/* xdrv_23_zigbee_converters.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE /*********************************************************************************************\ * ZCL \*********************************************************************************************/ typedef union ZCLHeaderFrameControl_t { struct { uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota uint8_t disable_def_resp : 1; // don't send back default response uint8_t reserved : 3; } b; uint32_t d8; // raw 8 bits field } ZCLHeaderFrameControl_t; class ZCLFrame { public: ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id, const char *buf, size_t buf_len, uint16_t clusterid, uint16_t groupaddr, uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast, uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber, uint32_t timestamp): _cmd_id(cmd_id), _manuf_code(manuf_code), _transact_seq(transact_seq), _payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough _cluster_id(clusterid), _groupaddr(groupaddr), _srcaddr(srcaddr), _srcendpoint(srcendpoint), _dstendpoint(dstendpoint), _wasbroadcast(wasbroadcast), _linkquality(linkquality), _securityuse(securityuse), _seqnumber(seqnumber), _timestamp(timestamp) { _frame_control.d8 = frame_control; _payload.addBuffer(buf, buf_len); }; void log(void) { char hex_char[_payload.len()*2+2]; ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char)); Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{" "\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\"," "\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d," "\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d," "\"timestamp\":%d," "\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d," "\"cmdid\":\"0x%02X\",\"payload\":\"%s\"}}"), _groupaddr, _cluster_id, _srcaddr, _srcendpoint, _dstendpoint, _wasbroadcast, _linkquality, _securityuse, _seqnumber, _timestamp, _frame_control, _manuf_code, _transact_seq, _cmd_id, hex_char); if (Settings.flag3.tuya_serial_mqtt_publish) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR)); XdrvRulesProcess(); } else { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data); } } static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid, uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast, uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber, uint32_t timestamp) { // parse a raw frame and build the ZCL frame object uint32_t i = offset; ZCLHeaderFrameControl_t frame_control; uint16_t manuf_code = 0; uint8_t transact_seq; uint8_t cmd_id; frame_control.d8 = buf.get8(i++); if (frame_control.b.manuf_specific) { manuf_code = buf.get16(i); i += 2; } transact_seq = buf.get8(i++); cmd_id = buf.get8(i++); ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id, (const char *)(buf.buf() + i), len + offset - i, clusterid, groupid, srcaddr, srcendpoint, dstendpoint, wasbroadcast, linkquality, securityuse, seqnumber, timestamp); return zcl_frame; } bool isClusterSpecificCommand(void) { return _frame_control.b.frame_type & 1; } static void generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len); void parseRawAttributes(JsonObject& json, uint8_t offset = 0); void parseReadAttributes(JsonObject& json, uint8_t offset = 0); void parseResponse(void); void parseClusterSpecificCommand(JsonObject& json, uint8_t offset = 0); void postProcessAttributes(uint16_t shortaddr, JsonObject& json); inline void setGroupId(uint16_t groupid) { _groupaddr = groupid; } inline void setClusterId(uint16_t clusterid) { _cluster_id = clusterid; } inline uint8_t getCmdId(void) const { return _cmd_id; } inline uint16_t getClusterId(void) const { return _cluster_id; } inline uint16_t getSrcEndpoint(void) const { return _srcendpoint; } const SBuffer &getPayload(void) const { return _payload; } uint16_t getManufCode(void) const { return _manuf_code; } private: ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 }; uint16_t _manuf_code = 0; // optional uint8_t _transact_seq = 0; // transaction sequence number uint8_t _cmd_id = 0; uint16_t _cluster_id = 0; uint16_t _groupaddr = 0; SBuffer _payload; // information from decoded ZCL frame uint16_t _srcaddr; uint8_t _srcendpoint; uint8_t _dstendpoint; uint8_t _wasbroadcast; uint8_t _linkquality; uint8_t _securityuse; uint8_t _seqnumber; uint32_t _timestamp; }; // Zigbee ZCL converters // from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55 // Input voltage in mV, i.e. 3000 = 3.000V // Output percentage from 0 to 100 as int uint8_t toPercentageCR2032(uint32_t voltage) { uint32_t percentage; if (voltage < 2100) { percentage = 0; } else if (voltage < 2440) { percentage = 6 - ((2440 - voltage) * 6) / 340; } else if (voltage < 2740) { percentage = 18 - ((2740 - voltage) * 12) / 300; } else if (voltage < 2900) { percentage = 42 - ((2900 - voltage) * 24) / 160; } else if (voltage < 3000) { percentage = 100 - ((3000 - voltage) * 58) / 100; } else if (voltage >= 3000) { percentage = 100; } return percentage; } uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer &buf, uint32_t offset, uint32_t len) { uint32_t i = offset; uint32_t attrtype = buf.get8(i++); // fallback - enter a null value json[attrid_str] = (char*) nullptr; // now parse accordingly to attr type switch (attrtype) { case 0x00: // nodata case 0xFF: // unk break; case 0x10: // bool { uint8_t val_bool = buf.get8(i++); if (0xFF != val_bool) { json[attrid_str] = (bool) (val_bool ? true : false); } } break; case 0x20: // uint8 case 0x30: // enum8 { uint8_t uint8_val = buf.get8(i); i += 1; if (0xFF != uint8_val) { json[attrid_str] = uint8_val; } } break; case 0x21: // uint16 case 0x31: // enum16 { uint16_t uint16_val = buf.get16(i); i += 2; if (0xFFFF != uint16_val) { json[attrid_str] = uint16_val; } } break; case 0x23: // uint32 { uint32_t uint32_val = buf.get32(i); i += 4; if (0xFFFFFFFF != uint32_val) { json[attrid_str] = uint32_val; } } break; // Note: uint40, uint48, uint56, uint64 are stored as Hex case 0x24: // uint40 case 0x25: // uint48 case 0x26: // uint56 case 0x27: // uint64 { uint8_t len = attrtype - 0x1F; // 5 - 8 // print as HEX char hex[2*len+1]; ToHex_P(buf.buf(i), len, hex, sizeof(hex)); json[attrid_str] = hex; i += len; } break; case 0x28: // uint8 { int8_t int8_val = buf.get8(i); i += 1; if (0x80 != int8_val) { json[attrid_str] = int8_val; } } break; case 0x29: // uint16 { int16_t int16_val = buf.get16(i); i += 2; if (0x8000 != int16_val) { json[attrid_str] = int16_val; } } break; case 0x2B: // uint16 { int32_t int32_val = buf.get32(i); i += 4; if (0x80000000 != int32_val) { json[attrid_str] = int32_val; } } break; // Note: int40, int48, int56, int64 are not stored as Hex case 0x2C: // int40 case 0x2D: // int48 case 0x2E: // int56 case 0x2F: // int64 { uint8_t len = attrtype - 0x27; // 5 - 8 // print as HEX char hex[2*len+1]; ToHex_P(buf.buf(i), len, hex, sizeof(hex)); json[attrid_str] = hex; i += len; } break; case 0x41: // octet string, 1 byte len case 0x42: // char string, 1 byte len case 0x43: // octet string, 2 bytes len case 0x44: // char string, 2 bytes len // For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions { bool parse_as_string = true; uint32_t len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits i += (attrtype <= 0x42) ? 1 : 2; // increment pointer if (i + len > buf.len()) { // make sure we don't get past the buffer len = buf.len() - i; } // check if we can safely use a string if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; } // else { // for (uint32_t j = 0; j < len; j++) { // if (0x00 == buf.get8(i+j)) { // parse_as_string = false; // break; // } // } // } if (parse_as_string) { char str[len+1]; strncpy(str, buf.charptr(i), len); str[len] = 0x00; json[attrid_str] = str; } else { // print as HEX char hex[2*len+1]; ToHex_P(buf.buf(i), len, hex, sizeof(hex)); json[attrid_str] = hex; } i += len; break; } i += buf.get8(i) + 1; break; case 0x08: // data8 case 0x18: // map8 { uint8_t uint8_val = buf.get8(i); i += 1; json[attrid_str] = uint8_val; } break; case 0x09: // data16 case 0x19: // map16 { uint16_t uint16_val = buf.get16(i); i += 2; json[attrid_str] = uint16_val; } break; case 0x0B: // data32 case 0x1B: // map32 { uint32_t uint32_val = buf.get32(i); i += 4; json[attrid_str] = uint32_val; } break; // TODO case 0x39: // float { uint32_t uint32_val = buf.get32(i); float * float_val = (float*) &uint32_val; i += 4; json[attrid_str] = *float_val; } break; case 0xE0: // ToD case 0xE1: // date case 0xE2: // UTC i += 4; break; case 0xE8: // clusterId case 0xE9: // attribId i += 2; break; case 0xEA: // bacOID i += 4; break; case 0xF0: // EUI64 i += 8; break; case 0xF1: // key128 i += 16; break; // Other un-implemented data types case 0x0A: // data24 case 0x0C: // data40 case 0x0D: // data48 case 0x0E: // data56 case 0x0F: // data64 i += attrtype - 0x07; // 2-8 break; // map case 0x1A: // map24 case 0x1C: // map40 case 0x1D: // map48 case 0x1E: // map56 case 0x1F: // map64 i += attrtype - 0x17; break; // semi case 0x38: // semi (float on 2 bytes) i += 2; break; case 0x3A: // double precision { uint64_t uint64_val = buf.get64(i); double * double_val = (double*) &uint64_val; i += 8; json[attrid_str] = *double_val; } break; } // String pp; // pretty print // json[attrid_str].prettyPrintTo(pp); // // now store the attribute // AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZCL attribute decoded, id %s, type 0x%02X, val=%s"), // attrid_str, attrtype, pp.c_str()); return i - offset; // how much have we increased the index } // Generate an attribute name based on cluster number, attribute, and suffix if duplicates void ZCLFrame::generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len) { uint32_t suffix = 1; snprintf_P(key, key_len, PSTR("%04X/%04X"), cluster, attr); while (json.containsKey(key)) { suffix++; snprintf_P(key, key_len, PSTR("%04X/%04X+%d"), cluster, attr, suffix); // add "0008/0001+2" suffix if duplicate } } // First pass, parse all attributes in their native format void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) { uint32_t i = offset; uint32_t len = _payload.len(); while (len >= i + 3) { uint16_t attrid = _payload.get16(i); i += 2; char key[16]; generateAttributeName(json, _cluster_id, attrid, key, sizeof(key)); // exception for Xiaomi lumi.weather - specific field to be treated as octet and not char if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) { if (0x42 == _payload.get8(i)) { _payload.set8(i, 0x41); // change type from 0x42 to 0x41 } } i += parseSingleAttribute(json, key, _payload, i, len); } } // ZCL_READ_ATTRIBUTES_RESPONSE void ZCLFrame::parseReadAttributes(JsonObject& json, uint8_t offset) { uint32_t i = offset; uint32_t len = _payload.len(); while (len - i >= 4) { uint16_t attrid = _payload.get16(i); i += 2; uint8_t status = _payload.get8(i++); if (0 == status) { char key[16]; generateAttributeName(json, _cluster_id, attrid, key, sizeof(key)); i += parseSingleAttribute(json, key, _payload, i, len); } } } // ZCL_DEFAULT_RESPONSE void ZCLFrame::parseResponse(void) { if (_payload.len() < 2) { return; } // wrong format uint8_t cmd = _payload.get8(0); uint8_t status = _payload.get8(1); DynamicJsonBuffer jsonBuffer; JsonObject& json = jsonBuffer.createObject(); // "Device" char s[12]; snprintf_P(s, sizeof(s), PSTR("0x%04X"), _srcaddr); json[F(D_JSON_ZIGBEE_DEVICE)] = s; // "Name" const char * friendlyName = zigbee_devices.getFriendlyName(_srcaddr); if (friendlyName) { json[F(D_JSON_ZIGBEE_NAME)] = (char*) friendlyName; } // "Command" snprintf_P(s, sizeof(s), PSTR("%04X!%02X"), _cluster_id, cmd); json[F(D_JSON_ZIGBEE_CMD)] = s; // "Status" json[F(D_JSON_ZIGBEE_STATUS)] = status; // "StatusMessage" const __FlashStringHelper* statm = getZigbeeStatusMessage(status); if (statm) { json[F(D_JSON_ZIGBEE_STATUS_MSG)] = statm; } // Add Endpoint json[F(D_CMND_ZIGBEE_ENDPOINT)] = _srcendpoint; // Add Group if non-zero if (_groupaddr) { json[F(D_CMND_ZIGBEE_GROUP)] = _groupaddr; } // Add linkquality json[F(D_CMND_ZIGBEE_LINKQUALITY)] = _linkquality; String msg(""); msg.reserve(100); json.printTo(msg); Response_P(PSTR("{\"" D_JSON_ZIGBEE_RESPONSE "\":%s}"), msg.c_str()); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } // Parse non-normalized attributes void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) { convertClusterSpecific(json, _cluster_id, _cmd_id, _frame_control.b.direction, _payload); sendHueUpdate(_srcaddr, _groupaddr, _cluster_id, _cmd_id, _frame_control.b.direction); } // return value: // 0 = keep initial value // 1 = remove initial value typedef int32_t (*Z_AttrConverter)(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr); typedef struct Z_AttributeConverter { uint16_t cluster; uint16_t attribute; const char * name; Z_AttrConverter func; } Z_AttributeConverter; ZF(ZCLVersion) ZF(AppVersion) ZF(StackVersion) ZF(HWVersion) ZF(Manufacturer) ZF(ModelId) ZF(DateCode) ZF(PowerSource) ZF(SWBuildID) ZF(Power) ZF(SwitchType) ZF(Dimmer) ZF(MainsVoltage) ZF(MainsFrequency) ZF(BatteryVoltage) ZF(BatteryPercentage) ZF(CurrentTemperature) ZF(MinTempExperienced) ZF(MaxTempExperienced) ZF(OverTempTotalDwell) ZF(SceneCount) ZF(CurrentScene) ZF(CurrentGroup) ZF(SceneValid) ZF(AlarmCount) ZF(Time) ZF(TimeStatus) ZF(TimeZone) ZF(DstStart) ZF(DstEnd) ZF(DstShift) ZF(StandardTime) ZF(LocalTime) ZF(LastSetTime) ZF(ValidUntilTime) ZF(LocationType) ZF(LocationMethod) ZF(LocationAge) ZF(QualityMeasure) ZF(NumberOfDevices) ZF(AnalogInActiveText) ZF(AnalogInDescription) ZF(AnalogInInactiveText) ZF(AnalogInMaxValue) ZF(AnalogInMinValue) ZF(AnalogInOutOfService) ZF(AqaraRotate) ZF(AnalogInPriorityArray) ZF(AnalogInReliability) ZF(AnalogInRelinquishDefault) ZF(AnalogInResolution) ZF(AnalogInStatusFlags) ZF(AnalogInEngineeringUnits) ZF(AnalogInApplicationType) ZF(Aqara_FF05) ZF(AnalogOutDescription) ZF(AnalogOutMaxValue) ZF(AnalogOutMinValue) ZF(AnalogOutOutOfService) ZF(AnalogOutValue) ZF(AnalogOutPriorityArray) ZF(AnalogOutReliability) ZF(AnalogOutRelinquishDefault) ZF(AnalogOutResolution) ZF(AnalogOutStatusFlags) ZF(AnalogOutEngineeringUnits) ZF(AnalogOutApplicationType) ZF(AnalogDescription) ZF(AnalogOutOfService) ZF(AnalogValue) ZF(AnalogPriorityArray) ZF(AnalogReliability) ZF(AnalogRelinquishDefault) ZF(AnalogStatusFlags) ZF(AnalogEngineeringUnits) ZF(AnalogApplicationType) ZF(BinaryInActiveText) ZF(BinaryInDescription) ZF(BinaryInInactiveText) ZF(BinaryInOutOfService) ZF(BinaryInPolarity) ZF(BinaryInValue) ZF(BinaryInPriorityArray) ZF(BinaryInReliability) ZF(BinaryInStatusFlags) ZF(BinaryInApplicationType) ZF(BinaryOutActiveText) ZF(BinaryOutDescription) ZF(BinaryOutInactiveText) ZF(BinaryOutMinimumOffTime) ZF(BinaryOutMinimumOnTime) ZF(BinaryOutOutOfService) ZF(BinaryOutPolarity) ZF(BinaryOutValue) ZF(BinaryOutPriorityArray) ZF(BinaryOutReliability) ZF(BinaryOutRelinquishDefault) ZF(BinaryOutStatusFlags) ZF(BinaryOutApplicationType) ZF(BinaryActiveText) ZF(BinaryDescription) ZF(BinaryInactiveText) ZF(BinaryMinimumOffTime) ZF(BinaryMinimumOnTime) ZF(BinaryOutOfService) ZF(BinaryValue) ZF(BinaryPriorityArray) ZF(BinaryReliability) ZF(BinaryRelinquishDefault) ZF(BinaryStatusFlags) ZF(BinaryApplicationType) ZF(MultiInStateText) ZF(MultiInDescription) ZF(MultiInNumberOfStates) ZF(MultiInOutOfService) ZF(MultiInValue) ZF(MultiInReliability) ZF(MultiInStatusFlags) ZF(MultiInApplicationType) ZF(MultiOutStateText) ZF(MultiOutDescription) ZF(MultiOutNumberOfStates) ZF(MultiOutOutOfService) ZF(MultiOutValue) ZF(MultiOutPriorityArray) ZF(MultiOutReliability) ZF(MultiOutRelinquishDefault) ZF(MultiOutStatusFlags) ZF(MultiOutApplicationType) ZF(MultiStateText) ZF(MultiDescription) ZF(MultiNumberOfStates) ZF(MultiOutOfService) ZF(MultiValue) ZF(MultiReliability) ZF(MultiRelinquishDefault) ZF(MultiStatusFlags) ZF(MultiApplicationType) ZF(TotalProfileNum) ZF(MultipleScheduling) ZF(EnergyFormatting) ZF(EnergyRemote) ZF(ScheduleMode) ZF(CheckinInterval) ZF(LongPollInterval) ZF(ShortPollInterval) ZF(FastPollTimeout) ZF(CheckinIntervalMin) ZF(LongPollIntervalMin) ZF(FastPollTimeoutMax) ZF(PhysicalClosedLimit) ZF(MotorStepSize) ZF(Status) ZF(ClosedLimit) ZF(Mode) ZF(LockState) ZF(LockType) ZF(ActuatorEnabled) ZF(DoorState) ZF(DoorOpenEvents) ZF(DoorClosedEvents) ZF(OpenPeriod) ZF(AqaraVibrationMode) ZF(AqaraVibrationsOrAngle) ZF(AqaraVibration505) ZF(AqaraAccelerometer) ZF(WindowCoveringType) ZF(PhysicalClosedLimitLift) ZF(PhysicalClosedLimitTilt) ZF(CurrentPositionLift) ZF(CurrentPositionTilt) ZF(NumberofActuationsLift) ZF(NumberofActuationsTilt) ZF(ConfigStatus) ZF(CurrentPositionLiftPercentage) ZF(CurrentPositionTiltPercentage) ZF(InstalledOpenLimitLift) ZF(InstalledClosedLimitLift) ZF(InstalledOpenLimitTilt) ZF(InstalledClosedLimitTilt) ZF(VelocityLift) ZF(AccelerationTimeLift) ZF(DecelerationTimeLift) ZF(IntermediateSetpointsLift) ZF(IntermediateSetpointsTilt) ZF(Hue) ZF(Sat) ZF(RemainingTime) ZF(X) ZF(Y) ZF(DriftCompensation) ZF(CompensationText) ZF(CT) ZF(ColorMode) ZF(NumberOfPrimaries) ZF(Primary1X) ZF(Primary1Y) ZF(Primary1Intensity) ZF(Primary2X) ZF(Primary2Y) ZF(Primary2Intensity) ZF(Primary3X) ZF(Primary3Y) ZF(Primary3Intensity) ZF(WhitePointX) ZF(WhitePointY) ZF(ColorPointRX) ZF(ColorPointRY) ZF(ColorPointRIntensity) ZF(ColorPointGX) ZF(ColorPointGY) ZF(ColorPointGIntensity) ZF(ColorPointBX) ZF(ColorPointBY) ZF(ColorPointBIntensity) ZF(Illuminance) ZF(IlluminanceMinMeasuredValue) ZF(IlluminanceMaxMeasuredValue) ZF(IlluminanceTolerance) ZF(IlluminanceLightSensorType) ZF(IlluminanceLevelStatus) ZF(Temperature) ZF(TemperatureMinMeasuredValue) ZF(TemperatureMaxMeasuredValue) ZF(TemperatureTolerance) ZF(PressureUnit) ZF(Pressure) ZF(PressureMinMeasuredValue) ZF(PressureMaxMeasuredValue) ZF(PressureTolerance) ZF(PressureScaledValue) ZF(PressureMinScaledValue) ZF(PressureMaxScaledValue) ZF(PressureScaledTolerance) ZF(PressureScale) ZF(FlowRate) ZF(FlowMinMeasuredValue) ZF(FlowMaxMeasuredValue) ZF(FlowTolerance) ZF(Humidity) ZF(HumidityMinMeasuredValue) ZF(HumidityMaxMeasuredValue) ZF(HumidityTolerance) ZF(Occupancy) ZF(OccupancySensorType) ZF(CompanyName) ZF(MeterTypeID) ZF(DataQualityID) ZF(CustomerName) ZF(Model) ZF(PartNumber) ZF(SoftwareRevision) ZF(POD) ZF(AvailablePower) ZF(PowerThreshold) ZF(NumberOfResets) ZF(PersistentMemoryWrites) ZF(LastMessageLQI) ZF(LastMessageRSSI) // list of post-processing directives const Z_AttributeConverter Z_PostProcess[] PROGMEM = { { 0x0000, 0x0000, Z(ZCLVersion), &Z_Copy }, { 0x0000, 0x0001, Z(AppVersion), &Z_Copy }, { 0x0000, 0x0002, Z(StackVersion), &Z_Copy }, { 0x0000, 0x0003, Z(HWVersion), &Z_Copy }, { 0x0000, 0x0004, Z(Manufacturer), &Z_ManufKeep }, // record Manufacturer { 0x0000, 0x0005, Z(ModelId), &Z_ModelKeep }, // record Model { 0x0000, 0x0006, Z(DateCode), &Z_Copy }, { 0x0000, 0x0007, Z(PowerSource), &Z_Copy }, { 0x0000, 0x4000, Z(SWBuildID), &Z_Copy }, { 0x0000, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary { 0x0000, 0xFF01, nullptr, &Z_AqaraSensor }, // Occupancy (map8) // Power Configuration cluster { 0x0001, 0x0000, Z(MainsVoltage), &Z_Copy }, { 0x0001, 0x0001, Z(MainsFrequency), &Z_Copy }, { 0x0001, 0x0020, Z(BatteryVoltage), &Z_FloatDiv10 }, { 0x0001, 0x0021, Z(BatteryPercentage), &Z_Copy }, // Device Temperature Configuration cluster { 0x0002, 0x0000, Z(CurrentTemperature), &Z_Copy }, { 0x0002, 0x0001, Z(MinTempExperienced), &Z_Copy }, { 0x0002, 0x0002, Z(MaxTempExperienced), &Z_Copy }, { 0x0002, 0x0003, Z(OverTempTotalDwell), &Z_Copy }, // Scenes cluster { 0x0005, 0x0000, Z(SceneCount), &Z_Copy }, { 0x0005, 0x0001, Z(CurrentScene), &Z_Copy }, { 0x0005, 0x0002, Z(CurrentGroup), &Z_Copy }, { 0x0005, 0x0003, Z(SceneValid), &Z_Copy }, //{ 0x0005, 0x0004, Z(NameSupport), &Z_Copy }, // On/off cluster { 0x0006, 0x0000, Z(Power), &Z_Copy }, { 0x0006, 0x8000, Z(Power), &Z_Copy }, // See 7280 // On/Off Switch Configuration cluster { 0x0007, 0x0000, Z(SwitchType), &Z_Copy }, // Level Control cluster { 0x0008, 0x0000, Z(Dimmer), &Z_Copy }, // { 0x0008, 0x0001, Z(RemainingTime", &Z_Copy }, // { 0x0008, 0x0010, Z(OnOffTransitionTime", &Z_Copy }, // { 0x0008, 0x0011, Z(OnLevel", &Z_Copy }, // { 0x0008, 0x0012, Z(OnTransitionTime", &Z_Copy }, // { 0x0008, 0x0013, Z(OffTransitionTime", &Z_Copy }, // { 0x0008, 0x0014, Z(DefaultMoveRate", &Z_Copy }, // Alarms cluster { 0x0009, 0x0000, Z(AlarmCount), &Z_Copy }, // Time cluster { 0x000A, 0x0000, Z(Time), &Z_Copy }, { 0x000A, 0x0001, Z(TimeStatus), &Z_Copy }, { 0x000A, 0x0002, Z(TimeZone), &Z_Copy }, { 0x000A, 0x0003, Z(DstStart), &Z_Copy }, { 0x000A, 0x0004, Z(DstEnd), &Z_Copy }, { 0x000A, 0x0005, Z(DstShift), &Z_Copy }, { 0x000A, 0x0006, Z(StandardTime), &Z_Copy }, { 0x000A, 0x0007, Z(LocalTime), &Z_Copy }, { 0x000A, 0x0008, Z(LastSetTime), &Z_Copy }, { 0x000A, 0x0009, Z(ValidUntilTime), &Z_Copy }, // RSSI Location cluster { 0x000B, 0x0000, Z(LocationType), &Z_Copy }, { 0x000B, 0x0000, Z(LocationMethod), &Z_Copy }, { 0x000B, 0x0000, Z(LocationAge), &Z_Copy }, { 0x000B, 0x0000, Z(QualityMeasure), &Z_Copy }, { 0x000B, 0x0000, Z(NumberOfDevices), &Z_Copy }, // Analog Input cluster { 0x000C, 0x0004, Z(AnalogInActiveText), &Z_Copy }, { 0x000C, 0x001C, Z(AnalogInDescription), &Z_Copy }, { 0x000C, 0x002E, Z(AnalogInInactiveText), &Z_Copy }, { 0x000C, 0x0041, Z(AnalogInMaxValue), &Z_Copy }, { 0x000C, 0x0045, Z(AnalogInMinValue), &Z_Copy }, { 0x000C, 0x0051, Z(AnalogInOutOfService), &Z_Copy }, { 0x000C, 0x0055, Z(AqaraRotate), &Z_Copy }, { 0x000C, 0x0057, Z(AnalogInPriorityArray),&Z_Copy }, { 0x000C, 0x0067, Z(AnalogInReliability), &Z_Copy }, { 0x000C, 0x0068, Z(AnalogInRelinquishDefault),&Z_Copy }, { 0x000C, 0x006A, Z(AnalogInResolution), &Z_Copy }, { 0x000C, 0x006F, Z(AnalogInStatusFlags), &Z_Copy }, { 0x000C, 0x0075, Z(AnalogInEngineeringUnits),&Z_Copy }, { 0x000C, 0x0100, Z(AnalogInApplicationType),&Z_Copy }, { 0x000C, 0xFF05, Z(Aqara_FF05), &Z_Copy }, // Analog Output cluster { 0x000D, 0x001C, Z(AnalogOutDescription), &Z_Copy }, { 0x000D, 0x0041, Z(AnalogOutMaxValue), &Z_Copy }, { 0x000D, 0x0045, Z(AnalogOutMinValue), &Z_Copy }, { 0x000D, 0x0051, Z(AnalogOutOutOfService),&Z_Copy }, { 0x000D, 0x0055, Z(AnalogOutValue), &Z_Copy }, { 0x000D, 0x0057, Z(AnalogOutPriorityArray),&Z_Copy }, { 0x000D, 0x0067, Z(AnalogOutReliability), &Z_Copy }, { 0x000D, 0x0068, Z(AnalogOutRelinquishDefault),&Z_Copy }, { 0x000D, 0x006A, Z(AnalogOutResolution), &Z_Copy }, { 0x000D, 0x006F, Z(AnalogOutStatusFlags), &Z_Copy }, { 0x000D, 0x0075, Z(AnalogOutEngineeringUnits),&Z_Copy }, { 0x000D, 0x0100, Z(AnalogOutApplicationType),&Z_Copy }, // Analog Value cluster { 0x000E, 0x001C, Z(AnalogDescription), &Z_Copy }, { 0x000E, 0x0051, Z(AnalogOutOfService), &Z_Copy }, { 0x000E, 0x0055, Z(AnalogValue), &Z_Copy }, { 0x000E, 0x0057, Z(AnalogPriorityArray), &Z_Copy }, { 0x000E, 0x0067, Z(AnalogReliability), &Z_Copy }, { 0x000E, 0x0068, Z(AnalogRelinquishDefault),&Z_Copy }, { 0x000E, 0x006F, Z(AnalogStatusFlags), &Z_Copy }, { 0x000E, 0x0075, Z(AnalogEngineeringUnits),&Z_Copy }, { 0x000E, 0x0100, Z(AnalogApplicationType),&Z_Copy }, // Binary Input cluster { 0x000F, 0x0004, Z(BinaryInActiveText), &Z_Copy }, { 0x000F, 0x001C, Z(BinaryInDescription), &Z_Copy }, { 0x000F, 0x002E, Z(BinaryInInactiveText),&Z_Copy }, { 0x000F, 0x0051, Z(BinaryInOutOfService),&Z_Copy }, { 0x000F, 0x0054, Z(BinaryInPolarity), &Z_Copy }, { 0x000F, 0x0055, Z(BinaryInValue), &Z_Copy }, { 0x000F, 0x0057, Z(BinaryInPriorityArray),&Z_Copy }, { 0x000F, 0x0067, Z(BinaryInReliability), &Z_Copy }, { 0x000F, 0x006F, Z(BinaryInStatusFlags), &Z_Copy }, { 0x000F, 0x0100, Z(BinaryInApplicationType),&Z_Copy }, // Binary Output cluster { 0x0010, 0x0004, Z(BinaryOutActiveText), &Z_Copy }, { 0x0010, 0x001C, Z(BinaryOutDescription), &Z_Copy }, { 0x0010, 0x002E, Z(BinaryOutInactiveText),&Z_Copy }, { 0x0010, 0x0042, Z(BinaryOutMinimumOffTime),&Z_Copy }, { 0x0010, 0x0043, Z(BinaryOutMinimumOnTime),&Z_Copy }, { 0x0010, 0x0051, Z(BinaryOutOutOfService),&Z_Copy }, { 0x0010, 0x0054, Z(BinaryOutPolarity), &Z_Copy }, { 0x0010, 0x0055, Z(BinaryOutValue), &Z_Copy }, { 0x0010, 0x0057, Z(BinaryOutPriorityArray),&Z_Copy }, { 0x0010, 0x0067, Z(BinaryOutReliability), &Z_Copy }, { 0x0010, 0x0068, Z(BinaryOutRelinquishDefault),&Z_Copy }, { 0x0010, 0x006F, Z(BinaryOutStatusFlags), &Z_Copy }, { 0x0010, 0x0100, Z(BinaryOutApplicationType),&Z_Copy }, // Binary Value cluster { 0x0011, 0x0004, Z(BinaryActiveText), &Z_Copy }, { 0x0011, 0x001C, Z(BinaryDescription), &Z_Copy }, { 0x0011, 0x002E, Z(BinaryInactiveText), &Z_Copy }, { 0x0011, 0x0042, Z(BinaryMinimumOffTime), &Z_Copy }, { 0x0011, 0x0043, Z(BinaryMinimumOnTime), &Z_Copy }, { 0x0011, 0x0051, Z(BinaryOutOfService), &Z_Copy }, { 0x0011, 0x0055, Z(BinaryValue), &Z_Copy }, { 0x0011, 0x0057, Z(BinaryPriorityArray), &Z_Copy }, { 0x0011, 0x0067, Z(BinaryReliability), &Z_Copy }, { 0x0011, 0x0068, Z(BinaryRelinquishDefault),&Z_Copy }, { 0x0011, 0x006F, Z(BinaryStatusFlags), &Z_Copy }, { 0x0011, 0x0100, Z(BinaryApplicationType),&Z_Copy }, // Multistate Input cluster { 0x0012, 0x000E, Z(MultiInStateText), &Z_Copy }, { 0x0012, 0x001C, Z(MultiInDescription), &Z_Copy }, { 0x0012, 0x004A, Z(MultiInNumberOfStates),&Z_Copy }, { 0x0012, 0x0051, Z(MultiInOutOfService), &Z_Copy }, { 0x0012, 0x0055, Z(MultiInValue), &Z_AqaraCube }, { 0x0012, 0x0067, Z(MultiInReliability), &Z_Copy }, { 0x0012, 0x006F, Z(MultiInStatusFlags), &Z_Copy }, { 0x0012, 0x0100, Z(MultiInApplicationType),&Z_Copy }, // Multistate output { 0x0013, 0x000E, Z(MultiOutStateText), &Z_Copy }, { 0x0013, 0x001C, Z(MultiOutDescription), &Z_Copy }, { 0x0013, 0x004A, Z(MultiOutNumberOfStates),&Z_Copy }, { 0x0013, 0x0051, Z(MultiOutOutOfService), &Z_Copy }, { 0x0013, 0x0055, Z(MultiOutValue), &Z_Copy }, { 0x0013, 0x0057, Z(MultiOutPriorityArray),&Z_Copy }, { 0x0013, 0x0067, Z(MultiOutReliability), &Z_Copy }, { 0x0013, 0x0068, Z(MultiOutRelinquishDefault),&Z_Copy }, { 0x0013, 0x006F, Z(MultiOutStatusFlags), &Z_Copy }, { 0x0013, 0x0100, Z(MultiOutApplicationType),&Z_Copy }, // Multistate Value cluster { 0x0014, 0x000E, Z(MultiStateText), &Z_Copy }, { 0x0014, 0x001C, Z(MultiDescription), &Z_Copy }, { 0x0014, 0x004A, Z(MultiNumberOfStates), &Z_Copy }, { 0x0014, 0x0051, Z(MultiOutOfService), &Z_Copy }, { 0x0014, 0x0055, Z(MultiValue), &Z_Copy }, { 0x0014, 0x0067, Z(MultiReliability), &Z_Copy }, { 0x0014, 0x0068, Z(MultiRelinquishDefault),&Z_Copy }, { 0x0014, 0x006F, Z(MultiStatusFlags), &Z_Copy }, { 0x0014, 0x0100, Z(MultiApplicationType), &Z_Copy }, // Power Profile cluster { 0x001A, 0x0000, Z(TotalProfileNum), &Z_Copy }, { 0x001A, 0x0001, Z(MultipleScheduling), &Z_Copy }, { 0x001A, 0x0002, Z(EnergyFormatting), &Z_Copy }, { 0x001A, 0x0003, Z(EnergyRemote), &Z_Copy }, { 0x001A, 0x0004, Z(ScheduleMode), &Z_Copy }, // Poll Control cluster { 0x0020, 0x0000, Z(CheckinInterval), &Z_Copy }, { 0x0020, 0x0001, Z(LongPollInterval), &Z_Copy }, { 0x0020, 0x0002, Z(ShortPollInterval), &Z_Copy }, { 0x0020, 0x0003, Z(FastPollTimeout), &Z_Copy }, { 0x0020, 0x0004, Z(CheckinIntervalMin), &Z_Copy }, { 0x0020, 0x0005, Z(LongPollIntervalMin), &Z_Copy }, { 0x0020, 0x0006, Z(FastPollTimeoutMax), &Z_Copy }, // Shade Configuration cluster { 0x0100, 0x0000, Z(PhysicalClosedLimit), &Z_Copy }, { 0x0100, 0x0001, Z(MotorStepSize), &Z_Copy }, { 0x0100, 0x0002, Z(Status), &Z_Copy }, { 0x0100, 0x0010, Z(ClosedLimit), &Z_Copy }, { 0x0100, 0x0011, Z(Mode), &Z_Copy }, // Door Lock cluster { 0x0101, 0x0000, Z(LockState), &Z_Copy }, { 0x0101, 0x0001, Z(LockType), &Z_Copy }, { 0x0101, 0x0002, Z(ActuatorEnabled), &Z_Copy }, { 0x0101, 0x0003, Z(DoorState), &Z_Copy }, { 0x0101, 0x0004, Z(DoorOpenEvents), &Z_Copy }, { 0x0101, 0x0005, Z(DoorClosedEvents), &Z_Copy }, { 0x0101, 0x0006, Z(OpenPeriod), &Z_Copy }, // Aqara Lumi Vibration Sensor { 0x0101, 0x0055, Z(AqaraVibrationMode), &Z_AqaraVibration }, { 0x0101, 0x0503, Z(AqaraVibrationsOrAngle), &Z_Copy }, { 0x0101, 0x0505, Z(AqaraVibration505), &Z_Copy }, { 0x0101, 0x0508, Z(AqaraAccelerometer), &Z_AqaraVibration }, // Window Covering cluster { 0x0102, 0x0000, Z(WindowCoveringType), &Z_Copy }, { 0x0102, 0x0001, Z(PhysicalClosedLimitLift),&Z_Copy }, { 0x0102, 0x0002, Z(PhysicalClosedLimitTilt),&Z_Copy }, { 0x0102, 0x0003, Z(CurrentPositionLift), &Z_Copy }, { 0x0102, 0x0004, Z(CurrentPositionTilt), &Z_Copy }, { 0x0102, 0x0005, Z(NumberofActuationsLift),&Z_Copy }, { 0x0102, 0x0006, Z(NumberofActuationsTilt),&Z_Copy }, { 0x0102, 0x0007, Z(ConfigStatus), &Z_Copy }, { 0x0102, 0x0008, Z(CurrentPositionLiftPercentage),&Z_Copy }, { 0x0102, 0x0009, Z(CurrentPositionTiltPercentage),&Z_Copy }, { 0x0102, 0x0010, Z(InstalledOpenLimitLift),&Z_Copy }, { 0x0102, 0x0011, Z(InstalledClosedLimitLift),&Z_Copy }, { 0x0102, 0x0012, Z(InstalledOpenLimitTilt),&Z_Copy }, { 0x0102, 0x0013, Z(InstalledClosedLimitTilt),&Z_Copy }, { 0x0102, 0x0014, Z(VelocityLift), &Z_Copy }, { 0x0102, 0x0015, Z(AccelerationTimeLift),&Z_Copy }, { 0x0102, 0x0016, Z(DecelerationTimeLift), &Z_Copy }, { 0x0102, 0x0017, Z(Mode), &Z_Copy }, { 0x0102, 0x0018, Z(IntermediateSetpointsLift),&Z_Copy }, { 0x0102, 0x0019, Z(IntermediateSetpointsTilt),&Z_Copy }, // Color Control cluster { 0x0300, 0x0000, Z(Hue), &Z_Copy }, { 0x0300, 0x0001, Z(Sat), &Z_Copy }, { 0x0300, 0x0002, Z(RemainingTime), &Z_Copy }, { 0x0300, 0x0003, Z(X), &Z_Copy }, { 0x0300, 0x0004, Z(Y), &Z_Copy }, { 0x0300, 0x0005, Z(DriftCompensation), &Z_Copy }, { 0x0300, 0x0006, Z(CompensationText), &Z_Copy }, { 0x0300, 0x0007, Z(CT), &Z_Copy }, { 0x0300, 0x0008, Z(ColorMode), &Z_Copy }, { 0x0300, 0x0010, Z(NumberOfPrimaries), &Z_Copy }, { 0x0300, 0x0011, Z(Primary1X), &Z_Copy }, { 0x0300, 0x0012, Z(Primary1Y), &Z_Copy }, { 0x0300, 0x0013, Z(Primary1Intensity), &Z_Copy }, { 0x0300, 0x0015, Z(Primary2X), &Z_Copy }, { 0x0300, 0x0016, Z(Primary2Y), &Z_Copy }, { 0x0300, 0x0017, Z(Primary2Intensity), &Z_Copy }, { 0x0300, 0x0019, Z(Primary3X), &Z_Copy }, { 0x0300, 0x001A, Z(Primary3Y), &Z_Copy }, { 0x0300, 0x001B, Z(Primary3Intensity), &Z_Copy }, { 0x0300, 0x0030, Z(WhitePointX), &Z_Copy }, { 0x0300, 0x0031, Z(WhitePointY), &Z_Copy }, { 0x0300, 0x0032, Z(ColorPointRX), &Z_Copy }, { 0x0300, 0x0033, Z(ColorPointRY), &Z_Copy }, { 0x0300, 0x0034, Z(ColorPointRIntensity), &Z_Copy }, { 0x0300, 0x0036, Z(ColorPointGX), &Z_Copy }, { 0x0300, 0x0037, Z(ColorPointGY), &Z_Copy }, { 0x0300, 0x0038, Z(ColorPointGIntensity), &Z_Copy }, { 0x0300, 0x003A, Z(ColorPointBX), &Z_Copy }, { 0x0300, 0x003B, Z(ColorPointBY), &Z_Copy }, { 0x0300, 0x003C, Z(ColorPointBIntensity), &Z_Copy }, // Illuminance Measurement cluster { 0x0400, 0x0000, Z(Illuminance), &Z_Copy }, // Illuminance (in Lux) { 0x0400, 0x0001, Z(IlluminanceMinMeasuredValue), &Z_Copy }, // { 0x0400, 0x0002, Z(IlluminanceMaxMeasuredValue), &Z_Copy }, // { 0x0400, 0x0003, Z(IlluminanceTolerance), &Z_Copy }, // { 0x0400, 0x0004, Z(IlluminanceLightSensorType), &Z_Copy }, // { 0x0400, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Illuminance Level Sensing cluster { 0x0401, 0x0000, Z(IlluminanceLevelStatus), &Z_Copy }, // Illuminance (in Lux) { 0x0401, 0x0001, Z(IlluminanceLightSensorType), &Z_Copy }, // LightSensorType { 0x0401, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Temperature Measurement cluster { 0x0402, 0x0000, Z(Temperature), &Z_FloatDiv100 }, // Temperature { 0x0402, 0x0001, Z(TemperatureMinMeasuredValue), &Z_FloatDiv100 }, // { 0x0402, 0x0002, Z(TemperatureMaxMeasuredValue), &Z_FloatDiv100 }, // { 0x0402, 0x0003, Z(TemperatureTolerance), &Z_FloatDiv100 }, // { 0x0402, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Pressure Measurement cluster { 0x0403, 0x0000, Z(PressureUnit), &Z_AddPressureUnit }, // Pressure Unit { 0x0403, 0x0000, Z(Pressure), &Z_Copy }, // Pressure { 0x0403, 0x0001, Z(PressureMinMeasuredValue), &Z_Copy }, // { 0x0403, 0x0002, Z(PressureMaxMeasuredValue), &Z_Copy }, // { 0x0403, 0x0003, Z(PressureTolerance), &Z_Copy }, // { 0x0403, 0x0010, Z(PressureScaledValue), &Z_Copy }, // { 0x0403, 0x0011, Z(PressureMinScaledValue), &Z_Copy }, // { 0x0403, 0x0012, Z(PressureMaxScaledValue), &Z_Copy }, // { 0x0403, 0x0013, Z(PressureScaledTolerance), &Z_Copy }, // { 0x0403, 0x0014, Z(PressureScale), &Z_Copy }, // { 0x0403, 0xFFFF, nullptr, &Z_Remove }, // Remove all other Pressure values // Flow Measurement cluster { 0x0404, 0x0000, Z(FlowRate), &Z_FloatDiv10 }, // Flow (in m3/h) { 0x0404, 0x0001, Z(FlowMinMeasuredValue), &Z_Copy }, // { 0x0404, 0x0002, Z(FlowMaxMeasuredValue), &Z_Copy }, // { 0x0404, 0x0003, Z(FlowTolerance), &Z_Copy }, // { 0x0404, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Relative Humidity Measurement cluster { 0x0405, 0x0000, Z(Humidity), &Z_FloatDiv100 }, // Humidity { 0x0405, 0x0001, Z(HumidityMinMeasuredValue), &Z_Copy }, // { 0x0405, 0x0002, Z(HumidityMaxMeasuredValue), &Z_Copy }, // { 0x0405, 0x0003, "HumidityTolerance", &Z_Copy }, // { 0x0405, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Occupancy Sensing cluster { 0x0406, 0x0000, Z(Occupancy), &Z_Copy }, // Occupancy (map8) { 0x0406, 0x0001, Z(OccupancySensorType), &Z_Copy }, // OccupancySensorType { 0x0406, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values // Meter Identification cluster { 0x0B01, 0x0000, Z(CompanyName), &Z_Copy }, { 0x0B01, 0x0001, Z(MeterTypeID), &Z_Copy }, { 0x0B01, 0x0004, Z(DataQualityID), &Z_Copy }, { 0x0B01, 0x0005, Z(CustomerName), &Z_Copy }, { 0x0B01, 0x0006, Z(Model), &Z_Copy }, { 0x0B01, 0x0007, Z(PartNumber), &Z_Copy }, { 0x0B01, 0x000A, Z(SoftwareRevision), &Z_Copy }, { 0x0B01, 0x000C, Z(POD), &Z_Copy }, { 0x0B01, 0x000D, Z(AvailablePower), &Z_Copy }, { 0x0B01, 0x000E, Z(PowerThreshold), &Z_Copy }, // Diagnostics cluster { 0x0B05, 0x0000, Z(NumberOfResets), &Z_Copy }, { 0x0B05, 0x0001, Z(PersistentMemoryWrites),&Z_Copy }, { 0x0B05, 0x011C, Z(LastMessageLQI), &Z_Copy }, { 0x0B05, 0x011D, Z(LastMessageRSSI), &Z_Copy }, }; // ====================================================================== // Record Manuf int32_t Z_ManufKeep(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = value; zigbee_devices.setManufId(shortaddr, value.as()); return 1; } // int32_t Z_ModelKeep(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = value; zigbee_devices.setModelId(shortaddr, value.as()); return 1; } // ====================================================================== // Remove attribute int32_t Z_Remove(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { return 1; // remove original key } // Copy value as-is int32_t Z_Copy(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = value; return 1; // remove original key } // Add pressure unit int32_t Z_AddPressureUnit(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = F(D_UNIT_PRESSURE); return 0; // keep original key } // Convert int to float and divide by 100 int32_t Z_FloatDiv100(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = ((float)value) / 100.0f; return 1; // remove original key } // Convert int to float and divide by 10 int32_t Z_FloatDiv10(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = ((float)value) / 10.0f; return 1; // remove original key } // Convert int to float and divide by 10 int32_t Z_FloatDiv2(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = ((float)value) / 2.0f; return 1; // remove original key } // Publish a message for `"Occupancy":0` when the timer expired int32_t Z_OccupancyCallback(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { DynamicJsonBuffer jsonBuffer; JsonObject& json = jsonBuffer.createObject(); json[F(OCCUPANCY)] = 0; zigbee_devices.jsonPublishNow(shortaddr, json); } // Aqara Cube int32_t Z_AqaraCube(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { json[new_name] = value; // copy the original value int32_t val = value; const __FlashStringHelper *aqara_cube = F("AqaraCube"); const __FlashStringHelper *aqara_cube_side = F("AqaraCubeSide"); const __FlashStringHelper *aqara_cube_from_side = F("AqaraCubeFromSide"); switch (val) { case 0: json[aqara_cube] = F("shake"); break; case 2: json[aqara_cube] = F("wakeup"); break; case 3: json[aqara_cube] = F("fall"); break; case 64 ... 127: json[aqara_cube] = F("flip90"); json[aqara_cube_side] = val % 8; json[aqara_cube_from_side] = (val - 64) / 8; break; case 128 ... 132: json[aqara_cube] = F("flip180"); json[aqara_cube_side] = val - 128; break; case 256 ... 261: json[aqara_cube] = F("slide"); json[aqara_cube_side] = val - 256; break; case 512 ... 517: json[aqara_cube] = F("tap"); json[aqara_cube_side] = val - 512; break; } // Source: https://github.com/kirovilya/ioBroker.zigbee // +---+ // | 2 | // +---+---+---+ // | 4 | 0 | 1 | // +---+---+---+ // |M5I| // +---+ // | 3 | // +---+ // Side 5 is with the MI logo, side 3 contains the battery door. // presentValue = 0 = shake // presentValue = 2 = wakeup // presentValue = 3 = fly/fall // presentValue = y + x * 8 + 64 = 90º Flip from side x on top to side y on top // presentValue = x + 128 = 180º flip to side x on top // presentValue = x + 256 = push/slide cube while side x is on top // presentValue = x + 512 = double tap while side x is on top return 1; } // Aqara Vibration Sensor - special proprietary attributes int32_t Z_AqaraVibration(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { //json[new_name] = value; switch (attr) { case 0x0055: { int32_t ivalue = value; const __FlashStringHelper * svalue; switch (ivalue) { case 1: svalue = F("vibrate"); break; case 2: svalue = F("tilt"); break; case 3: svalue = F("drop"); break; default: svalue = F("unknown"); break; } json[new_name] = svalue; } break; // case 0x0503: // break; // case 0x0505: // break; case 0x0508: { // see https://github.com/Koenkk/zigbee2mqtt/issues/295 and http://faire-ca-soi-meme.fr/domotique/2018/09/03/test-xiaomi-aqara-vibration-sensor/ // report accelerometer measures String hex = value; SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length()); int16_t x, y, z; z = buf2.get16(0); y = buf2.get16(2); x = buf2.get16(4); JsonArray& xyz = json.createNestedArray(new_name); xyz.add(x); xyz.add(y); xyz.add(z); // calculate angles float X = x; float Y = y; float Z = z; int32_t Angle_X = 0.5f + atanf(X/sqrtf(z*z+y*y)) * f_180pi; int32_t Angle_Y = 0.5f + atanf(Y/sqrtf(x*x+z*z)) * f_180pi; int32_t Angle_Z = 0.5f + atanf(Z/sqrtf(x*x+y*y)) * f_180pi; JsonArray& angles = json.createNestedArray(F("AqaraAngles")); angles.add(Angle_X); angles.add(Angle_Y); angles.add(Angle_Z); } break; } return 1; // remove original key } int32_t Z_AqaraSensor(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) { String hex = value; SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length()); uint32_t i = 0; uint32_t len = buf2.len(); char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused JsonVariant sub_value; const char * modelId_c = zigbee_devices.getModelId(shortaddr); // null if unknown String modelId((char*) modelId_c); while (len - i >= 2) { uint8_t attrid = buf2.get8(i++); i += parseSingleAttribute(json, tmp, buf2, i, len); float val = json[tmp]; json.remove(tmp); bool translated = false; // were we able to translate to a known format? if (0x01 == attrid) { json[F(D_JSON_VOLTAGE)] = val / 1000.0f; json[F("Battery")] = toPercentageCR2032(val); } else if ((nullptr != modelId) && (0 == zcl->getManufCode())) { translated = true; if (modelId.startsWith(F("lumi.sensor_ht")) || modelId.startsWith(F("lumi.weather"))) { // Temp sensor // Filter according to prefix of model name // onla Aqara Temp/Humidity has manuf_code of zero. If non-zero we skip the parameters if (0x64 == attrid) { json[F(D_JSON_TEMPERATURE)] = val / 100.0f; } else if (0x65 == attrid) { json[F(D_JSON_HUMIDITY)] = val / 100.0f; } else if (0x66 == attrid) { json[F(D_JSON_PRESSURE)] = val / 100.0f; json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa } } else if (modelId.startsWith(F("lumi.sensor_smoke"))) { // gas leak if (0x64 == attrid) { json[F("SmokeDensity")] = val; } } else if (modelId.startsWith(F("lumi.sensor_natgas"))) { // gas leak if (0x64 == attrid) { json[F("GasDensity")] = val; } } else { translated = false; // we didn't find a match } // } else if (0x115F == zcl->getManufCode()) { // Aqara Motion Sensor, still unknown field } if (!translated) { if (attrid >= 100) { // payload is always above 0x64 or 100 char attr_name[12]; snprintf_P(attr_name, sizeof(attr_name), PSTR("Xiaomi_%02X"), attrid); json[attr_name] = val; } } } return 1; // remove original key } // ====================================================================== void ZCLFrame::postProcessAttributes(uint16_t shortaddr, JsonObject& json) { // iterate on json elements for (auto kv : json) { String key_string = kv.key; const char * key = key_string.c_str(); JsonVariant& value = kv.value; // Check that format looks like "CCCC/AAAA" or "CCCC/AAAA+d" char * delimiter = strchr(key, '/'); char * delimiter2 = strchr(key, '+'); if (delimiter) { uint16_t attribute; uint16_t suffix = 1; uint16_t cluster = strtoul(key, &delimiter, 16); if (!delimiter2) { attribute = strtoul(delimiter+1, nullptr, 16); } else { attribute = strtoul(delimiter+1, &delimiter2, 16); suffix = strtoul(delimiter2+1, nullptr, 10); } // see if we need to update the Hue bulb status if ((cluster == 0x0006) && ((attribute == 0x0000) || (attribute == 0x8000))) { uint8_t power = value; zigbee_devices.updateHueState(shortaddr, &power, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); } else if ((cluster == 0x0008) && (attribute == 0x0000)) { uint8_t dimmer = value; zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, &dimmer, nullptr, nullptr, nullptr, nullptr, nullptr); } else if ((cluster == 0x0300) && (attribute == 0x0000)) { uint16_t hue8 = value; uint16_t hue = changeUIntScale(hue8, 0, 254, 0, 360); // change range from 0..254 to 0..360 zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr, nullptr, &hue, nullptr, nullptr); } else if ((cluster == 0x0300) && (attribute == 0x0001)) { uint8_t sat = value; zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, &sat, nullptr, nullptr, nullptr, nullptr); } else if ((cluster == 0x0300) && (attribute == 0x0003)) { uint16_t x = value; zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, &x, nullptr); } else if ((cluster == 0x0300) && (attribute == 0x0004)) { uint16_t y = value; zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr, &y); } else if ((cluster == 0x0300) && (attribute == 0x0007)) { uint16_t ct = value; zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr, &ct, nullptr, nullptr, nullptr); } else if ((cluster == 0x0300) && (attribute == 0x0008)) { uint8_t colormode = value; zigbee_devices.updateHueState(shortaddr, nullptr, &colormode, nullptr, nullptr, nullptr, nullptr, nullptr, nullptr); } // Iterate on filter for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t conv_cluster = pgm_read_word(&converter->cluster); uint16_t conv_attribute = pgm_read_word(&converter->attribute); if ((conv_cluster == cluster) && ((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) { String new_name_str = (const __FlashStringHelper*) converter->name; if (suffix > 1) { new_name_str += suffix; } // append suffix number int32_t drop = (*converter->func)(this, shortaddr, json, key, value, new_name_str, conv_cluster, conv_attribute); if (drop) { json.remove(key); } } } } } } #endif // USE_ZIGBEE