL_LOGGING_DISABLED)); } TasmotaGlobal.seriallog_level = 0; } } if (TasmotaGlobal.syslog_timer) { // Restore syslog level TasmotaGlobal.syslog_timer--; if (!TasmotaGlobal.syslog_timer) { TasmotaGlobal.syslog_level = Settings->syslog_level; if (Settings->syslog_level) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_LOGGING_REENABLED)); // Might trigger disable again (on purpose) } } } MqttPublishLoggingAsync(false); SyslogAsync(false); ResetGlobalValues(); if (Settings->tele_period || (3601 == TasmotaGlobal.tele_period)) { if (TasmotaGlobal.tele_period >= 9999) { if (!TasmotaGlobal.global_state.network_down) { TasmotaGlobal.tele_period = 0; // Allow teleperiod once wifi is connected } } else { TasmotaGlobal.tele_period++; if (TasmotaGlobal.tele_period >= Settings->tele_period) { TasmotaGlobal.tele_period = 0; MqttPublishTeleState(); MqttPublishTeleperiodSensor(); XsnsCall(FUNC_AFTER_TELEPERIOD); XdrvCall(FUNC_AFTER_TELEPERIOD); } } } // Wifi keep alive to send Gratuitous ARP wifiKeepAlive(); WifiPollNtp(); #ifdef ESP32 if (11 == TasmotaGlobal.uptime) { // Perform one-time ESP32 houskeeping ESP_getSketchSize(); // Init sketchsize as it can take up to 2 seconds } #endif #ifdef USE_UFILESYS static bool settings_lkg = false; // Settings saved as Last Known Good // Copy Settings as Last Known Good if no changes have been saved since 30 minutes if (!settings_lkg && (UtcTime() > START_VALID_TIME) && (Settings->cfg_timestamp < UtcTime() - (30 * 60))) { TfsSaveFile(TASM_FILE_SETTINGS_LKG, (const uint8_t*)Settings, sizeof(TSettings)); settings_lkg = true; } #endif } /*-------------------------------------------------------------------------------------------*\ * Every 0.1 second \*-------------------------------------------------------------------------------------------*/ void Every100mSeconds(void) { // As the max amount of sleep = 250 mSec this loop will shift in time... power_t power_now; if (TasmotaGlobal.latching_relay_pulse) { TasmotaGlobal.latching_relay_pulse--; if (!TasmotaGlobal.latching_relay_pulse) SetLatchingRelay(0, 0); } for (uint32_t i = 0; i < MAX_PULSETIMERS; i++) { if (TasmotaGlobal.pulse_timer[i] != 0L) { // Timer active? if (TimeReached(TasmotaGlobal.pulse_timer[i])) { // Timer finished? TasmotaGlobal.pulse_timer[i] = 0L; // Turn off this timer for (uint32_t j = 0; j < TasmotaGlobal.devices_present; j = j +MAX_PULSETIMERS) { ExecuteCommandPower(i + j +1, (POWER_ALL_OFF_PULSETIME_ON == Settings->poweronstate) ? POWER_ON : POWER_OFF, SRC_PULSETIMER); } } } } if (TasmotaGlobal.blink_mask) { if (TimeReached(TasmotaGlobal.blink_timer)) { SetNextTimeInterval(TasmotaGlobal.blink_timer, 100 * Settings->blinktime); TasmotaGlobal.blink_counter--; if (!TasmotaGlobal.blink_counter) { StopAllPowerBlink(); } else { TasmotaGlobal.blink_power ^= 1; power_now = (TasmotaGlobal.power & (POWER_MASK ^ TasmotaGlobal.blink_mask)) | ((TasmotaGlobal.blink_power) ? TasmotaGlobal.blink_mask : 0); SetDevicePower(power_now, SRC_IGNORE); } } } } /*-------------------------------------------------------------------------------------------*\ * Every 0.25 second \*-------------------------------------------------------------------------------------------*/ #ifdef USE_BLE_ESP32 // declare the fn int ExtStopBLE(); #endif // USE_BLE_ESP32 bool CommandsReady(void) { bool ready = BACKLOG_EMPTY ; #ifdef USE_UFILESYS ready |= UfsExecuteCommandFileReady(); #endif // USE_UFILESYS return ready; } void Every250mSeconds(void) { // As the max amount of sleep = 250 mSec this loop should always be taken... static uint8_t blinkspeed = 1; // LED blink rate uint32_t blinkinterval = 1; TasmotaGlobal.state_250mS++; TasmotaGlobal.state_250mS &= 0x3; TasmotaGlobal.global_state.network_down = (TasmotaGlobal.global_state.wifi_down && TasmotaGlobal.global_state.eth_down) ? 1 : 0; if (!Settings->flag.global_state) { // SetOption31 - Control link led blinking if (TasmotaGlobal.global_state.data &0x03) { // Network or MQTT problem if (TasmotaGlobal.global_state.mqtt_down) { blinkinterval = 7; } // MQTT problem so blink every 2 seconds (slowest) if (TasmotaGlobal.global_state.network_down) { blinkinterval = 3; } // Network problem so blink every second (slow) TasmotaGlobal.blinks = 201; // Allow only a single blink in case the problem is solved } } if (TasmotaGlobal.blinks || TasmotaGlobal.restart_flag || TasmotaGlobal.ota_state_flag) { if (TasmotaGlobal.restart_flag || TasmotaGlobal.ota_state_flag) { // Overrule blinks and keep led lit TasmotaGlobal.blinkstate = true; // Stay lit } else { blinkspeed--; if (!blinkspeed) { blinkspeed = blinkinterval; // Set interval to 0.2 (default), 1 or 2 seconds TasmotaGlobal.blinkstate ^= 1; // Blink } } if ((!(Settings->ledstate &0x08)) && ((Settings->ledstate &0x06) || (TasmotaGlobal.blinks > 200) || (TasmotaGlobal.blinkstate))) { SetLedLink(TasmotaGlobal.blinkstate); // Set led on or off } if (!TasmotaGlobal.blinkstate) { TasmotaGlobal.blinks--; if (200 == TasmotaGlobal.blinks) { TasmotaGlobal.blinks = 0; } // Disable blink } } if (Settings->ledstate &1 && (PinUsed(GPIO_LEDLNK) || !(TasmotaGlobal.blinks || TasmotaGlobal.restart_flag || TasmotaGlobal.ota_state_flag)) ) { bool tstate = TasmotaGlobal.power & Settings->ledmask; #ifdef ESP8266 if ((SONOFF_TOUCH == TasmotaGlobal.module_type) || (SONOFF_T11 == TasmotaGlobal.module_type) || (SONOFF_T12 == TasmotaGlobal.module_type) || (SONOFF_T13 == TasmotaGlobal.module_type)) { tstate = (!TasmotaGlobal.power) ? 1 : 0; // As requested invert signal for Touch devices to find them in the dark } #endif // ESP8266 SetLedPower(tstate); } // Check if log refresh needed in case of fast buffer fill MqttPublishLoggingAsync(true); SyslogAsync(true); /*-------------------------------------------------------------------------------------------*\ * Every second at 0.25 second interval \*-------------------------------------------------------------------------------------------*/ static int ota_result = 0; static uint8_t ota_retry_counter = OTA_ATTEMPTS; switch (TasmotaGlobal.state_250mS) { case 0: // Every x.0 second if (TasmotaGlobal.ota_state_flag && CommandsReady()) { TasmotaGlobal.ota_state_flag--; if (2 == TasmotaGlobal.ota_state_flag) { RtcSettings.ota_loader = 0; // Try requested image first ota_retry_counter = OTA_ATTEMPTS; ESPhttpUpdate.rebootOnUpdate(false); SettingsSave(1); // Free flash for OTA update } if (TasmotaGlobal.ota_state_flag <= 0) { #ifdef USE_BLE_ESP32 ExtStopBLE(); #endif // USE_BLE_ESP32 #ifdef USE_COUNTER CounterInterruptDisable(true); // Prevent OTA failures on 100Hz counter interrupts #endif // USE_COUNTER #ifdef USE_WEBSERVER if (Settings->webserver) StopWebserver(); #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF TasmotaGlobal.ota_state_flag = 92; ota_result = 0; char full_ota_url[200]; ota_retry_counter--; if (ota_retry_counter) { char ota_url[TOPSZ]; strlcpy(full_ota_url, GetOtaUrl(ota_url, sizeof(ota_url)), sizeof(full_ota_url)); #ifdef ESP8266 #ifndef FIRMWARE_MINIMAL if (RtcSettings.ota_loader) { // OTA File too large so try OTA minimal version // Replace tasmota with tasmota-minimal // Replace tasmota-DE with tasmota-minimal // Replace tasmota.bin with tasmota-minimal.bin // Replace tasmota.xyz with tasmota-minimal.xyz // Replace tasmota.bin.gz with tasmota-minimal.bin.gz // Replace tasmota.xyz.gz with tasmota-minimal.xyz.gz // Replace tasmota.ino.bin with tasmota-minimal.ino.bin // Replace tasmota.ino.bin.gz with tasmota-minimal.ino.bin.gz // Replace http://domus1:80/api/arduino/tasmota.bin with http://domus1:80/api/arduino/tasmota-minimal.bin // Replace http://domus1:80/api/arduino/tasmota.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz // Replace http://domus1:80/api/arduino/tasmota-DE.bin.gz with http://domus1:80/api/arduino/tasmota-minimal.bin.gz // Replace http://domus1:80/api/ard-uino/tasmota-DE.bin.gz with http://domus1:80/api/ard-uino/tasmota-minimal.bin.gz // Replace http://192.168.2.17:80/api/arduino/tasmota.bin with http://192.168.2.17:80/api/arduino/tasmota-minimal.bin // Replace http://192.168.2.17/api/arduino/tasmota.bin.gz with http://192.168.2.17/api/arduino/tasmota-minimal.bin.gz char *bch = strrchr(full_ota_url, '/'); // Only consider filename after last backslash prevent change of urls having "-" in it if (bch == nullptr) { bch = full_ota_url; } // No path found so use filename only char *ech = strchr(bch, '.'); // Find file type in filename (none, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz) if (ech == nullptr) { ech = full_ota_url + strlen(full_ota_url); } // Point to '/0' at end of full_ota_url becoming an empty string //AddLog(LOG_LEVEL_DEBUG, PSTR("OTA: File type [%s]"), ech); char ota_url_type[strlen(ech) +1]; strncpy(ota_url_type, ech, sizeof(ota_url_type)); // Either empty, .ino.bin, .ino.bin.gz, .bin, .bin.gz or .gz char *pch = strrchr(bch, '-'); // Find last dash (-) and ignore remainder - handles tasmota-DE if (pch == nullptr) { pch = ech; } // No dash so ignore filetype *pch = '\0'; // full_ota_url = http://domus1:80/api/arduino/tasmota snprintf_P(full_ota_url, sizeof(full_ota_url), PSTR("%s-" D_JSON_MINIMAL "%s"), full_ota_url, ota_url_type); // Minimal filename must be filename-minimal } #endif // FIRMWARE_MINIMAL if (ota_retry_counter < OTA_ATTEMPTS / 2) { if (StrCaseStr_P(full_ota_url, PSTR(".gz"))) { ota_retry_counter = 1; } else { strcat_P(full_ota_url, PSTR(".gz")); } } #endif // ESP8266 char version[50]; snprintf_P(version, sizeof(version), PSTR("%s%s"), TasmotaGlobal.version, TasmotaGlobal.image_name); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_UPLOAD "%s %s"), full_ota_url, version); WiFiClient OTAclient; ota_result = (HTTP_UPDATE_FAILED != ESPhttpUpdate.update(OTAclient, full_ota_url, version)); if (!ota_result) { #ifndef FIRMWARE_MINIMAL int ota_error = ESPhttpUpdate.getLastError(); DEBUG_CORE_LOG(PSTR("OTA: Error %d"), ota_error); #ifdef ESP8266 if ((HTTP_UE_TOO_LESS_SPACE == ota_error) || (HTTP_UE_BIN_FOR_WRONG_FLASH == ota_error)) { RtcSettings.ota_loader = 1; // Try minimal image next } #endif // ESP8266 #endif // FIRMWARE_MINIMAL TasmotaGlobal.ota_state_flag = 2; // Upgrade failed - retry } } } if (90 == TasmotaGlobal.ota_state_flag) { // Allow MQTT to reconnect TasmotaGlobal.ota_state_flag = 0; Response_P(PSTR("{\"" D_CMND_UPGRADE "\":\"")); if (ota_result) { ResponseAppend_P(PSTR(D_JSON_SUCCESSFUL ". " D_JSON_RESTARTING)); TasmotaGlobal.restart_flag = 2; } else { ResponseAppend_P(PSTR(D_JSON_FAILED " %s"), ESPhttpUpdate.getLastErrorString().c_str()); } ResponseAppend_P(PSTR("\"}")); // TasmotaGlobal.restart_flag = 2; // Restart anyway to keep memory clean webserver MqttPublishPrefixTopicRulesProcess_P(STAT, PSTR(D_CMND_UPGRADE)); #ifdef USE_COUNTER CounterInterruptDisable(false); #endif // USE_COUNTER } } break; case 1: // Every x.25 second if (MidnightNow()) { XsnsCall(FUNC_SAVE_AT_MIDNIGHT); } if (TasmotaGlobal.save_data_counter && CommandsReady()) { TasmotaGlobal.save_data_counter--; if (TasmotaGlobal.save_data_counter <= 0) { if (Settings->flag.save_state) { // SetOption0 - Save power state and use after restart power_t mask = POWER_MASK; for (uint32_t i = 0; i < TasmotaGlobal.devices_present; i++) { if ((Settings->pulse_timer[i % MAX_PULSETIMERS] > 0) && (Settings->pulse_timer[i % MAX_PULSETIMERS] < 30)) { // 3 seconds mask &= ~(1 << i); } } if (!((Settings->power &mask) == (TasmotaGlobal.power &mask))) { Settings->power = TasmotaGlobal.power; } } else { Settings->power = 0; } if (!TasmotaGlobal.restart_flag) { SettingsSave(0); } TasmotaGlobal.save_data_counter = Settings->save_data; } } if (TasmotaGlobal.restart_flag && CommandsReady()) { if ((214 == TasmotaGlobal.restart_flag) || // Reset 4 (215 == TasmotaGlobal.restart_flag) || // Reset 5 (216 == TasmotaGlobal.restart_flag)) { // Reset 6 // Backup current SSIDs and Passwords char storage_ssid1[strlen(SettingsText(SET_STASSID1)) +1]; strncpy(storage_ssid1, SettingsText(SET_STASSID1), sizeof(storage_ssid1)); char storage_ssid2[strlen(SettingsText(SET_STASSID2)) +1]; strncpy(storage_ssid2, SettingsText(SET_STASSID2), sizeof(storage_ssid2)); char storage_pass1[strlen(SettingsText(SET_STAPWD1)) +1]; strncpy(storage_pass1, SettingsText(SET_STAPWD1), sizeof(storage_pass1)); char storage_pass2[strlen(SettingsText(SET_STAPWD2)) +1]; strncpy(storage_pass2, SettingsText(SET_STAPWD2), sizeof(storage_pass2)); char storage_mqtthost[strlen(SettingsText(SET_MQTT_HOST)) +1]; strncpy(storage_mqtthost, SettingsText(SET_MQTT_HOST), sizeof(storage_mqtthost)); char storage_mqttuser[strlen(SettingsText(SET_MQTT_USER)) +1]; strncpy(storage_mqttuser, SettingsText(SET_MQTT_USER), sizeof(storage_mqttuser)); char storage_mqttpwd[strlen(SettingsText(SET_MQTT_PWD)) +1]; strncpy(storage_mqttpwd, SettingsText(SET_MQTT_PWD), sizeof(storage_mqttpwd)); char storage_mqtttopic[strlen(SettingsText(SET_MQTT_TOPIC)) +1]; strncpy(storage_mqtttopic, SettingsText(SET_MQTT_TOPIC), sizeof(storage_mqtttopic)); uint16_t mqtt_port = Settings->mqtt_port; // if (216 == TasmotaGlobal.restart_flag) { // Backup mqtt host, port, client, username and password // } if ((215 == TasmotaGlobal.restart_flag) || // Reset 5 (216 == TasmotaGlobal.restart_flag)) { // Reset 6 SettingsErase(2); // Erase all flash from program end to end of physical excluding optional filesystem } SettingsDefault(); // Restore current SSIDs and Passwords SettingsUpdateText(SET_STASSID1, storage_ssid1); SettingsUpdateText(SET_STASSID2, storage_ssid2); SettingsUpdateText(SET_STAPWD1, storage_pass1); SettingsUpdateText(SET_STAPWD2, storage_pass2); if (216 == TasmotaGlobal.restart_flag) { // Reset 6 // Restore the mqtt host, port, client, username and password SettingsUpdateText(SET_MQTT_HOST, storage_mqtthost); SettingsUpdateText(SET_MQTT_USER, storage_mqttuser); SettingsUpdateText(SET_MQTT_PWD, storage_mqttpwd); SettingsUpdateText(SET_MQTT_TOPIC, storage_mqtttopic); Settings->mqtt_port = mqtt_port; } TasmotaGlobal.restart_flag = 3; // Finish backlog then Restart 1 } else if (213 == TasmotaGlobal.restart_flag) { // Reset 3 SettingsSdkErase(); // Erase flash SDK parameters TasmotaGlobal.restart_flag = 2; // Restart 1 } else if (212 == TasmotaGlobal.restart_flag) { // Reset 2 SettingsErase(0); // Erase all flash from program end to end of physical flash TasmotaGlobal.restart_flag = 211; // Reset 1 } if (211 == TasmotaGlobal.restart_flag) { // Reset 1 SettingsDefault(); TasmotaGlobal.restart_flag = 3; // Finish backlog then Restart 1 } if (2 == TasmotaGlobal.restart_flag) { // Restart 1 SettingsSaveAll(); } TasmotaGlobal.restart_flag--; if (TasmotaGlobal.restart_flag <= 0) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION "%s"), (TasmotaGlobal.restart_halt) ? PSTR("Halted") : PSTR(D_RESTARTING)); EspRestart(); } } break; case 2: // Every x.5 second if (Settings->flag4.network_wifi) { WifiCheck(TasmotaGlobal.wifi_state_flag); TasmotaGlobal.wifi_state_flag = WIFI_RESTART; } else { WifiDisable(); } break; case 3: // Every x.75 second if (!TasmotaGlobal.global_state.network_down) { #ifdef FIRMWARE_MINIMAL if (1 == RtcSettings.ota_loader) { RtcSettings.ota_loader = 0; TasmotaGlobal.ota_state_flag = 3; } #endif // FIRMWARE_MINIMAL #ifdef USE_DISCOVERY StartMdns(); #endif // USE_DISCOVERY #ifdef USE_WEBSERVER if (Settings->webserver) { #ifdef ESP8266 if (!WifiIsInManagerMode()) { StartWebserver(Settings->webserver, WiFi.localIP()); } #endif // ESP8266 #ifdef ESP32 #ifdef USE_ETHERNET StartWebserver(Settings->webserver, (EthernetLocalIP()) ? EthernetLocalIP() : WiFi.localIP()); #else StartWebserver(Settings->webserver, WiFi.localIP()); #endif #endif // ESP32 #ifdef USE_DISCOVERY #ifdef WEBSERVER_ADVERTISE MdnsAddServiceHttp(); #endif // WEBSERVER_ADVERTISE #endif // USE_DISCOVERY } else { StopWebserver(); } #ifdef USE_EMULATION if (Settings->flag2.emulation) { UdpConnect(); } #endif // USE_EMULATION #endif // USE_WEBSERVER #ifdef USE_DEVICE_GROUPS DeviceGroupsStart(); #endif // USE_DEVICE_GROUPS #ifdef USE_KNX if (!knx_started && Settings->flag.knx_enabled) { // CMND_KNX_ENABLED KNXStart(); knx_started = true; } #endif // USE_KNX MqttCheck(); } else { #ifdef USE_EMULATION UdpDisconnect(); #endif // USE_EMULATION #ifdef USE_DEVICE_GROUPS DeviceGroupsStop(); #endif // USE_DEVICE_GROUPS #ifdef USE_KNX knx_started = false; #endif // USE_KNX } break; } } #ifdef USE_ARDUINO_OTA /*********************************************************************************************\ * Allow updating via the Arduino OTA-protocol. * * - Once started disables current wifi clients and udp * - Perform restart when done to re-init wifi clients \*********************************************************************************************/ bool arduino_ota_triggered = false; uint16_t arduino_ota_progress_dot_count = 0; void ArduinoOTAInit(void) { ArduinoOTA.setPort(8266); ArduinoOTA.setHostname(NetworkHostname()); if (strlen(SettingsText(SET_WEBPWD))) { ArduinoOTA.setPassword(SettingsText(SET_WEBPWD)); } ArduinoOTA.onStart([]() { SettingsSave(1); // Free flash for OTA update #ifdef USE_WEBSERVER if (Settings->webserver) { StopWebserver(); } #endif // USE_WEBSERVER #ifdef USE_ARILUX_RF AriluxRfDisable(); // Prevent restart exception on Arilux Interrupt routine #endif // USE_ARILUX_RF if (Settings->flag.mqtt_enabled) { MqttDisconnect(); // SetOption3 - Enable MQTT } AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_UPLOAD_STARTED)); arduino_ota_triggered = true; arduino_ota_progress_dot_count = 0; delay(100); // Allow time for message xfer }); ArduinoOTA.onProgress([](unsigned int progress, unsigned int total) { if ((LOG_LEVEL_DEBUG <= TasmotaGlobal.seriallog_level)) { arduino_ota_progress_dot_count++; Serial.printf("."); if (!(arduino_ota_progress_dot_count % 80)) { Serial.println(); } } }); ArduinoOTA.onError([](ota_error_t error) { /* From ArduinoOTA.h: typedef enum { OTA_AUTH_ERROR, OTA_BEGIN_ERROR, OTA_CONNECT_ERROR, OTA_RECEIVE_ERROR, OTA_END_ERROR } ota_error_t; */ char error_str[100]; if ((LOG_LEVEL_DEBUG <= TasmotaGlobal.seriallog_level) && arduino_ota_progress_dot_count) { Serial.println(); } switch (error) { case OTA_BEGIN_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_2), sizeof(error_str)); break; case OTA_RECEIVE_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_5), sizeof(error_str)); break; case OTA_END_ERROR: strncpy_P(error_str, PSTR(D_UPLOAD_ERR_7), sizeof(error_str)); break; default: snprintf_P(error_str, sizeof(error_str), PSTR(D_UPLOAD_ERROR_CODE " %d"), error); } AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA %s. " D_RESTARTING), error_str); EspRestart(); }); ArduinoOTA.onEnd([]() { if ((LOG_LEVEL_DEBUG <= TasmotaGlobal.seriallog_level)) { Serial.println(); } AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_SUCCESSFUL ". " D_RESTARTING)); EspRestart(); }); ArduinoOTA.begin(); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_UPLOAD "Arduino OTA " D_ENABLED " " D_PORT " 8266")); } void ArduinoOtaLoop(void) { MDNS.update(); ArduinoOTA.handle(); // Once OTA is triggered, only handle that and dont do other stuff. (otherwise it fails) while (arduino_ota_triggered) { ArduinoOTA.handle(); } } #endif // USE_ARDUINO_OTA /********************************************************************************************/ void SerialInput(void) { static uint32_t serial_polling_window = 0; static bool serial_buffer_overrun = false; while (Serial.available()) { // yield(); delay(0); TasmotaGlobal.serial_in_byte = Serial.read(); if (0 == TasmotaGlobal.serial_in_byte_counter) { serial_buffer_overrun = false; } else if ((TasmotaGlobal.serial_in_byte_counter == INPUT_BUFFER_SIZE) #ifdef ESP8266 || Serial.hasOverrun() #endif ) { serial_buffer_overrun = true; } #ifdef ESP8266 /*-------------------------------------------------------------------------------------------*\ * Sonoff dual and ch4 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if ((SONOFF_DUAL == TasmotaGlobal.module_type) || (CH4 == TasmotaGlobal.module_type)) { TasmotaGlobal.serial_in_byte = ButtonSerial(TasmotaGlobal.serial_in_byte); } #endif // ESP8266 /*-------------------------------------------------------------------------------------------*/ if (XdrvCall(FUNC_SERIAL)) { TasmotaGlobal.serial_in_byte_counter = 0; Serial.flush(); return; } /*-------------------------------------------------------------------------------------------*/ if (TasmotaGlobal.serial_in_byte > 127 && !Settings->flag.mqtt_serial_raw) { // Discard binary data above 127 if no raw reception allowed - CMND_SERIALSEND3 TasmotaGlobal.serial_in_byte_counter = 0; Serial.flush(); return; } if (!Settings->flag.mqtt_serial) { // SerialSend active - CMND_SERIALSEND and CMND_SERIALLOG if (isprint(TasmotaGlobal.serial_in_byte)) { // Any char between 32 and 127 if (TasmotaGlobal.serial_in_byte_counter < INPUT_BUFFER_SIZE -1) { // Add char to string if it still fits TasmotaGlobal.serial_in_buffer[TasmotaGlobal.serial_in_byte_counter++] = TasmotaGlobal.serial_in_byte; } else { serial_buffer_overrun = true; // Signal overrun but continue reading input to flush until '\n' (EOL) } } } else { if (TasmotaGlobal.serial_in_byte || Settings->flag.mqtt_serial_raw) { // Any char between 1 and 127 or any char (0 - 255) - CMND_SERIALSEND3 bool in_byte_is_delimiter = // Char is delimiter when... (((Settings->serial_delimiter < 128) && (TasmotaGlobal.serial_in_byte == Settings->serial_delimiter)) || // Any char between 1 and 127 and being delimiter ((Settings->serial_delimiter == 128) && !isprint(TasmotaGlobal.serial_in_byte))) && // Any char not between 32 and 127 !Settings->flag.mqtt_serial_raw; // In raw mode (CMND_SERIALSEND3) there is never a delimiter if ((TasmotaGlobal.serial_in_byte_counter < INPUT_BUFFER_SIZE -1) && // Add char to string if it still fits and ... !in_byte_is_delimiter) { // Char is not a delimiter TasmotaGlobal.serial_in_buffer[TasmotaGlobal.serial_in_byte_counter++] = TasmotaGlobal.serial_in_byte; } if ((TasmotaGlobal.serial_in_byte_counter >= INPUT_BUFFER_SIZE -1) || // Send message when buffer is full or ... in_byte_is_delimiter) { // Char is delimiter serial_polling_window = 0; // Reception done - send mqtt break; } serial_polling_window = millis(); // Wait for next char } } #ifdef USE_SONOFF_SC /*-------------------------------------------------------------------------------------------*\ * Sonoff SC 19200 baud serial interface \*-------------------------------------------------------------------------------------------*/ if (SONOFF_SC == TasmotaGlobal.module_type) { if (TasmotaGlobal.serial_in_byte == '\x1B') { // Sonoff SC status from ATMEGA328P TasmotaGlobal.serial_in_buffer[TasmotaGlobal.serial_in_byte_counter] = 0; // Serial data completed SonoffScSerialInput(TasmotaGlobal.serial_in_buffer); TasmotaGlobal.serial_in_byte_counter = 0; Serial.flush(); return; } } else #endif // USE_SONOFF_SC /*-------------------------------------------------------------------------------------------*/ if (!Settings->flag.mqtt_serial && (TasmotaGlobal.serial_in_byte == '\n')) { // CMND_SERIALSEND and CMND_SERIALLOG TasmotaGlobal.serial_in_buffer[TasmotaGlobal.serial_in_byte_counter] = 0; // Serial data completed TasmotaGlobal.seriallog_level = (Settings->seriallog_level < LOG_LEVEL_INFO) ? (uint8_t)LOG_LEVEL_INFO : Settings->seriallog_level; if (serial_buffer_overrun) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "Serial buffer overrun")); } else { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "%s"), TasmotaGlobal.serial_in_buffer); ExecuteCommand(TasmotaGlobal.serial_in_buffer, SRC_SERIAL); } TasmotaGlobal.serial_in_byte_counter = 0; serial_polling_window = 0; Serial.flush(); return; } } if (Settings->flag.mqtt_serial && TasmotaGlobal.serial_in_byte_counter && (millis() > (serial_polling_window + SERIAL_POLLING))) { // CMND_SERIALSEND and CMND_SERIALLOG TasmotaGlobal.serial_in_buffer[TasmotaGlobal.serial_in_byte_counter] = 0; // Serial data completed bool assume_json = (!Settings->flag.mqtt_serial_raw && (TasmotaGlobal.serial_in_buffer[0] == '{')); if (serial_buffer_overrun) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_COMMAND "Serial buffer overrun")); } Response_P(PSTR("{\"" D_JSON_SERIALRECEIVED "\":")); if (assume_json) { ResponseAppend_P(TasmotaGlobal.serial_in_buffer); } else { ResponseAppend_P(PSTR("\"")); if (Settings->flag.mqtt_serial_raw) { char hex_char[(TasmotaGlobal.serial_in_byte_counter * 2) + 2]; ResponseAppend_P(ToHex_P((unsigned char*)TasmotaGlobal.serial_in_buffer, TasmotaGlobal.serial_in_byte_counter, hex_char, sizeof(hex_char))); } else { ResponseAppend_P(EscapeJSONString(TasmotaGlobal.serial_in_buffer).c_str()); } ResponseAppend_P(PSTR("\"")); } ResponseJsonEnd(); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_SERIALRECEIVED)); TasmotaGlobal.serial_in_byte_counter = 0; } } /********************************************************************************************/ void ResetPwm(void) { for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only if (PinUsed(GPIO_PWM1, i)) { analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range : 0); // analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range - Settings->pwm_value[i] : Settings->pwm_value[i]); } } } /********************************************************************************************/ #ifdef ESP32 // Since ESP-IDF 4.4, GPIO matrix or I/O is not reset during a restart // and GPIO configuration can get stuck because of leftovers // // This patched version of pinMode forces a full GPIO reset before setting new mode // extern "C" void ARDUINO_ISR_ATTR __pinMode(uint8_t pin, uint8_t mode); extern "C" void ARDUINO_ISR_ATTR pinMode(uint8_t pin, uint8_t mode) { gpio_reset_pin((gpio_num_t)pin); __pinMode(pin, mode); } #endif /********************************************************************************************/ void GpioInit(void) { if (!ValidModule(Settings->module)) { uint32_t module = MODULE; if (!ValidModule(MODULE)) { #ifdef ESP8266 module = SONOFF_BASIC; #endif // ESP8266 #ifdef ESP32 module = WEMOS; #endif // ESP32 } Settings->module = module; Settings->last_module = module; } SetModuleType(); // AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Used GPIOs %d"), GPIO_SENSOR_END); #ifdef ESP8266 ConvertGpios(); #endif // ESP8266 for (uint32_t i = 0; i < nitems(Settings->user_template.gp.io); i++) { if ((Settings->user_template.gp.io[i] >= AGPIO(GPIO_SENSOR_END)) && (Settings->user_template.gp.io[i] < AGPIO(GPIO_USER))) { Settings->user_template.gp.io[i] = AGPIO(GPIO_USER); // Fix not supported sensor ids in template } } myio template_gp; TemplateGpios(&template_gp); for (uint32_t i = 0; i < nitems(Settings->my_gp.io); i++) { if ((Settings->my_gp.io[i] >= AGPIO(GPIO_SENSOR_END)) && (Settings->my_gp.io[i] < AGPIO(GPIO_USER))) { Settings->my_gp.io[i] = GPIO_NONE; // Fix not supported sensor ids in module } else if (Settings->my_gp.io[i] > GPIO_NONE) { TasmotaGlobal.my_module.io[i] = Settings->my_gp.io[i]; // Set User selected Module sensors } if ((template_gp.io[i] > GPIO_NONE) && (template_gp.io[i] < AGPIO(GPIO_USER))) { TasmotaGlobal.my_module.io[i] = template_gp.io[i]; // Force Template override } } for (uint32_t i = 0; i < nitems(TasmotaGlobal.my_module.io); i++) { uint32_t mpin = ValidPin(i, TasmotaGlobal.my_module.io[i]); DEBUG_CORE_LOG(PSTR("INI: gpio pin %d, mpin %d"), i, mpin); if (mpin) { // Above GPIO_NONE XdrvMailbox.index = mpin; XdrvMailbox.payload = i; if ((mpin >= AGPIO(GPIO_OPTION_A)) && (mpin < (AGPIO(GPIO_OPTION_A) + MAX_OPTIONS_A))) { bitSet(TasmotaGlobal.gpio_optiona.data, mpin - AGPIO(GPIO_OPTION_A)); mpin = GPIO_NONE; } #ifdef ROTARY_V1 else if ((mpin >= AGPIO(GPIO_ROT1A_NP)) && (mpin < (AGPIO(GPIO_ROT1A_NP) + MAX_ROTARIES))) { RotaryAPullupFlag(mpin - AGPIO(GPIO_ROT1A_NP)); mpin -= (AGPIO(GPIO_ROT1A_NP) - AGPIO(GPIO_ROT1A)); } else if ((mpin >= AGPIO(GPIO_ROT1B_NP)) && (mpin < (AGPIO(GPIO_ROT1B_NP) + MAX_ROTARIES))) { RotaryBPullupFlag(mpin - AGPIO(GPIO_ROT1B_NP)); mpin -= (AGPIO(GPIO_ROT1B_NP) - AGPIO(GPIO_ROT1B)); } #endif // ROTARY_V1 else if ((mpin >= AGPIO(GPIO_SWT1_NP)) && (mpin < (AGPIO(GPIO_SWT1_NP) + MAX_SWITCHES))) { SwitchPullupFlag(mpin - AGPIO(GPIO_SWT1_NP)); mpin -= (AGPIO(GPIO_SWT1_NP) - AGPIO(GPIO_SWT1)); } else if ((mpin >= AGPIO(GPIO_KEY1_NP)) && (mpin < (AGPIO(GPIO_KEY1_NP) + MAX_KEYS))) { ButtonPullupFlag(mpin - AGPIO(GPIO_KEY1_NP)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_NP) - AGPIO(GPIO_KEY1)); } else if ((mpin >= AGPIO(GPIO_KEY1_INV)) && (mpin < (AGPIO(GPIO_KEY1_INV) + MAX_KEYS))) { ButtonInvertFlag(mpin - AGPIO(GPIO_KEY1_INV)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_INV) - AGPIO(GPIO_KEY1)); } else if ((mpin >= AGPIO(GPIO_KEY1_INV_NP)) && (mpin < (AGPIO(GPIO_KEY1_INV_NP) + MAX_KEYS))) { ButtonPullupFlag(mpin - AGPIO(GPIO_KEY1_INV_NP)); // 0 .. 3 ButtonInvertFlag(mpin - AGPIO(GPIO_KEY1_INV_NP)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_INV_NP) - AGPIO(GPIO_KEY1)); } #ifdef ESP32 else if ((mpin >= AGPIO(GPIO_SWT1_PD)) && (mpin < (AGPIO(GPIO_SWT1_PD) + MAX_SWITCHES))) { SwitchPulldownFlag(mpin - AGPIO(GPIO_SWT1_PD)); mpin -= (AGPIO(GPIO_SWT1_PD) - AGPIO(GPIO_SWT1)); } else if ((mpin >= AGPIO(GPIO_KEY1_PD)) && (mpin < (AGPIO(GPIO_KEY1_PD) + MAX_KEYS))) { ButtonPulldownFlag(mpin - AGPIO(GPIO_KEY1_PD)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_PD) - AGPIO(GPIO_KEY1)); } else if ((mpin >= AGPIO(GPIO_KEY1_INV_PD)) && (mpin < (AGPIO(GPIO_KEY1_INV_PD) + MAX_KEYS))) { ButtonPulldownFlag(mpin - AGPIO(GPIO_KEY1_INV_PD)); // 0 .. 3 ButtonInvertFlag(mpin - AGPIO(GPIO_KEY1_INV_PD)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_INV_PD) - AGPIO(GPIO_KEY1)); } else if ((mpin >= AGPIO(GPIO_KEY1_TC)) && (mpin < (AGPIO(GPIO_KEY1_TC) + MAX_KEYS))) { ButtonTouchFlag(mpin - AGPIO(GPIO_KEY1_TC)); // 0 .. 3 mpin -= (AGPIO(GPIO_KEY1_TC) - AGPIO(GPIO_KEY1)); } #endif //ESP32 else if ((mpin >= AGPIO(GPIO_REL1_INV)) && (mpin < (AGPIO(GPIO_REL1_INV) + MAX_RELAYS))) { bitSet(TasmotaGlobal.rel_inverted, mpin - AGPIO(GPIO_REL1_INV)); mpin -= (AGPIO(GPIO_REL1_INV) - AGPIO(GPIO_REL1)); } else if ((mpin >= AGPIO(GPIO_LED1_INV)) && (mpin < (AGPIO(GPIO_LED1_INV) + MAX_LEDS))) { bitSet(TasmotaGlobal.led_inverted, mpin - AGPIO(GPIO_LED1_INV)); mpin -= (AGPIO(GPIO_LED1_INV) - AGPIO(GPIO_LED1)); } else if (mpin == AGPIO(GPIO_LEDLNK_INV)) { TasmotaGlobal.ledlnk_inverted = 1; mpin -= (AGPIO(GPIO_LEDLNK_INV) - AGPIO(GPIO_LEDLNK)); } else if (mpin == AGPIO(GPIO_HEARTBEAT_INV)) { TasmotaGlobal.heartbeat_inverted = 1; mpin -= (AGPIO(GPIO_HEARTBEAT_INV) - AGPIO(GPIO_HEARTBEAT)); } else if ((mpin >= AGPIO(GPIO_PWM1_INV)) && (mpin < (AGPIO(GPIO_PWM1_INV) + MAX_PWMS))) { bitSet(TasmotaGlobal.pwm_inverted, mpin - AGPIO(GPIO_PWM1_INV)); mpin -= (AGPIO(GPIO_PWM1_INV) - AGPIO(GPIO_PWM1)); } else if (XdrvCall(FUNC_PIN_STATE)) { mpin = XdrvMailbox.index; } else if (XsnsCall(FUNC_PIN_STATE)) { mpin = XdrvMailbox.index; }; } if (mpin) { SetPin(i, mpin); } // Anything above GPIO_NONE and below GPIO_SENSOR_END } // AddLogBufferSize(LOG_LEVEL_DEBUG, (uint8_t*)TasmotaGlobal.gpio_pin, nitems(TasmotaGlobal.gpio_pin), sizeof(TasmotaGlobal.gpio_pin[0])); analogWriteRange(Settings->pwm_range); // Default is 1023 (Arduino.h) analogWriteFreq(Settings->pwm_frequency); // Default is 1000 (core_esp8266_wiring_pwm.c) #ifdef ESP8266 if ((2 == Pin(GPIO_TXD)) || (H801 == TasmotaGlobal.module_type)) { Serial.set_tx(2); } SetSerialSwap(); #endif uint32_t sspi_mosi = (PinUsed(GPIO_SSPI_SCLK) && PinUsed(GPIO_SSPI_MOSI)) ? SPI_MOSI : SPI_NONE; uint32_t sspi_miso = (PinUsed(GPIO_SSPI_SCLK) && PinUsed(GPIO_SSPI_MISO)) ? SPI_MISO : SPI_NONE; TasmotaGlobal.soft_spi_enabled = sspi_mosi + sspi_miso; AddLogSpi(0, Pin(GPIO_SSPI_SCLK), Pin(GPIO_SSPI_MOSI), Pin(GPIO_SSPI_MISO)); #ifdef USE_SPI #ifdef ESP8266 if (!TasmotaGlobal.soft_spi_enabled) { bool valid_cs = (ValidSpiPinUsed(GPIO_SPI_CS) || ValidSpiPinUsed(GPIO_RC522_CS) || (ValidSpiPinUsed(GPIO_NRF24_CS) && ValidSpiPinUsed(GPIO_NRF24_DC)) || ValidSpiPinUsed(GPIO_ILI9341_CS) || ValidSpiPinUsed(GPIO_ILI9341_DC) || // there are also boards without cs ValidSpiPinUsed(GPIO_EPAPER29_CS) || ValidSpiPinUsed(GPIO_EPAPER42_CS) || ValidSpiPinUsed(GPIO_ILI9488_CS) || ValidSpiPinUsed(GPIO_SSD1351_CS) || ValidSpiPinUsed(GPIO_RA8876_CS) || ValidSpiPinUsed(GPIO_ST7789_DC) || // ST7789 CS may be omitted so chk DC too ValidSpiPinUsed(GPIO_ST7789_CS) || (ValidSpiPinUsed(GPIO_SSD1331_CS) && ValidSpiPinUsed(GPIO_SSD1331_DC)) || ValidSpiPinUsed(GPIO_SDCARD_CS) || ValidSpiPinUsed(GPIO_MCP2515_CS) ); // If SPI_CS and/or SPI_DC is used they must be valid TasmotaGlobal.spi_enabled = (valid_cs) ? SPI_MOSI_MISO : SPI_NONE; if (TasmotaGlobal.spi_enabled) { TasmotaGlobal.my_module.io[12] = AGPIO(GPIO_SPI_MISO); SetPin(12, AGPIO(GPIO_SPI_MISO)); TasmotaGlobal.my_module.io[13] = AGPIO(GPIO_SPI_MOSI); SetPin(13, AGPIO(GPIO_SPI_MOSI)); TasmotaGlobal.my_module.io[14] = AGPIO(GPIO_SPI_CLK); SetPin(14, AGPIO(GPIO_SPI_CLK)); } } #endif // ESP8266 #ifdef ESP32 if (PinUsed(GPIO_SPI_CS) || PinUsed(GPIO_RC522_CS) || PinUsed(GPIO_NRF24_CS) || PinUsed(GPIO_ILI9341_CS) || PinUsed(GPIO_EPAPER29_CS) || PinUsed(GPIO_EPAPER42_CS) || PinUsed(GPIO_ILI9488_CS) || PinUsed(GPIO_SSD1351_CS) || PinUsed(GPIO_RA8876_CS) || PinUsed(GPIO_ST7789_DC) || // ST7789 CS may be omitted so chk DC too PinUsed(GPIO_ST7789_CS) || PinUsed(GPIO_SSD1331_CS) || PinUsed(GPIO_SDCARD_CS) ) { uint32_t spi_mosi = (PinUsed(GPIO_SPI_CLK) && PinUsed(GPIO_SPI_MOSI)) ? SPI_MOSI : SPI_NONE; uint32_t spi_miso = (PinUsed(GPIO_SPI_CLK) && PinUsed(GPIO_SPI_MISO)) ? SPI_MISO : SPI_NONE; TasmotaGlobal.spi_enabled = spi_mosi + spi_miso; } #endif // ESP32 AddLogSpi(1, Pin(GPIO_SPI_CLK), Pin(GPIO_SPI_MOSI), Pin(GPIO_SPI_MISO)); #endif // USE_SPI for (uint32_t i = 0; i < nitems(TasmotaGlobal.my_module.io); i++) { uint32_t mpin = ValidPin(i, TasmotaGlobal.my_module.io[i]); // AddLog(LOG_LEVEL_DEBUG, PSTR("INI: gpio pin %d, mpin %d"), i, mpin); if (AGPIO(GPIO_OUTPUT_HI) == mpin) { pinMode(i, OUTPUT); digitalWrite(i, 1); } else if (AGPIO(GPIO_OUTPUT_LO) == mpin) { pinMode(i, OUTPUT); digitalWrite(i, 0); } /* // Until 20210726 // Set any non-used GPIO to INPUT - Related to resetPins() in support_legacy_cores.ino // Doing it here solves relay toggles at restart. #if CONFIG_IDF_TARGET_ESP32C3 else if (((i < 11) || (i > 17)) && (GPIO_NONE == mpin)) { // Skip SPI flash interface if (!((20 == i) || (21 == i))) { // Skip serial pinMode(i, INPUT); } } #else // CONFIG_IDF_TARGET_ESP32C3 else if (((i < 6) || (i > 11)) && (GPIO_NONE == mpin)) { // Skip SPI flash interface if (!((1 == i) || (3 == i))) { // Skip serial pinMode(i, INPUT); } } #endif // CONFIG_IDF_TARGET_ESP32C3 */ #ifdef ESP8266 // Set any non-used GPIO to INPUT - Related to resetPins() in support_legacy_cores.ino // Doing it here solves relay toggles at restart. else if (((i < 6) || (i > 11)) && (GPIO_NONE == mpin)) { // Skip SPI flash interface if (!((1 == i) || (3 == i))) { // Skip serial pinMode(i, INPUT); } } #endif // ESP8266 } if (PinUsed(GPIO_HEARTBEAT)) { pinMode(Pin(GPIO_HEARTBEAT), OUTPUT); digitalWrite(Pin(GPIO_HEARTBEAT), TasmotaGlobal.heartbeat_inverted); } // Digital input for (uint32_t i = 0; i < MAX_SWITCHES; i++) { if (PinUsed(GPIO_INPUT, i)) { pinMode(Pin(GPIO_INPUT, i), INPUT); } } #ifdef USE_I2C TasmotaGlobal.i2c_enabled = (PinUsed(GPIO_I2C_SCL) && PinUsed(GPIO_I2C_SDA)); if (TasmotaGlobal.i2c_enabled) { TasmotaGlobal.i2c_enabled = I2cBegin(Pin(GPIO_I2C_SDA), Pin(GPIO_I2C_SCL)); } #ifdef ESP32 TasmotaGlobal.i2c_enabled_2 = (PinUsed(GPIO_I2C_SCL, 1) && PinUsed(GPIO_I2C_SDA, 1)); if (TasmotaGlobal.i2c_enabled_2) { TasmotaGlobal.i2c_enabled_2 = I2c2Begin(Pin(GPIO_I2C_SDA, 1), Pin(GPIO_I2C_SCL, 1)); } #endif #endif // USE_I2C TasmotaGlobal.devices_present = 0; TasmotaGlobal.light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0 XsnsCall(FUNC_MODULE_INIT); if (XdrvCall(FUNC_MODULE_INIT)) { // Serviced } #ifdef ESP8266 else if (YTF_IR_BRIDGE == TasmotaGlobal.module_type) { ClaimSerial(); // Stop serial loopback mode // TasmotaGlobal.devices_present = 1; } else if (SONOFF_DUAL == TasmotaGlobal.module_type) { TasmotaGlobal.devices_present = 2; SetSerial(19200, TS_SERIAL_8N1); } else if (CH4 == TasmotaGlobal.module_type) { TasmotaGlobal.devices_present = 4; SetSerial(19200, TS_SERIAL_8N1); } #ifdef USE_SONOFF_SC else if (SONOFF_SC == TasmotaGlobal.module_type) { SetSerial(19200, TS_SERIAL_8N1); } #endif // USE_SONOFF_SC #endif // ESP8266 for (uint32_t i = 0; i < MAX_PWMS; i++) { // Basic PWM control only if (PinUsed(GPIO_PWM1, i)) { #ifdef ESP8266 pinMode(Pin(GPIO_PWM1, i), OUTPUT); #endif // ESP8266 #ifdef ESP32 analogAttach(Pin(GPIO_PWM1, i), i); #endif // ESP32 if (TasmotaGlobal.light_type) { // force PWM GPIOs to low or high mode, see #7165 analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range : 0); } else { TasmotaGlobal.pwm_present = true; analogWrite(Pin(GPIO_PWM1, i), bitRead(TasmotaGlobal.pwm_inverted, i) ? Settings->pwm_range - Settings->pwm_value[i] : Settings->pwm_value[i]); } } } for (uint32_t i = 0; i < MAX_RELAYS; i++) { if (PinUsed(GPIO_REL1, i)) { TasmotaGlobal.devices_present++; pinMode(Pin(GPIO_REL1, i), OUTPUT); #ifdef ESP8266 if (EXS_RELAY == TasmotaGlobal.module_type) { digitalWrite(Pin(GPIO_REL1, i), bitRead(TasmotaGlobal.rel_inverted, i) ? 1 : 0); if (i &1) { TasmotaGlobal.devices_present--; } } #endif // ESP8266 } } for (uint32_t i = 0; i < MAX_LEDS; i++) { if (PinUsed(GPIO_LED1, i)) { #ifdef USE_ARILUX_RF if ((3 == i) && (TasmotaGlobal.leds_present < 2) && !PinUsed(GPIO_ARIRFSEL)) { SetPin(Pin(GPIO_LED1, i), AGPIO(GPIO_ARIRFSEL)); // Legacy support where LED4 was Arilux RF enable } else { #endif TasmotaGlobal.leds_present++; pinMode(Pin(GPIO_LED1, i), OUTPUT); digitalWrite(Pin(GPIO_LED1, i), bitRead(TasmotaGlobal.led_inverted, i)); #ifdef USE_ARILUX_RF } #endif } } if (PinUsed(GPIO_LEDLNK)) { pinMode(Pin(GPIO_LEDLNK), OUTPUT); digitalWrite(Pin(GPIO_LEDLNK), TasmotaGlobal.ledlnk_inverted); } #ifdef USE_PWM_DIMMER if (PWM_DIMMER == TasmotaGlobal.module_type && PinUsed(GPIO_REL1)) { TasmotaGlobal.devices_present--; } #endif // USE_PWM_DIMMER SetLedPower(Settings->ledstate &8); SetLedLink(Settings->ledstate &8); }