/*
xsns_15_mhz19.ino - MH-Z19(B) CO2 sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_MHZ19
/*********************************************************************************************\
* MH-Z19 - CO2 sensor
*
* Adapted from EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru)
**********************************************************************************************
* Filter usage
*
* Select filter usage on low stability readings
\*********************************************************************************************/
enum MhzFilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW};
#define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST
/*********************************************************************************************\
* Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf
*
* Automatic Baseline Correction (ABC logic function)
*
* ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure
* intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on.
*
* The zero point of automatic calibration is 400ppm.
*
* This function is usually suitable for indoor air quality monitor such as offices, schools and homes,
* not suitable for greenhouse, farm and refrigeratory where this function should be off.
*
* Please do zero calibration timely, such as manual or commend calibration.
\*********************************************************************************************/
#define MHZ19_ABC_ENABLE 1 // Automatic Baseline Correction (0 = off, 1 = on (default))
/*********************************************************************************************/
#include
#ifndef CO2_LOW
#define CO2_LOW 800 // Below this CO2 value show green light
#endif
#ifndef CO2_HIGH
#define CO2_HIGH 1200 // Above this CO2 value show red light
#endif
#define MHZ19_READ_TIMEOUT 500 // Must be way less than 1000
#define MHZ19_RETRY_COUNT 8
TasmotaSerial *MhzSerial;
const char kMhzTypes[] PROGMEM = "MHZ19|MHZ19B";
const uint8_t mhz_cmnd_read_ppm[9] = {0xFF, 0x01, 0x86, 0x00, 0x00, 0x00, 0x00, 0x00, 0x79};
const uint8_t mhz_cmnd_abc_enable[9] = {0xFF, 0x01, 0x79, 0xA0, 0x00, 0x00, 0x00, 0x00, 0xE6};
const uint8_t mhz_cmnd_abc_disable[9] = {0xFF, 0x01, 0x79, 0x00, 0x00, 0x00, 0x00, 0x00, 0x86};
uint8_t mhz_type = 1;
uint16_t mhz_last_ppm = 0;
uint8_t mhz_filter = MHZ19_FILTER_OPTION;
bool mhz_abc_enable = MHZ19_ABC_ENABLE;
bool mhz_abc_must_apply = false;
char mhz_types[7];
float mhz_temperature = 0;
uint8_t mhz_timer = 0;
uint8_t mhz_retry = MHZ19_RETRY_COUNT;
uint8_t mhz_state = 0;
/*********************************************************************************************/
bool MhzCheckAndApplyFilter(uint16_t ppm, uint8_t s)
{
if (1 == s) {
return false; // S==1 => "A" version sensor bootup, do not use values.
}
if (mhz_last_ppm < 400 || mhz_last_ppm > 5000) {
// Prevent unrealistic values during start-up with filtering enabled.
// Just assume the entered value is correct.
mhz_last_ppm = ppm;
return true;
}
int32_t difference = ppm - mhz_last_ppm;
if (s > 0 && s < 64 && mhz_filter != MHZ19_FILTER_OFF) {
// Not the "B" version of the sensor, S value is used.
// S==0 => "B" version, else "A" version
// The S value is an indication of the stability of the reading.
// S == 64 represents a stable reading and any lower value indicates (unusual) fast change.
// Now we increase the delay filter for low values of S and increase response time when the
// value is more stable.
// This will make the reading useful in more turbulent environments,
// where the sensor would report more rapid change of measured values.
difference *= s;
difference /= 64;
}
if (MHZ19_FILTER_OFF == mhz_filter) {
if (s != 0 && s != 64) {
return false;
}
} else {
difference >>= (mhz_filter -1);
}
mhz_last_ppm = static_cast(mhz_last_ppm + difference);
return true;
}
void Mhz50ms()
{
mhz_state++;
if (4 == mhz_state) { // Every 200 mSec
mhz_state = 0;
uint8_t mhz_response[9];
mhz_timer++;
if (6 == mhz_timer) { // MH-Z19 measuring cycle takes 1005 +5% ms
mhz_timer = 0;
MhzSerial->write(mhz_cmnd_read_ppm, 9);
}
if (1 == mhz_timer) {
if (mhz_retry) {
mhz_retry--;
if (!mhz_retry) {
mhz_last_ppm = 0;
mhz_temperature = 0;
}
}
unsigned long start = millis();
uint8_t counter = 0;
while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) {
if (MhzSerial->available() > 0) {
mhz_response[counter++] = MhzSerial->read();
}
}
if (counter < 9) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout"));
return;
}
byte crc = 0;
for (uint8_t i = 1; i < 8; i++) {
crc += mhz_response[i];
}
crc = 255 - crc;
crc++;
if (mhz_response[8] != crc) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error"));
return;
}
if (0xFF != mhz_response[0] || 0x86 != mhz_response[1]) {
// AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response"));
return;
}
uint16_t u = (mhz_response[6] << 8) | mhz_response[7];
if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000
if (!mhz_abc_enable) {
// After bootup of the sensor the ABC will be enabled.
// Thus only actively disable after bootup.
mhz_abc_must_apply = true;
}
} else {
uint16_t ppm = (mhz_response[2] << 8) | mhz_response[3];
mhz_temperature = ConvertTemp((float)mhz_response[4] - 40);
uint8_t s = mhz_response[5];
mhz_type = (s) ? 1 : 2;
if (MhzCheckAndApplyFilter(ppm, s)) {
mhz_retry = MHZ19_RETRY_COUNT;
LightSetSignal(CO2_LOW, CO2_HIGH, mhz_last_ppm);
if (0 == s || 64 == s) { // Reading is stable.
if (mhz_abc_must_apply) {
mhz_abc_must_apply = false;
if (mhz_abc_enable) {
MhzSerial->write(mhz_cmnd_abc_enable, 9); // Sent sensor ABC Enable
} else {
MhzSerial->write(mhz_cmnd_abc_disable, 9); // Sent sensor ABC Disable
}
}
}
}
}
}
}
}
/*********************************************************************************************/
void MhzInit()
{
mhz_type = 0;
if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) {
MhzSerial = new TasmotaSerial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD]);
if (MhzSerial->begin()) {
mhz_type = 1;
}
}
}
void MhzShow(boolean json)
{
char temperature[10];
dtostrfd(mhz_temperature, Settings.flag2.temperature_resolution, temperature);
GetTextIndexed(mhz_types, sizeof(mhz_types), mhz_type -1, kMhzTypes);
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_CO2 "\":%d,\"" D_JSON_TEMPERATURE "\":%s}"), mqtt_data, mhz_types, mhz_last_ppm, temperature);
#ifdef USE_DOMOTICZ
DomoticzSensor(DZ_AIRQUALITY, mhz_last_ppm);
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz_types, mhz_last_ppm);
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz_types, temperature, TempUnit());
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_15
boolean Xsns15(byte function)
{
boolean result = false;
if (mhz_type) {
switch (function) {
case FUNC_INIT:
MhzInit();
break;
case FUNC_EVERY_50_MSECOND:
Mhz50ms();
break;
case FUNC_JSON_APPEND:
MhzShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
MhzShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_MHZ19