/*
xdrv_23_zigbee_converters.ino - zigbee support for Tasmota
Copyright (C) 2020 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ZIGBEE
/*********************************************************************************************\
* ZCL
\*********************************************************************************************/
typedef union ZCLHeaderFrameControl_t {
struct {
uint8_t frame_type : 2; // 00 = across entire profile, 01 = cluster specific
uint8_t manuf_specific : 1; // Manufacturer Specific Sub-field
uint8_t direction : 1; // 0 = tasmota to zigbee, 1 = zigbee to tasmota
uint8_t disable_def_resp : 1; // don't send back default response
uint8_t reserved : 3;
} b;
uint32_t d8; // raw 8 bits field
} ZCLHeaderFrameControl_t;
class ZCLFrame {
public:
ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id,
const char *buf, size_t buf_len, uint16_t clusterid, uint16_t groupaddr,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp):
_cmd_id(cmd_id), _manuf_code(manuf_code), _transact_seq(transact_seq),
_payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough
_cluster_id(clusterid), _groupaddr(groupaddr),
_srcaddr(srcaddr), _srcendpoint(srcendpoint), _dstendpoint(dstendpoint), _wasbroadcast(wasbroadcast),
_linkquality(linkquality), _securityuse(securityuse), _seqnumber(seqnumber),
_timestamp(timestamp)
{
_frame_control.d8 = frame_control;
_payload.addBuffer(buf, buf_len);
};
void log(void) {
char hex_char[_payload.len()*2+2];
ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char));
Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{"
"\"groupid\":%d," "\"clusterid\":%d," "\"srcaddr\":\"0x%04X\","
"\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d,"
"\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d,"
"\"timestamp\":%d,"
"\"fc\":\"0x%02X\",\"manuf\":\"0x%04X\",\"transact\":%d,"
"\"cmdid\":\"0x%02X\",\"payload\":\"%s\"}}"),
_groupaddr, _cluster_id, _srcaddr,
_srcendpoint, _dstendpoint, _wasbroadcast,
_linkquality, _securityuse, _seqnumber,
_timestamp,
_frame_control, _manuf_code, _transact_seq, _cmd_id,
hex_char);
if (Settings.flag3.tuya_serial_mqtt_publish) {
MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR));
XdrvRulesProcess();
} else {
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data);
}
}
static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid,
uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast,
uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber,
uint32_t timestamp) { // parse a raw frame and build the ZCL frame object
uint32_t i = offset;
ZCLHeaderFrameControl_t frame_control;
uint16_t manuf_code = 0;
uint8_t transact_seq;
uint8_t cmd_id;
frame_control.d8 = buf.get8(i++);
if (frame_control.b.manuf_specific) {
manuf_code = buf.get16(i);
i += 2;
}
transact_seq = buf.get8(i++);
cmd_id = buf.get8(i++);
ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id,
(const char *)(buf.buf() + i), len + offset - i,
clusterid, groupid,
srcaddr, srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber,
timestamp);
return zcl_frame;
}
bool isClusterSpecificCommand(void) {
return _frame_control.b.frame_type & 1;
}
static void generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len);
void parseRawAttributes(JsonObject& json, uint8_t offset = 0);
void parseReadAttributes(JsonObject& json, uint8_t offset = 0);
void parseResponse(void);
void parseClusterSpecificCommand(JsonObject& json, uint8_t offset = 0);
void postProcessAttributes(uint16_t shortaddr, JsonObject& json);
inline void setGroupId(uint16_t groupid) {
_groupaddr = groupid;
}
inline void setClusterId(uint16_t clusterid) {
_cluster_id = clusterid;
}
inline uint8_t getCmdId(void) const {
return _cmd_id;
}
inline uint16_t getClusterId(void) const {
return _cluster_id;
}
inline uint16_t getSrcEndpoint(void) const {
return _srcendpoint;
}
const SBuffer &getPayload(void) const {
return _payload;
}
uint16_t getManufCode(void) const {
return _manuf_code;
}
private:
ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 };
uint16_t _manuf_code = 0; // optional
uint8_t _transact_seq = 0; // transaction sequence number
uint8_t _cmd_id = 0;
uint16_t _cluster_id = 0;
uint16_t _groupaddr = 0;
SBuffer _payload;
// information from decoded ZCL frame
uint16_t _srcaddr;
uint8_t _srcendpoint;
uint8_t _dstendpoint;
uint8_t _wasbroadcast;
uint8_t _linkquality;
uint8_t _securityuse;
uint8_t _seqnumber;
uint32_t _timestamp;
};
// Zigbee ZCL converters
// from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55
// Input voltage in mV, i.e. 3000 = 3.000V
// Output percentage from 0 to 100 as int
uint8_t toPercentageCR2032(uint32_t voltage) {
uint32_t percentage;
if (voltage < 2100) {
percentage = 0;
} else if (voltage < 2440) {
percentage = 6 - ((2440 - voltage) * 6) / 340;
} else if (voltage < 2740) {
percentage = 18 - ((2740 - voltage) * 12) / 300;
} else if (voltage < 2900) {
percentage = 42 - ((2900 - voltage) * 24) / 160;
} else if (voltage < 3000) {
percentage = 100 - ((3000 - voltage) * 58) / 100;
} else if (voltage >= 3000) {
percentage = 100;
}
return percentage;
}
uint32_t parseSingleAttribute(JsonObject& json, char *attrid_str, class SBuffer &buf,
uint32_t offset, uint32_t len) {
uint32_t i = offset;
uint32_t attrtype = buf.get8(i++);
// fallback - enter a null value
json[attrid_str] = (char*) nullptr;
// now parse accordingly to attr type
switch (attrtype) {
case 0x00: // nodata
case 0xFF: // unk
break;
case 0x10: // bool
{
uint8_t val_bool = buf.get8(i++);
if (0xFF != val_bool) {
json[attrid_str] = (bool) (val_bool ? true : false);
}
}
break;
case 0x20: // uint8
case 0x30: // enum8
{
uint8_t uint8_val = buf.get8(i);
i += 1;
if (0xFF != uint8_val) {
json[attrid_str] = uint8_val;
}
}
break;
case 0x21: // uint16
case 0x31: // enum16
{
uint16_t uint16_val = buf.get16(i);
i += 2;
if (0xFFFF != uint16_val) {
json[attrid_str] = uint16_val;
}
}
break;
case 0x23: // uint32
{
uint32_t uint32_val = buf.get32(i);
i += 4;
if (0xFFFFFFFF != uint32_val) {
json[attrid_str] = uint32_val;
}
}
break;
// Note: uint40, uint48, uint56, uint64 are stored as Hex
case 0x24: // uint40
case 0x25: // uint48
case 0x26: // uint56
case 0x27: // uint64
{
uint8_t len = attrtype - 0x1F; // 5 - 8
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
i += len;
}
break;
case 0x28: // uint8
{
int8_t int8_val = buf.get8(i);
i += 1;
if (0x80 != int8_val) {
json[attrid_str] = int8_val;
}
}
break;
case 0x29: // uint16
{
int16_t int16_val = buf.get16(i);
i += 2;
if (0x8000 != int16_val) {
json[attrid_str] = int16_val;
}
}
break;
case 0x2B: // uint16
{
int32_t int32_val = buf.get32(i);
i += 4;
if (0x80000000 != int32_val) {
json[attrid_str] = int32_val;
}
}
break;
// Note: int40, int48, int56, int64 are not stored as Hex
case 0x2C: // int40
case 0x2D: // int48
case 0x2E: // int56
case 0x2F: // int64
{
uint8_t len = attrtype - 0x27; // 5 - 8
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
i += len;
}
break;
case 0x41: // octet string, 1 byte len
case 0x42: // char string, 1 byte len
case 0x43: // octet string, 2 bytes len
case 0x44: // char string, 2 bytes len
// For strings, default is to try to do a real string, but reverts to octet stream if null char is present or on some exceptions
{
bool parse_as_string = true;
uint32_t len = (attrtype <= 0x42) ? buf.get8(i) : buf.get16(i); // len is 8 or 16 bits
i += (attrtype <= 0x42) ? 1 : 2; // increment pointer
if (i + len > buf.len()) { // make sure we don't get past the buffer
len = buf.len() - i;
}
// check if we can safely use a string
if ((0x41 == attrtype) || (0x43 == attrtype)) { parse_as_string = false; }
// else {
// for (uint32_t j = 0; j < len; j++) {
// if (0x00 == buf.get8(i+j)) {
// parse_as_string = false;
// break;
// }
// }
// }
if (parse_as_string) {
char str[len+1];
strncpy(str, buf.charptr(i), len);
str[len] = 0x00;
json[attrid_str] = str;
} else {
// print as HEX
char hex[2*len+1];
ToHex_P(buf.buf(i), len, hex, sizeof(hex));
json[attrid_str] = hex;
}
i += len;
break;
}
i += buf.get8(i) + 1;
break;
case 0x08: // data8
case 0x18: // map8
{
uint8_t uint8_val = buf.get8(i);
i += 1;
json[attrid_str] = uint8_val;
}
break;
case 0x09: // data16
case 0x19: // map16
{
uint16_t uint16_val = buf.get16(i);
i += 2;
json[attrid_str] = uint16_val;
}
break;
case 0x0B: // data32
case 0x1B: // map32
{
uint32_t uint32_val = buf.get32(i);
i += 4;
json[attrid_str] = uint32_val;
}
break;
// TODO
case 0x39: // float
{
uint32_t uint32_val = buf.get32(i);
float * float_val = (float*) &uint32_val;
i += 4;
json[attrid_str] = *float_val;
}
break;
case 0xE0: // ToD
case 0xE1: // date
case 0xE2: // UTC
i += 4;
break;
case 0xE8: // clusterId
case 0xE9: // attribId
i += 2;
break;
case 0xEA: // bacOID
i += 4;
break;
case 0xF0: // EUI64
i += 8;
break;
case 0xF1: // key128
i += 16;
break;
// Other un-implemented data types
case 0x0A: // data24
case 0x0C: // data40
case 0x0D: // data48
case 0x0E: // data56
case 0x0F: // data64
i += attrtype - 0x07; // 2-8
break;
// map
case 0x1A: // map24
case 0x1C: // map40
case 0x1D: // map48
case 0x1E: // map56
case 0x1F: // map64
i += attrtype - 0x17;
break;
// semi
case 0x38: // semi (float on 2 bytes)
i += 2;
break;
case 0x3A: // double precision
{
uint64_t uint64_val = buf.get64(i);
double * double_val = (double*) &uint64_val;
i += 8;
json[attrid_str] = *double_val;
}
break;
}
// String pp; // pretty print
// json[attrid_str].prettyPrintTo(pp);
// // now store the attribute
// AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZCL attribute decoded, id %s, type 0x%02X, val=%s"),
// attrid_str, attrtype, pp.c_str());
return i - offset; // how much have we increased the index
}
// Generate an attribute name based on cluster number, attribute, and suffix if duplicates
void ZCLFrame::generateAttributeName(const JsonObject& json, uint16_t cluster, uint16_t attr, char *key, size_t key_len) {
uint32_t suffix = 1;
snprintf_P(key, key_len, PSTR("%04X/%04X"), cluster, attr);
while (json.containsKey(key)) {
suffix++;
snprintf_P(key, key_len, PSTR("%04X/%04X+%d"), cluster, attr, suffix); // add "0008/0001+2" suffix if duplicate
}
}
// First pass, parse all attributes in their native format
void ZCLFrame::parseRawAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len >= i + 3) {
uint16_t attrid = _payload.get16(i);
i += 2;
char key[16];
generateAttributeName(json, _cluster_id, attrid, key, sizeof(key));
// exception for Xiaomi lumi.weather - specific field to be treated as octet and not char
if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) {
if (0x42 == _payload.get8(i)) {
_payload.set8(i, 0x41); // change type from 0x42 to 0x41
}
}
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
// ZCL_READ_ATTRIBUTES_RESPONSE
void ZCLFrame::parseReadAttributes(JsonObject& json, uint8_t offset) {
uint32_t i = offset;
uint32_t len = _payload.len();
while (len - i >= 4) {
uint16_t attrid = _payload.get16(i);
i += 2;
uint8_t status = _payload.get8(i++);
if (0 == status) {
char key[16];
generateAttributeName(json, _cluster_id, attrid, key, sizeof(key));
i += parseSingleAttribute(json, key, _payload, i, len);
}
}
}
// ZCL_DEFAULT_RESPONSE
void ZCLFrame::parseResponse(void) {
if (_payload.len() < 2) { return; } // wrong format
uint8_t cmd = _payload.get8(0);
uint8_t status = _payload.get8(1);
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
// "Device"
char s[12];
snprintf_P(s, sizeof(s), PSTR("0x%04X"), _srcaddr);
json[F(D_JSON_ZIGBEE_DEVICE)] = s;
// "Name"
const char * friendlyName = zigbee_devices.getFriendlyName(_srcaddr);
if (friendlyName) {
json[F(D_JSON_ZIGBEE_NAME)] = (char*) friendlyName;
}
// "Command"
snprintf_P(s, sizeof(s), PSTR("%04X!%02X"), _cluster_id, cmd);
json[F(D_JSON_ZIGBEE_CMD)] = s;
// "Status"
json[F(D_JSON_ZIGBEE_STATUS)] = status;
// "StatusMessage"
const __FlashStringHelper* statm = getZigbeeStatusMessage(status);
if (statm) {
json[F(D_JSON_ZIGBEE_STATUS_MSG)] = statm;
}
// Add Endpoint
json[F(D_CMND_ZIGBEE_ENDPOINT)] = _srcendpoint;
// Add Group if non-zero
if (_groupaddr) {
json[F(D_CMND_ZIGBEE_GROUP)] = _groupaddr;
}
// Add linkquality
json[F(D_CMND_ZIGBEE_LINKQUALITY)] = _linkquality;
String msg("");
msg.reserve(100);
json.printTo(msg);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_RESPONSE "\":%s}"), msg.c_str());
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess();
}
// Parse non-normalized attributes
void ZCLFrame::parseClusterSpecificCommand(JsonObject& json, uint8_t offset) {
convertClusterSpecific(json, _cluster_id, _cmd_id, _frame_control.b.direction, _payload);
sendHueUpdate(_srcaddr, _groupaddr, _cluster_id, _cmd_id, _frame_control.b.direction);
}
// return value:
// 0 = keep initial value
// 1 = remove initial value
typedef int32_t (*Z_AttrConverter)(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr);
typedef struct Z_AttributeConverter {
uint16_t cluster;
uint16_t attribute;
const char * name;
Z_AttrConverter func;
} Z_AttributeConverter;
ZF(ZCLVersion) ZF(AppVersion) ZF(StackVersion) ZF(HWVersion) ZF(Manufacturer) ZF(ModelId)
ZF(DateCode) ZF(PowerSource) ZF(SWBuildID) ZF(Power) ZF(SwitchType) ZF(Dimmer)
ZF(MainsVoltage) ZF(MainsFrequency) ZF(BatteryVoltage) ZF(BatteryPercentage)
ZF(CurrentTemperature) ZF(MinTempExperienced) ZF(MaxTempExperienced) ZF(OverTempTotalDwell)
ZF(SceneCount) ZF(CurrentScene) ZF(CurrentGroup) ZF(SceneValid)
ZF(AlarmCount) ZF(Time) ZF(TimeStatus) ZF(TimeZone) ZF(DstStart) ZF(DstEnd)
ZF(DstShift) ZF(StandardTime) ZF(LocalTime) ZF(LastSetTime) ZF(ValidUntilTime)
ZF(LocationType) ZF(LocationMethod) ZF(LocationAge) ZF(QualityMeasure) ZF(NumberOfDevices)
ZF(AnalogInActiveText) ZF(AnalogInDescription) ZF(AnalogInInactiveText) ZF(AnalogInMaxValue)
ZF(AnalogInMinValue) ZF(AnalogInOutOfService) ZF(AqaraRotate) ZF(AnalogInPriorityArray)
ZF(AnalogInReliability) ZF(AnalogInRelinquishDefault) ZF(AnalogInResolution) ZF(AnalogInStatusFlags)
ZF(AnalogInEngineeringUnits) ZF(AnalogInApplicationType) ZF(Aqara_FF05)
ZF(AnalogOutDescription) ZF(AnalogOutMaxValue) ZF(AnalogOutMinValue) ZF(AnalogOutOutOfService)
ZF(AnalogOutValue) ZF(AnalogOutPriorityArray) ZF(AnalogOutReliability) ZF(AnalogOutRelinquishDefault)
ZF(AnalogOutResolution) ZF(AnalogOutStatusFlags) ZF(AnalogOutEngineeringUnits) ZF(AnalogOutApplicationType)
ZF(AnalogDescription) ZF(AnalogOutOfService) ZF(AnalogValue) ZF(AnalogPriorityArray) ZF(AnalogReliability)
ZF(AnalogRelinquishDefault) ZF(AnalogStatusFlags) ZF(AnalogEngineeringUnits) ZF(AnalogApplicationType)
ZF(BinaryInActiveText) ZF(BinaryInDescription) ZF(BinaryInInactiveText) ZF(BinaryInOutOfService)
ZF(BinaryInPolarity) ZF(BinaryInValue) ZF(BinaryInPriorityArray) ZF(BinaryInReliability)
ZF(BinaryInStatusFlags) ZF(BinaryInApplicationType)
ZF(BinaryOutActiveText) ZF(BinaryOutDescription) ZF(BinaryOutInactiveText) ZF(BinaryOutMinimumOffTime)
ZF(BinaryOutMinimumOnTime) ZF(BinaryOutOutOfService) ZF(BinaryOutPolarity) ZF(BinaryOutValue)
ZF(BinaryOutPriorityArray) ZF(BinaryOutReliability) ZF(BinaryOutRelinquishDefault) ZF(BinaryOutStatusFlags)
ZF(BinaryOutApplicationType)
ZF(BinaryActiveText) ZF(BinaryDescription) ZF(BinaryInactiveText) ZF(BinaryMinimumOffTime)
ZF(BinaryMinimumOnTime) ZF(BinaryOutOfService) ZF(BinaryValue) ZF(BinaryPriorityArray) ZF(BinaryReliability)
ZF(BinaryRelinquishDefault) ZF(BinaryStatusFlags) ZF(BinaryApplicationType)
ZF(MultiInStateText) ZF(MultiInDescription) ZF(MultiInNumberOfStates) ZF(MultiInOutOfService)
ZF(MultiInValue) ZF(MultiInReliability) ZF(MultiInStatusFlags) ZF(MultiInApplicationType)
ZF(MultiOutStateText) ZF(MultiOutDescription) ZF(MultiOutNumberOfStates) ZF(MultiOutOutOfService)
ZF(MultiOutValue) ZF(MultiOutPriorityArray) ZF(MultiOutReliability) ZF(MultiOutRelinquishDefault)
ZF(MultiOutStatusFlags) ZF(MultiOutApplicationType)
ZF(MultiStateText) ZF(MultiDescription) ZF(MultiNumberOfStates) ZF(MultiOutOfService) ZF(MultiValue)
ZF(MultiReliability) ZF(MultiRelinquishDefault) ZF(MultiStatusFlags) ZF(MultiApplicationType)
ZF(TotalProfileNum) ZF(MultipleScheduling) ZF(EnergyFormatting) ZF(EnergyRemote) ZF(ScheduleMode)
ZF(CheckinInterval) ZF(LongPollInterval) ZF(ShortPollInterval) ZF(FastPollTimeout) ZF(CheckinIntervalMin)
ZF(LongPollIntervalMin) ZF(FastPollTimeoutMax)
ZF(PhysicalClosedLimit) ZF(MotorStepSize) ZF(Status) ZF(ClosedLimit) ZF(Mode)
ZF(LockState) ZF(LockType) ZF(ActuatorEnabled) ZF(DoorState) ZF(DoorOpenEvents)
ZF(DoorClosedEvents) ZF(OpenPeriod)
ZF(AqaraVibrationMode) ZF(AqaraVibrationsOrAngle) ZF(AqaraVibration505) ZF(AqaraAccelerometer)
ZF(WindowCoveringType) ZF(PhysicalClosedLimitLift) ZF(PhysicalClosedLimitTilt) ZF(CurrentPositionLift)
ZF(CurrentPositionTilt) ZF(NumberofActuationsLift) ZF(NumberofActuationsTilt) ZF(ConfigStatus)
ZF(CurrentPositionLiftPercentage) ZF(CurrentPositionTiltPercentage) ZF(InstalledOpenLimitLift)
ZF(InstalledClosedLimitLift) ZF(InstalledOpenLimitTilt) ZF(InstalledClosedLimitTilt) ZF(VelocityLift)
ZF(AccelerationTimeLift) ZF(DecelerationTimeLift) ZF(IntermediateSetpointsLift)
ZF(IntermediateSetpointsTilt)
ZF(Hue) ZF(Sat) ZF(RemainingTime) ZF(X) ZF(Y) ZF(DriftCompensation) ZF(CompensationText) ZF(CT)
ZF(ColorMode) ZF(NumberOfPrimaries) ZF(Primary1X) ZF(Primary1Y) ZF(Primary1Intensity) ZF(Primary2X)
ZF(Primary2Y) ZF(Primary2Intensity) ZF(Primary3X) ZF(Primary3Y) ZF(Primary3Intensity) ZF(WhitePointX)
ZF(WhitePointY) ZF(ColorPointRX) ZF(ColorPointRY) ZF(ColorPointRIntensity) ZF(ColorPointGX) ZF(ColorPointGY)
ZF(ColorPointGIntensity) ZF(ColorPointBX) ZF(ColorPointBY) ZF(ColorPointBIntensity)
ZF(Illuminance) ZF(IlluminanceMinMeasuredValue) ZF(IlluminanceMaxMeasuredValue) ZF(IlluminanceTolerance)
ZF(IlluminanceLightSensorType) ZF(IlluminanceLevelStatus)
ZF(Temperature) ZF(TemperatureMinMeasuredValue) ZF(TemperatureMaxMeasuredValue) ZF(TemperatureTolerance)
ZF(PressureUnit) ZF(Pressure) ZF(PressureMinMeasuredValue) ZF(PressureMaxMeasuredValue) ZF(PressureTolerance)
ZF(PressureScaledValue) ZF(PressureMinScaledValue) ZF(PressureMaxScaledValue) ZF(PressureScaledTolerance)
ZF(PressureScale)
ZF(FlowRate) ZF(FlowMinMeasuredValue) ZF(FlowMaxMeasuredValue) ZF(FlowTolerance)
ZF(Humidity) ZF(HumidityMinMeasuredValue) ZF(HumidityMaxMeasuredValue) ZF(HumidityTolerance)
ZF(Occupancy) ZF(OccupancySensorType)
ZF(CompanyName) ZF(MeterTypeID) ZF(DataQualityID) ZF(CustomerName) ZF(Model) ZF(PartNumber)
ZF(SoftwareRevision) ZF(POD) ZF(AvailablePower) ZF(PowerThreshold)
ZF(NumberOfResets) ZF(PersistentMemoryWrites) ZF(LastMessageLQI) ZF(LastMessageRSSI)
// list of post-processing directives
const Z_AttributeConverter Z_PostProcess[] PROGMEM = {
{ 0x0000, 0x0000, Z(ZCLVersion), &Z_Copy },
{ 0x0000, 0x0001, Z(AppVersion), &Z_Copy },
{ 0x0000, 0x0002, Z(StackVersion), &Z_Copy },
{ 0x0000, 0x0003, Z(HWVersion), &Z_Copy },
{ 0x0000, 0x0004, Z(Manufacturer), &Z_ManufKeep }, // record Manufacturer
{ 0x0000, 0x0005, Z(ModelId), &Z_ModelKeep }, // record Model
{ 0x0000, 0x0006, Z(DateCode), &Z_Copy },
{ 0x0000, 0x0007, Z(PowerSource), &Z_Copy },
{ 0x0000, 0x4000, Z(SWBuildID), &Z_Copy },
{ 0x0000, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Cmd 0x0A - Cluster 0x0000, attribute 0xFF01 - proprietary
{ 0x0000, 0xFF01, nullptr, &Z_AqaraSensor }, // Occupancy (map8)
// Power Configuration cluster
{ 0x0001, 0x0000, Z(MainsVoltage), &Z_Copy },
{ 0x0001, 0x0001, Z(MainsFrequency), &Z_Copy },
{ 0x0001, 0x0020, Z(BatteryVoltage), &Z_FloatDiv10 },
{ 0x0001, 0x0021, Z(BatteryPercentage), &Z_Copy },
// Device Temperature Configuration cluster
{ 0x0002, 0x0000, Z(CurrentTemperature), &Z_Copy },
{ 0x0002, 0x0001, Z(MinTempExperienced), &Z_Copy },
{ 0x0002, 0x0002, Z(MaxTempExperienced), &Z_Copy },
{ 0x0002, 0x0003, Z(OverTempTotalDwell), &Z_Copy },
// Scenes cluster
{ 0x0005, 0x0000, Z(SceneCount), &Z_Copy },
{ 0x0005, 0x0001, Z(CurrentScene), &Z_Copy },
{ 0x0005, 0x0002, Z(CurrentGroup), &Z_Copy },
{ 0x0005, 0x0003, Z(SceneValid), &Z_Copy },
//{ 0x0005, 0x0004, Z(NameSupport), &Z_Copy },
// On/off cluster
{ 0x0006, 0x0000, Z(Power), &Z_Copy },
{ 0x0006, 0x8000, Z(Power), &Z_Copy }, // See 7280
// On/Off Switch Configuration cluster
{ 0x0007, 0x0000, Z(SwitchType), &Z_Copy },
// Level Control cluster
{ 0x0008, 0x0000, Z(Dimmer), &Z_Copy },
// { 0x0008, 0x0001, Z(RemainingTime", &Z_Copy },
// { 0x0008, 0x0010, Z(OnOffTransitionTime", &Z_Copy },
// { 0x0008, 0x0011, Z(OnLevel", &Z_Copy },
// { 0x0008, 0x0012, Z(OnTransitionTime", &Z_Copy },
// { 0x0008, 0x0013, Z(OffTransitionTime", &Z_Copy },
// { 0x0008, 0x0014, Z(DefaultMoveRate", &Z_Copy },
// Alarms cluster
{ 0x0009, 0x0000, Z(AlarmCount), &Z_Copy },
// Time cluster
{ 0x000A, 0x0000, Z(Time), &Z_Copy },
{ 0x000A, 0x0001, Z(TimeStatus), &Z_Copy },
{ 0x000A, 0x0002, Z(TimeZone), &Z_Copy },
{ 0x000A, 0x0003, Z(DstStart), &Z_Copy },
{ 0x000A, 0x0004, Z(DstEnd), &Z_Copy },
{ 0x000A, 0x0005, Z(DstShift), &Z_Copy },
{ 0x000A, 0x0006, Z(StandardTime), &Z_Copy },
{ 0x000A, 0x0007, Z(LocalTime), &Z_Copy },
{ 0x000A, 0x0008, Z(LastSetTime), &Z_Copy },
{ 0x000A, 0x0009, Z(ValidUntilTime), &Z_Copy },
// RSSI Location cluster
{ 0x000B, 0x0000, Z(LocationType), &Z_Copy },
{ 0x000B, 0x0000, Z(LocationMethod), &Z_Copy },
{ 0x000B, 0x0000, Z(LocationAge), &Z_Copy },
{ 0x000B, 0x0000, Z(QualityMeasure), &Z_Copy },
{ 0x000B, 0x0000, Z(NumberOfDevices), &Z_Copy },
// Analog Input cluster
{ 0x000C, 0x0004, Z(AnalogInActiveText), &Z_Copy },
{ 0x000C, 0x001C, Z(AnalogInDescription), &Z_Copy },
{ 0x000C, 0x002E, Z(AnalogInInactiveText), &Z_Copy },
{ 0x000C, 0x0041, Z(AnalogInMaxValue), &Z_Copy },
{ 0x000C, 0x0045, Z(AnalogInMinValue), &Z_Copy },
{ 0x000C, 0x0051, Z(AnalogInOutOfService), &Z_Copy },
{ 0x000C, 0x0055, Z(AqaraRotate), &Z_Copy },
{ 0x000C, 0x0057, Z(AnalogInPriorityArray),&Z_Copy },
{ 0x000C, 0x0067, Z(AnalogInReliability), &Z_Copy },
{ 0x000C, 0x0068, Z(AnalogInRelinquishDefault),&Z_Copy },
{ 0x000C, 0x006A, Z(AnalogInResolution), &Z_Copy },
{ 0x000C, 0x006F, Z(AnalogInStatusFlags), &Z_Copy },
{ 0x000C, 0x0075, Z(AnalogInEngineeringUnits),&Z_Copy },
{ 0x000C, 0x0100, Z(AnalogInApplicationType),&Z_Copy },
{ 0x000C, 0xFF05, Z(Aqara_FF05), &Z_Copy },
// Analog Output cluster
{ 0x000D, 0x001C, Z(AnalogOutDescription), &Z_Copy },
{ 0x000D, 0x0041, Z(AnalogOutMaxValue), &Z_Copy },
{ 0x000D, 0x0045, Z(AnalogOutMinValue), &Z_Copy },
{ 0x000D, 0x0051, Z(AnalogOutOutOfService),&Z_Copy },
{ 0x000D, 0x0055, Z(AnalogOutValue), &Z_Copy },
{ 0x000D, 0x0057, Z(AnalogOutPriorityArray),&Z_Copy },
{ 0x000D, 0x0067, Z(AnalogOutReliability), &Z_Copy },
{ 0x000D, 0x0068, Z(AnalogOutRelinquishDefault),&Z_Copy },
{ 0x000D, 0x006A, Z(AnalogOutResolution), &Z_Copy },
{ 0x000D, 0x006F, Z(AnalogOutStatusFlags), &Z_Copy },
{ 0x000D, 0x0075, Z(AnalogOutEngineeringUnits),&Z_Copy },
{ 0x000D, 0x0100, Z(AnalogOutApplicationType),&Z_Copy },
// Analog Value cluster
{ 0x000E, 0x001C, Z(AnalogDescription), &Z_Copy },
{ 0x000E, 0x0051, Z(AnalogOutOfService), &Z_Copy },
{ 0x000E, 0x0055, Z(AnalogValue), &Z_Copy },
{ 0x000E, 0x0057, Z(AnalogPriorityArray), &Z_Copy },
{ 0x000E, 0x0067, Z(AnalogReliability), &Z_Copy },
{ 0x000E, 0x0068, Z(AnalogRelinquishDefault),&Z_Copy },
{ 0x000E, 0x006F, Z(AnalogStatusFlags), &Z_Copy },
{ 0x000E, 0x0075, Z(AnalogEngineeringUnits),&Z_Copy },
{ 0x000E, 0x0100, Z(AnalogApplicationType),&Z_Copy },
// Binary Input cluster
{ 0x000F, 0x0004, Z(BinaryInActiveText), &Z_Copy },
{ 0x000F, 0x001C, Z(BinaryInDescription), &Z_Copy },
{ 0x000F, 0x002E, Z(BinaryInInactiveText),&Z_Copy },
{ 0x000F, 0x0051, Z(BinaryInOutOfService),&Z_Copy },
{ 0x000F, 0x0054, Z(BinaryInPolarity), &Z_Copy },
{ 0x000F, 0x0055, Z(BinaryInValue), &Z_Copy },
{ 0x000F, 0x0057, Z(BinaryInPriorityArray),&Z_Copy },
{ 0x000F, 0x0067, Z(BinaryInReliability), &Z_Copy },
{ 0x000F, 0x006F, Z(BinaryInStatusFlags), &Z_Copy },
{ 0x000F, 0x0100, Z(BinaryInApplicationType),&Z_Copy },
// Binary Output cluster
{ 0x0010, 0x0004, Z(BinaryOutActiveText), &Z_Copy },
{ 0x0010, 0x001C, Z(BinaryOutDescription), &Z_Copy },
{ 0x0010, 0x002E, Z(BinaryOutInactiveText),&Z_Copy },
{ 0x0010, 0x0042, Z(BinaryOutMinimumOffTime),&Z_Copy },
{ 0x0010, 0x0043, Z(BinaryOutMinimumOnTime),&Z_Copy },
{ 0x0010, 0x0051, Z(BinaryOutOutOfService),&Z_Copy },
{ 0x0010, 0x0054, Z(BinaryOutPolarity), &Z_Copy },
{ 0x0010, 0x0055, Z(BinaryOutValue), &Z_Copy },
{ 0x0010, 0x0057, Z(BinaryOutPriorityArray),&Z_Copy },
{ 0x0010, 0x0067, Z(BinaryOutReliability), &Z_Copy },
{ 0x0010, 0x0068, Z(BinaryOutRelinquishDefault),&Z_Copy },
{ 0x0010, 0x006F, Z(BinaryOutStatusFlags), &Z_Copy },
{ 0x0010, 0x0100, Z(BinaryOutApplicationType),&Z_Copy },
// Binary Value cluster
{ 0x0011, 0x0004, Z(BinaryActiveText), &Z_Copy },
{ 0x0011, 0x001C, Z(BinaryDescription), &Z_Copy },
{ 0x0011, 0x002E, Z(BinaryInactiveText), &Z_Copy },
{ 0x0011, 0x0042, Z(BinaryMinimumOffTime), &Z_Copy },
{ 0x0011, 0x0043, Z(BinaryMinimumOnTime), &Z_Copy },
{ 0x0011, 0x0051, Z(BinaryOutOfService), &Z_Copy },
{ 0x0011, 0x0055, Z(BinaryValue), &Z_Copy },
{ 0x0011, 0x0057, Z(BinaryPriorityArray), &Z_Copy },
{ 0x0011, 0x0067, Z(BinaryReliability), &Z_Copy },
{ 0x0011, 0x0068, Z(BinaryRelinquishDefault),&Z_Copy },
{ 0x0011, 0x006F, Z(BinaryStatusFlags), &Z_Copy },
{ 0x0011, 0x0100, Z(BinaryApplicationType),&Z_Copy },
// Multistate Input cluster
{ 0x0012, 0x000E, Z(MultiInStateText), &Z_Copy },
{ 0x0012, 0x001C, Z(MultiInDescription), &Z_Copy },
{ 0x0012, 0x004A, Z(MultiInNumberOfStates),&Z_Copy },
{ 0x0012, 0x0051, Z(MultiInOutOfService), &Z_Copy },
{ 0x0012, 0x0055, Z(MultiInValue), &Z_AqaraCube },
{ 0x0012, 0x0067, Z(MultiInReliability), &Z_Copy },
{ 0x0012, 0x006F, Z(MultiInStatusFlags), &Z_Copy },
{ 0x0012, 0x0100, Z(MultiInApplicationType),&Z_Copy },
// Multistate output
{ 0x0013, 0x000E, Z(MultiOutStateText), &Z_Copy },
{ 0x0013, 0x001C, Z(MultiOutDescription), &Z_Copy },
{ 0x0013, 0x004A, Z(MultiOutNumberOfStates),&Z_Copy },
{ 0x0013, 0x0051, Z(MultiOutOutOfService), &Z_Copy },
{ 0x0013, 0x0055, Z(MultiOutValue), &Z_Copy },
{ 0x0013, 0x0057, Z(MultiOutPriorityArray),&Z_Copy },
{ 0x0013, 0x0067, Z(MultiOutReliability), &Z_Copy },
{ 0x0013, 0x0068, Z(MultiOutRelinquishDefault),&Z_Copy },
{ 0x0013, 0x006F, Z(MultiOutStatusFlags), &Z_Copy },
{ 0x0013, 0x0100, Z(MultiOutApplicationType),&Z_Copy },
// Multistate Value cluster
{ 0x0014, 0x000E, Z(MultiStateText), &Z_Copy },
{ 0x0014, 0x001C, Z(MultiDescription), &Z_Copy },
{ 0x0014, 0x004A, Z(MultiNumberOfStates), &Z_Copy },
{ 0x0014, 0x0051, Z(MultiOutOfService), &Z_Copy },
{ 0x0014, 0x0055, Z(MultiValue), &Z_Copy },
{ 0x0014, 0x0067, Z(MultiReliability), &Z_Copy },
{ 0x0014, 0x0068, Z(MultiRelinquishDefault),&Z_Copy },
{ 0x0014, 0x006F, Z(MultiStatusFlags), &Z_Copy },
{ 0x0014, 0x0100, Z(MultiApplicationType), &Z_Copy },
// Power Profile cluster
{ 0x001A, 0x0000, Z(TotalProfileNum), &Z_Copy },
{ 0x001A, 0x0001, Z(MultipleScheduling), &Z_Copy },
{ 0x001A, 0x0002, Z(EnergyFormatting), &Z_Copy },
{ 0x001A, 0x0003, Z(EnergyRemote), &Z_Copy },
{ 0x001A, 0x0004, Z(ScheduleMode), &Z_Copy },
// Poll Control cluster
{ 0x0020, 0x0000, Z(CheckinInterval), &Z_Copy },
{ 0x0020, 0x0001, Z(LongPollInterval), &Z_Copy },
{ 0x0020, 0x0002, Z(ShortPollInterval), &Z_Copy },
{ 0x0020, 0x0003, Z(FastPollTimeout), &Z_Copy },
{ 0x0020, 0x0004, Z(CheckinIntervalMin), &Z_Copy },
{ 0x0020, 0x0005, Z(LongPollIntervalMin), &Z_Copy },
{ 0x0020, 0x0006, Z(FastPollTimeoutMax), &Z_Copy },
// Shade Configuration cluster
{ 0x0100, 0x0000, Z(PhysicalClosedLimit), &Z_Copy },
{ 0x0100, 0x0001, Z(MotorStepSize), &Z_Copy },
{ 0x0100, 0x0002, Z(Status), &Z_Copy },
{ 0x0100, 0x0010, Z(ClosedLimit), &Z_Copy },
{ 0x0100, 0x0011, Z(Mode), &Z_Copy },
// Door Lock cluster
{ 0x0101, 0x0000, Z(LockState), &Z_Copy },
{ 0x0101, 0x0001, Z(LockType), &Z_Copy },
{ 0x0101, 0x0002, Z(ActuatorEnabled), &Z_Copy },
{ 0x0101, 0x0003, Z(DoorState), &Z_Copy },
{ 0x0101, 0x0004, Z(DoorOpenEvents), &Z_Copy },
{ 0x0101, 0x0005, Z(DoorClosedEvents), &Z_Copy },
{ 0x0101, 0x0006, Z(OpenPeriod), &Z_Copy },
// Aqara Lumi Vibration Sensor
{ 0x0101, 0x0055, Z(AqaraVibrationMode), &Z_AqaraVibration },
{ 0x0101, 0x0503, Z(AqaraVibrationsOrAngle), &Z_Copy },
{ 0x0101, 0x0505, Z(AqaraVibration505), &Z_Copy },
{ 0x0101, 0x0508, Z(AqaraAccelerometer), &Z_AqaraVibration },
// Window Covering cluster
{ 0x0102, 0x0000, Z(WindowCoveringType), &Z_Copy },
{ 0x0102, 0x0001, Z(PhysicalClosedLimitLift),&Z_Copy },
{ 0x0102, 0x0002, Z(PhysicalClosedLimitTilt),&Z_Copy },
{ 0x0102, 0x0003, Z(CurrentPositionLift), &Z_Copy },
{ 0x0102, 0x0004, Z(CurrentPositionTilt), &Z_Copy },
{ 0x0102, 0x0005, Z(NumberofActuationsLift),&Z_Copy },
{ 0x0102, 0x0006, Z(NumberofActuationsTilt),&Z_Copy },
{ 0x0102, 0x0007, Z(ConfigStatus), &Z_Copy },
{ 0x0102, 0x0008, Z(CurrentPositionLiftPercentage),&Z_Copy },
{ 0x0102, 0x0009, Z(CurrentPositionTiltPercentage),&Z_Copy },
{ 0x0102, 0x0010, Z(InstalledOpenLimitLift),&Z_Copy },
{ 0x0102, 0x0011, Z(InstalledClosedLimitLift),&Z_Copy },
{ 0x0102, 0x0012, Z(InstalledOpenLimitTilt),&Z_Copy },
{ 0x0102, 0x0013, Z(InstalledClosedLimitTilt),&Z_Copy },
{ 0x0102, 0x0014, Z(VelocityLift), &Z_Copy },
{ 0x0102, 0x0015, Z(AccelerationTimeLift),&Z_Copy },
{ 0x0102, 0x0016, Z(DecelerationTimeLift), &Z_Copy },
{ 0x0102, 0x0017, Z(Mode), &Z_Copy },
{ 0x0102, 0x0018, Z(IntermediateSetpointsLift),&Z_Copy },
{ 0x0102, 0x0019, Z(IntermediateSetpointsTilt),&Z_Copy },
// Color Control cluster
{ 0x0300, 0x0000, Z(Hue), &Z_Copy },
{ 0x0300, 0x0001, Z(Sat), &Z_Copy },
{ 0x0300, 0x0002, Z(RemainingTime), &Z_Copy },
{ 0x0300, 0x0003, Z(X), &Z_Copy },
{ 0x0300, 0x0004, Z(Y), &Z_Copy },
{ 0x0300, 0x0005, Z(DriftCompensation), &Z_Copy },
{ 0x0300, 0x0006, Z(CompensationText), &Z_Copy },
{ 0x0300, 0x0007, Z(CT), &Z_Copy },
{ 0x0300, 0x0008, Z(ColorMode), &Z_Copy },
{ 0x0300, 0x0010, Z(NumberOfPrimaries), &Z_Copy },
{ 0x0300, 0x0011, Z(Primary1X), &Z_Copy },
{ 0x0300, 0x0012, Z(Primary1Y), &Z_Copy },
{ 0x0300, 0x0013, Z(Primary1Intensity), &Z_Copy },
{ 0x0300, 0x0015, Z(Primary2X), &Z_Copy },
{ 0x0300, 0x0016, Z(Primary2Y), &Z_Copy },
{ 0x0300, 0x0017, Z(Primary2Intensity), &Z_Copy },
{ 0x0300, 0x0019, Z(Primary3X), &Z_Copy },
{ 0x0300, 0x001A, Z(Primary3Y), &Z_Copy },
{ 0x0300, 0x001B, Z(Primary3Intensity), &Z_Copy },
{ 0x0300, 0x0030, Z(WhitePointX), &Z_Copy },
{ 0x0300, 0x0031, Z(WhitePointY), &Z_Copy },
{ 0x0300, 0x0032, Z(ColorPointRX), &Z_Copy },
{ 0x0300, 0x0033, Z(ColorPointRY), &Z_Copy },
{ 0x0300, 0x0034, Z(ColorPointRIntensity), &Z_Copy },
{ 0x0300, 0x0036, Z(ColorPointGX), &Z_Copy },
{ 0x0300, 0x0037, Z(ColorPointGY), &Z_Copy },
{ 0x0300, 0x0038, Z(ColorPointGIntensity), &Z_Copy },
{ 0x0300, 0x003A, Z(ColorPointBX), &Z_Copy },
{ 0x0300, 0x003B, Z(ColorPointBY), &Z_Copy },
{ 0x0300, 0x003C, Z(ColorPointBIntensity), &Z_Copy },
// Illuminance Measurement cluster
{ 0x0400, 0x0000, Z(Illuminance), &Z_Copy }, // Illuminance (in Lux)
{ 0x0400, 0x0001, Z(IlluminanceMinMeasuredValue), &Z_Copy }, //
{ 0x0400, 0x0002, Z(IlluminanceMaxMeasuredValue), &Z_Copy }, //
{ 0x0400, 0x0003, Z(IlluminanceTolerance), &Z_Copy }, //
{ 0x0400, 0x0004, Z(IlluminanceLightSensorType), &Z_Copy }, //
{ 0x0400, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Illuminance Level Sensing cluster
{ 0x0401, 0x0000, Z(IlluminanceLevelStatus), &Z_Copy }, // Illuminance (in Lux)
{ 0x0401, 0x0001, Z(IlluminanceLightSensorType), &Z_Copy }, // LightSensorType
{ 0x0401, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Temperature Measurement cluster
{ 0x0402, 0x0000, Z(Temperature), &Z_FloatDiv100 }, // Temperature
{ 0x0402, 0x0001, Z(TemperatureMinMeasuredValue), &Z_FloatDiv100 }, //
{ 0x0402, 0x0002, Z(TemperatureMaxMeasuredValue), &Z_FloatDiv100 }, //
{ 0x0402, 0x0003, Z(TemperatureTolerance), &Z_FloatDiv100 }, //
{ 0x0402, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Pressure Measurement cluster
{ 0x0403, 0x0000, Z(PressureUnit), &Z_AddPressureUnit }, // Pressure Unit
{ 0x0403, 0x0000, Z(Pressure), &Z_Copy }, // Pressure
{ 0x0403, 0x0001, Z(PressureMinMeasuredValue), &Z_Copy }, //
{ 0x0403, 0x0002, Z(PressureMaxMeasuredValue), &Z_Copy }, //
{ 0x0403, 0x0003, Z(PressureTolerance), &Z_Copy }, //
{ 0x0403, 0x0010, Z(PressureScaledValue), &Z_Copy }, //
{ 0x0403, 0x0011, Z(PressureMinScaledValue), &Z_Copy }, //
{ 0x0403, 0x0012, Z(PressureMaxScaledValue), &Z_Copy }, //
{ 0x0403, 0x0013, Z(PressureScaledTolerance), &Z_Copy }, //
{ 0x0403, 0x0014, Z(PressureScale), &Z_Copy }, //
{ 0x0403, 0xFFFF, nullptr, &Z_Remove }, // Remove all other Pressure values
// Flow Measurement cluster
{ 0x0404, 0x0000, Z(FlowRate), &Z_FloatDiv10 }, // Flow (in m3/h)
{ 0x0404, 0x0001, Z(FlowMinMeasuredValue), &Z_Copy }, //
{ 0x0404, 0x0002, Z(FlowMaxMeasuredValue), &Z_Copy }, //
{ 0x0404, 0x0003, Z(FlowTolerance), &Z_Copy }, //
{ 0x0404, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Relative Humidity Measurement cluster
{ 0x0405, 0x0000, Z(Humidity), &Z_FloatDiv100 }, // Humidity
{ 0x0405, 0x0001, Z(HumidityMinMeasuredValue), &Z_Copy }, //
{ 0x0405, 0x0002, Z(HumidityMaxMeasuredValue), &Z_Copy }, //
{ 0x0405, 0x0003, "HumidityTolerance", &Z_Copy }, //
{ 0x0405, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Occupancy Sensing cluster
{ 0x0406, 0x0000, Z(Occupancy), &Z_Copy }, // Occupancy (map8)
{ 0x0406, 0x0001, Z(OccupancySensorType), &Z_Copy }, // OccupancySensorType
{ 0x0406, 0xFFFF, nullptr, &Z_Remove }, // Remove all other values
// Meter Identification cluster
{ 0x0B01, 0x0000, Z(CompanyName), &Z_Copy },
{ 0x0B01, 0x0001, Z(MeterTypeID), &Z_Copy },
{ 0x0B01, 0x0004, Z(DataQualityID), &Z_Copy },
{ 0x0B01, 0x0005, Z(CustomerName), &Z_Copy },
{ 0x0B01, 0x0006, Z(Model), &Z_Copy },
{ 0x0B01, 0x0007, Z(PartNumber), &Z_Copy },
{ 0x0B01, 0x000A, Z(SoftwareRevision), &Z_Copy },
{ 0x0B01, 0x000C, Z(POD), &Z_Copy },
{ 0x0B01, 0x000D, Z(AvailablePower), &Z_Copy },
{ 0x0B01, 0x000E, Z(PowerThreshold), &Z_Copy },
// Diagnostics cluster
{ 0x0B05, 0x0000, Z(NumberOfResets), &Z_Copy },
{ 0x0B05, 0x0001, Z(PersistentMemoryWrites),&Z_Copy },
{ 0x0B05, 0x011C, Z(LastMessageLQI), &Z_Copy },
{ 0x0B05, 0x011D, Z(LastMessageRSSI), &Z_Copy },
};
// ======================================================================
// Record Manuf
int32_t Z_ManufKeep(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value;
zigbee_devices.setManufId(shortaddr, value.as());
return 1;
}
//
int32_t Z_ModelKeep(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value;
zigbee_devices.setModelId(shortaddr, value.as());
return 1;
}
// ======================================================================
// Remove attribute
int32_t Z_Remove(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
return 1; // remove original key
}
// Copy value as-is
int32_t Z_Copy(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value;
return 1; // remove original key
}
// Add pressure unit
int32_t Z_AddPressureUnit(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = F(D_UNIT_PRESSURE);
return 0; // keep original key
}
// Convert int to float and divide by 100
int32_t Z_FloatDiv100(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 100.0f;
return 1; // remove original key
}
// Convert int to float and divide by 10
int32_t Z_FloatDiv10(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 10.0f;
return 1; // remove original key
}
// Convert int to float and divide by 10
int32_t Z_FloatDiv2(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = ((float)value) / 2.0f;
return 1; // remove original key
}
// Publish a message for `"Occupancy":0` when the timer expired
int32_t Z_OccupancyCallback(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
DynamicJsonBuffer jsonBuffer;
JsonObject& json = jsonBuffer.createObject();
json[F(OCCUPANCY)] = 0;
zigbee_devices.jsonPublishNow(shortaddr, json);
}
// Aqara Cube
int32_t Z_AqaraCube(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
json[new_name] = value; // copy the original value
int32_t val = value;
const __FlashStringHelper *aqara_cube = F("AqaraCube");
const __FlashStringHelper *aqara_cube_side = F("AqaraCubeSide");
const __FlashStringHelper *aqara_cube_from_side = F("AqaraCubeFromSide");
switch (val) {
case 0:
json[aqara_cube] = F("shake");
break;
case 2:
json[aqara_cube] = F("wakeup");
break;
case 3:
json[aqara_cube] = F("fall");
break;
case 64 ... 127:
json[aqara_cube] = F("flip90");
json[aqara_cube_side] = val % 8;
json[aqara_cube_from_side] = (val - 64) / 8;
break;
case 128 ... 132:
json[aqara_cube] = F("flip180");
json[aqara_cube_side] = val - 128;
break;
case 256 ... 261:
json[aqara_cube] = F("slide");
json[aqara_cube_side] = val - 256;
break;
case 512 ... 517:
json[aqara_cube] = F("tap");
json[aqara_cube_side] = val - 512;
break;
}
// Source: https://github.com/kirovilya/ioBroker.zigbee
// +---+
// | 2 |
// +---+---+---+
// | 4 | 0 | 1 |
// +---+---+---+
// |M5I|
// +---+
// | 3 |
// +---+
// Side 5 is with the MI logo, side 3 contains the battery door.
// presentValue = 0 = shake
// presentValue = 2 = wakeup
// presentValue = 3 = fly/fall
// presentValue = y + x * 8 + 64 = 90º Flip from side x on top to side y on top
// presentValue = x + 128 = 180º flip to side x on top
// presentValue = x + 256 = push/slide cube while side x is on top
// presentValue = x + 512 = double tap while side x is on top
return 1;
}
// Aqara Vibration Sensor - special proprietary attributes
int32_t Z_AqaraVibration(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
//json[new_name] = value;
switch (attr) {
case 0x0055:
{
int32_t ivalue = value;
const __FlashStringHelper * svalue;
switch (ivalue) {
case 1: svalue = F("vibrate"); break;
case 2: svalue = F("tilt"); break;
case 3: svalue = F("drop"); break;
default: svalue = F("unknown"); break;
}
json[new_name] = svalue;
}
break;
// case 0x0503:
// break;
// case 0x0505:
// break;
case 0x0508:
{
// see https://github.com/Koenkk/zigbee2mqtt/issues/295 and http://faire-ca-soi-meme.fr/domotique/2018/09/03/test-xiaomi-aqara-vibration-sensor/
// report accelerometer measures
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
int16_t x, y, z;
z = buf2.get16(0);
y = buf2.get16(2);
x = buf2.get16(4);
JsonArray& xyz = json.createNestedArray(new_name);
xyz.add(x);
xyz.add(y);
xyz.add(z);
// calculate angles
float X = x;
float Y = y;
float Z = z;
int32_t Angle_X = 0.5f + atanf(X/sqrtf(z*z+y*y)) * f_180pi;
int32_t Angle_Y = 0.5f + atanf(Y/sqrtf(x*x+z*z)) * f_180pi;
int32_t Angle_Z = 0.5f + atanf(Z/sqrtf(x*x+y*y)) * f_180pi;
JsonArray& angles = json.createNestedArray(F("AqaraAngles"));
angles.add(Angle_X);
angles.add(Angle_Y);
angles.add(Angle_Z);
}
break;
}
return 1; // remove original key
}
int32_t Z_AqaraSensor(const class ZCLFrame *zcl, uint16_t shortaddr, JsonObject& json, const char *name, JsonVariant& value, const String &new_name, uint16_t cluster, uint16_t attr) {
String hex = value;
SBuffer buf2 = SBuffer::SBufferFromHex(hex.c_str(), hex.length());
uint32_t i = 0;
uint32_t len = buf2.len();
char tmp[] = "tmp"; // for obscure reasons, it must be converted from const char* to char*, otherwise ArduinoJson gets confused
JsonVariant sub_value;
const char * modelId_c = zigbee_devices.getModelId(shortaddr); // null if unknown
String modelId((char*) modelId_c);
while (len - i >= 2) {
uint8_t attrid = buf2.get8(i++);
i += parseSingleAttribute(json, tmp, buf2, i, len);
float val = json[tmp];
json.remove(tmp);
bool translated = false; // were we able to translate to a known format?
if (0x01 == attrid) {
json[F(D_JSON_VOLTAGE)] = val / 1000.0f;
json[F("Battery")] = toPercentageCR2032(val);
} else if ((nullptr != modelId) && (0 == zcl->getManufCode())) {
translated = true;
if (modelId.startsWith(F("lumi.sensor_ht")) ||
modelId.startsWith(F("lumi.weather"))) { // Temp sensor
// Filter according to prefix of model name
// onla Aqara Temp/Humidity has manuf_code of zero. If non-zero we skip the parameters
if (0x64 == attrid) {
json[F(D_JSON_TEMPERATURE)] = val / 100.0f;
} else if (0x65 == attrid) {
json[F(D_JSON_HUMIDITY)] = val / 100.0f;
} else if (0x66 == attrid) {
json[F(D_JSON_PRESSURE)] = val / 100.0f;
json[F(D_JSON_PRESSURE_UNIT)] = F(D_UNIT_PRESSURE); // hPa
}
} else if (modelId.startsWith(F("lumi.sensor_smoke"))) { // gas leak
if (0x64 == attrid) {
json[F("SmokeDensity")] = val;
}
} else if (modelId.startsWith(F("lumi.sensor_natgas"))) { // gas leak
if (0x64 == attrid) {
json[F("GasDensity")] = val;
}
} else {
translated = false; // we didn't find a match
}
// } else if (0x115F == zcl->getManufCode()) { // Aqara Motion Sensor, still unknown field
}
if (!translated) {
if (attrid >= 100) { // payload is always above 0x64 or 100
char attr_name[12];
snprintf_P(attr_name, sizeof(attr_name), PSTR("Xiaomi_%02X"), attrid);
json[attr_name] = val;
}
}
}
return 1; // remove original key
}
// ======================================================================
void ZCLFrame::postProcessAttributes(uint16_t shortaddr, JsonObject& json) {
// iterate on json elements
for (auto kv : json) {
String key_string = kv.key;
const char * key = key_string.c_str();
JsonVariant& value = kv.value;
// Check that format looks like "CCCC/AAAA" or "CCCC/AAAA+d"
char * delimiter = strchr(key, '/');
char * delimiter2 = strchr(key, '+');
if (delimiter) {
uint16_t attribute;
uint16_t suffix = 1;
uint16_t cluster = strtoul(key, &delimiter, 16);
if (!delimiter2) {
attribute = strtoul(delimiter+1, nullptr, 16);
} else {
attribute = strtoul(delimiter+1, &delimiter2, 16);
suffix = strtoul(delimiter2+1, nullptr, 10);
}
// see if we need to update the Hue bulb status
if ((cluster == 0x0006) && ((attribute == 0x0000) || (attribute == 0x8000))) {
uint8_t power = value;
zigbee_devices.updateHueState(shortaddr, &power, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0008) && (attribute == 0x0000)) {
uint8_t dimmer = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, &dimmer, nullptr,
nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0000)) {
uint16_t hue8 = value;
uint16_t hue = changeUIntScale(hue8, 0, 254, 0, 360); // change range from 0..254 to 0..360
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, &hue, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0001)) {
uint8_t sat = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, &sat,
nullptr, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0003)) {
uint16_t x = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, &x, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0004)) {
uint16_t y = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
nullptr, nullptr, nullptr, &y);
} else if ((cluster == 0x0300) && (attribute == 0x0007)) {
uint16_t ct = value;
zigbee_devices.updateHueState(shortaddr, nullptr, nullptr, nullptr, nullptr,
&ct, nullptr, nullptr, nullptr);
} else if ((cluster == 0x0300) && (attribute == 0x0008)) {
uint8_t colormode = value;
zigbee_devices.updateHueState(shortaddr, nullptr, &colormode, nullptr, nullptr,
nullptr, nullptr, nullptr, nullptr);
}
// Iterate on filter
for (uint32_t i = 0; i < sizeof(Z_PostProcess) / sizeof(Z_PostProcess[0]); i++) {
const Z_AttributeConverter *converter = &Z_PostProcess[i];
uint16_t conv_cluster = pgm_read_word(&converter->cluster);
uint16_t conv_attribute = pgm_read_word(&converter->attribute);
if ((conv_cluster == cluster) &&
((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) {
String new_name_str = (const __FlashStringHelper*) converter->name;
if (suffix > 1) { new_name_str += suffix; } // append suffix number
int32_t drop = (*converter->func)(this, shortaddr, json, key, value, new_name_str, conv_cluster, conv_attribute);
if (drop) {
json.remove(key);
}
}
}
}
}
}
#endif // USE_ZIGBEE