/* xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - saving configuration in I2C Eeprom of ZBBridge Copyright (C) 2021 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE // ======================= // ZbData v1 // File structure: // // [Array of devices] // uint8 - length of device record (excluding the length byte) // uint16 - short address // // [Device specific data first] // uint8 - length of structure (excluding the length byte) // uint8[] - device wide data // // [Array of data structures] // uint8 - length of structure // uint8[] - list of data // // returns the lenght of consumed buffer, or -1 if error int32_t hydrateDeviceWideData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { size_t segment_len = buf.get8(start); if ((segment_len < 6) || (segment_len > len)) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid device wide data length=%d"), segment_len); return -1; } device.last_seen = buf.get32(start+1); device.lqi = buf.get8(start + 5); device.batterypercent = buf.get8(start + 6); return segment_len + 1; } // return true if success bool hydrateDeviceData(class Z_Device & device, const SBuffer & buf, size_t start, size_t len) { // First hydrate device wide data int32_t ret = hydrateDeviceWideData(device, buf, start, len); if (ret < 0) { return false; } size_t offset = ret; while (offset + 5 <= len) { // each entry is at least 5 bytes uint8_t data_len = buf.get8(start + offset); // #ifdef Z_EEPROM_DEBUG // { // char hex_char[((data_len+1) * 2) + 2]; // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateDeviceData data_len=%d contains %s"), data_len, ToHex_P(buf.buf(start+offset+1), data_len, hex_char, sizeof(hex_char))); // } // #endif Z_Data & data_elt = device.data.createFromBuffer(buf, start + offset + 1, data_len); (void)data_elt; // avoid compiler warning offset += data_len + 1; } return true; } // negative means error // positive is the segment length int32_t hydrateSingleDevice(const class SBuffer & buf, size_t start, size_t len) { uint8_t segment_len = buf.get8(start); if ((segment_len < 4) || (start + segment_len > len)) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid segment_len=%d"), segment_len); return -1; } // read shortaddr uint16_t shortaddr = buf.get16(start + 1); if (shortaddr >= 0xFFF0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "invalid shortaddr=0x%04X"), shortaddr); return -1; } #ifdef Z_EEPROM_DEBUG { if (segment_len > 3) { char hex_char[((segment_len+1) * 2) + 2]; AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), shortaddr, ToHex_P(buf.buf(start+3), segment_len+1-3, hex_char, sizeof(hex_char))); } } #endif // check if the device exists, if not skip the record Z_Device & device = zigbee_devices.findShortAddr(shortaddr); if (&device != nullptr) { // parse the rest bool ret = hydrateDeviceData(device, buf, start + 3, segment_len - 3); if (!ret) { return -1; } } return segment_len + 1; } /*********************************************************************************************\ * * Hydrate data from the EEPROM * \*********************************************************************************************/ // Parse the entire blob // return true if ok bool hydrateDevicesDataFromEEPROM(void) { #ifdef USE_ZIGBEE_EZSP if (!zigbee.eeprom_ready) { return false; } int32_t file_length = ZFS::getLength(ZIGB_DATA2); if (file_length > 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device data in EEPROM (%d bytes)"), file_length); } else { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device data in EEPROM")); return false; } const uint16_t READ_BUFFER = 192; uint16_t cursor = 0x0000; // cursor in the file bool read_more = true; SBuffer buf(READ_BUFFER); while (read_more) { buf.setLen(buf.size()); // set to max size and fill with zeros int32_t bytes_read = ZFS::readBytes(ZIGB_DATA2, buf.getBuffer(), buf.size(), cursor, READ_BUFFER); // #ifdef Z_EEPROM_DEBUG // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes buffer_len=%d, read_start=%d, read_len=%d, actual_read=%d"), buf.size(), cursor, length, bytes_read); // #endif if (bytes_read > 0) { buf.setLen(bytes_read); // adjust to actual size int32_t segment_len = hydrateSingleDevice(buf, 0, buf.len()); // #ifdef Z_EEPROM_DEBUG // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "hydrateSingleDevice segment_len=%d"), segment_len); // #endif if (segment_len <= 0) { return false; } cursor += segment_len; } else { read_more = false; } } return true; #else // USE_ZIGBEE_EZSP return false; #endif // USE_ZIGBEE_EZSP } class SBuffer hibernateDeviceData(const struct Z_Device & device, bool mqtt = false) { SBuffer buf(192); // If we have zero information about the device, just skip ir if (device.validLqi() || device.validBatteryPercent() || device.validLastSeen() || !device.data.isEmpty()) { buf.add8(0x00); // overall length, will be updated later buf.add16(device.shortaddr); // device wide data buf.add8(6); // 6 bytes buf.add32(device.last_seen); buf.add8(device.lqi); buf.add8(device.batterypercent); for (const auto & data_elt : device.data) { size_t item_len = data_elt.DataTypeToLength(data_elt.getType()); buf.add8(item_len); // place-holder for length buf.addBuffer((uint8_t*) &data_elt, item_len); } // update overall length buf.set8(0, buf.len() - 1); { size_t buf_len = buf.len() - 3; char hex[2*buf_len + 1]; // skip first 3 bytes ToHex_P(buf.buf(3), buf_len, hex, sizeof(hex)); if (mqtt) { Response_P(PSTR("{\"" D_PRFX_ZB D_CMND_ZIGBEE_DATA "\":\"ZbData 0x%04X,%s\"}"), device.shortaddr, hex); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_STAT, PSTR(D_PRFX_ZB D_CMND_ZIGBEE_DATA)); } else { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData 0x%04X,%s"), device.shortaddr, hex); } } } return buf; } /*********************************************************************************************\ * * Hibernate data to the EEPROM * \*********************************************************************************************/ void hibernateAllData(void) { #ifdef USE_ZIGBEE_EZSP if (Rtc.utc_time < START_VALID_TIME) { return; } if (!zigbee.eeprom_ready) { return; } ZFS_Write_File write_data(ZIGB_DATA2); // first prefix is number of devices uint8_t device_num = zigbee_devices.devicesSize(); for (const auto & device : zigbee_devices.getDevices()) { // allocte a buffer for a single device SBuffer buf = hibernateDeviceData(device, false); // simple log, no mqtt if (buf.len() > 0) { write_data.addBytes(buf.getBuffer(), buf.len()); } } int32_t ret = write_data.close(); #ifdef Z_EEPROM_DEBUG AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbData - %d bytes written to EEPROM"), ret); #endif #endif // USE_ZIGBEE_EZSP } /*********************************************************************************************\ * Timer to save every 60 minutes \*********************************************************************************************/ const uint32_t Z_SAVE_DATA_TIMER = 60 * 60 * 1000; // save data every 60 minutes (in ms) // // Callback for setting the timer to save Zigbee Data in x seconds // int32_t Z_Set_Save_Data_Timer_EEPROM(uint8_t value) { zigbee_devices.setTimer(0x0000, 0, Z_SAVE_DATA_TIMER, 0, 0, Z_CAT_ALWAYS, 0 /* value */, &Z_SaveDataTimer); return 0; // continue } void Z_SaveDataTimer(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { hibernateAllData(); Z_Set_Save_Data_Timer_EEPROM(0); // set a new timer } #ifdef USE_ZIGBEE_EZSP /*********************************************************************************************\ * Write Devices in EEPROM \*********************************************************************************************/ // EEPROM variant that writes one item at a time and is not limited to 2KB bool hibernateDevicesInEEPROM(void) { if (Rtc.utc_time < START_VALID_TIME) { return false; } if (!zigbee.eeprom_ready) { return false; } ZFS_Write_File write_data(ZIGB_NAME2); // first prefix is number of devices uint8_t devices_size = zigbee_devices.devicesSize(); if (devices_size > 64) { devices_size = 64; } // arbitrarily limit to 64 devices in EEPROM instead of 32 in Flash write_data.addBytes(&devices_size, sizeof(devices_size)); for (const auto & device : zigbee_devices.getDevices()) { const SBuffer buf = hibernateDevicev2(device); if (buf.len() > 0) { write_data.addBytes(buf.getBuffer(), buf.len()); } } int32_t ret = write_data.close(); if (ret < 0) { AddLog_P(LOG_LEVEL_ERROR, PSTR(D_LOG_ZIGBEE "Error writing Devices to EEPROM")); return false; } else { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data saved in %s (%d bytes)"), PSTR("EEPROM"), ret); } return true; } // dump = true, only dump to logs, don't actually load bool loadZigbeeDevicesFromEEPROM(void) { if (!zigbee.eeprom_ready) { return false; } uint16_t file_len = ZFS::getLength(ZIGB_NAME2); uint8_t num_devices = 0; ZFS::readBytes(ZIGB_NAME2, &num_devices, sizeof(num_devices), 0, sizeof(num_devices)); if ((file_len < 10) || (num_devices == 0x00) || (num_devices == 0xFF)) { // No data AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "No Zigbee device information in %s"), PSTR("EEPROM")); return false; } AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee device information in %s (%d bytes)"), PSTR("EEPROM"), file_len); uint32_t k = 1; // byte index in global buffer for (uint32_t i = 0; (i < num_devices) && (k < file_len); i++) { uint8_t dev_record_len = 0; int32_t ret = ZFS::readBytes(ZIGB_NAME2, &dev_record_len, 1, k, 1); SBuffer buf(dev_record_len); buf.setLen(dev_record_len); ret = ZFS::readBytes(ZIGB_NAME2, buf.getBuffer(), dev_record_len, k, dev_record_len); if (ret != dev_record_len) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "File too short when reading EEPROM")); return false; } hydrateSingleDevice(buf, 2); // next iteration k += dev_record_len; } zigbee_devices.clean(); // don't write back to Flash what we just loaded return true; } void ZFS_Erase(void) { if (zigbee.eeprom_present) { ZFS::erase(); AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Zigbee Devices Data erased in %s"), PSTR("EEPROM")); } } #endif // USE_ZIGBEE_EZSP #endif // USE_ZIGBEE