/*
support.ino - support for Tasmota
Copyright (C) 2019 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
IPAddress syslog_host_addr; // Syslog host IP address
uint32_t syslog_host_hash = 0; // Syslog host name hash
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
#include
Ticker tickerOSWatch;
const uint32_t OSWATCH_RESET_TIME = 120;
static unsigned long oswatch_last_loop_time;
uint8_t oswatch_blocked_loop = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
//void OsWatchTicker() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
#ifdef USE_KNX
bool knx_started = false;
#endif // USE_KNX
void OsWatchTicker(void)
{
uint32_t t = millis();
uint32_t last_run = abs(t - oswatch_last_loop_time);
#ifdef DEBUG_THEO
AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WifiGetRssiAsQuality(WiFi.RSSI()), last_run);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
RtcSettings.oswatch_blocked_loop = 1;
RtcSettingsSave();
// ESP.restart(); // normal reboot
ESP.reset(); // hard reset
}
}
void OsWatchInit(void)
{
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
RtcSettings.oswatch_blocked_loop = 0;
oswatch_last_loop_time = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
}
void OsWatchLoop(void)
{
oswatch_last_loop_time = millis();
// while(1) delay(1000); // this will trigger the os watch
}
String GetResetReason(void)
{
if (oswatch_blocked_loop) {
char buff[32];
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP.getResetReason();
}
}
bool OsWatchBlockedLoop(void)
{
return oswatch_blocked_loop;
}
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0
// Functions not available in 2.3.0
// http://clc-wiki.net/wiki/C_standard_library:string.h:memchr
void* memchr(const void* ptr, int value, size_t num)
{
unsigned char *p = (unsigned char*)ptr;
while (num--) {
if (*p != (unsigned char)value) {
p++;
} else {
return p;
}
}
return 0;
}
// http://clc-wiki.net/wiki/C_standard_library:string.h:strcspn
// Get span until any character in string
size_t strcspn(const char *str1, const char *str2)
{
size_t ret = 0;
while (*str1) {
if (strchr(str2, *str1)) { // Slow
return ret;
} else {
str1++;
ret++;
}
}
return ret;
}
// https://clc-wiki.net/wiki/C_standard_library:string.h:strpbrk
// Locate the first occurrence in the string pointed to by s1 of any character from the string pointed to by s2
char* strpbrk(const char *s1, const char *s2)
{
while(*s1) {
if (strchr(s2, *s1++)) {
return (char*)--s1;
}
}
return 0;
}
// https://opensource.apple.com/source/Libc/Libc-583/stdlib/FreeBSD/strtoull.c
// Convert a string to an unsigned long long integer
#ifndef __LONG_LONG_MAX__
#define __LONG_LONG_MAX__ 9223372036854775807LL
#endif
#ifndef ULLONG_MAX
#define ULLONG_MAX (__LONG_LONG_MAX__ * 2ULL + 1)
#endif
unsigned long long strtoull(const char *__restrict nptr, char **__restrict endptr, int base)
{
const char *s = nptr;
char c;
do { c = *s++; } while (isspace((unsigned char)c)); // Trim leading spaces
int neg = 0;
if (c == '-') { // Set minus flag and/or skip sign
neg = 1;
c = *s++;
} else {
if (c == '+') {
c = *s++;
}
}
if ((base == 0 || base == 16) && (c == '0') && (*s == 'x' || *s == 'X')) { // Set Hexadecimal
c = s[1];
s += 2;
base = 16;
}
if (base == 0) { base = (c == '0') ? 8 : 10; } // Set Octal or Decimal
unsigned long long acc = 0;
int any = 0;
if (base > 1 && base < 37) {
unsigned long long cutoff = ULLONG_MAX / base;
int cutlim = ULLONG_MAX % base;
for ( ; ; c = *s++) {
if (c >= '0' && c <= '9')
c -= '0';
else if (c >= 'A' && c <= 'Z')
c -= 'A' - 10;
else if (c >= 'a' && c <= 'z')
c -= 'a' - 10;
else
break;
if (c >= base)
break;
if (any < 0 || acc > cutoff || (acc == cutoff && c > cutlim))
any = -1;
else {
any = 1;
acc *= base;
acc += c;
}
}
if (any < 0) {
acc = ULLONG_MAX; // Range error
}
else if (any && neg) {
acc = -acc;
}
}
if (endptr != nullptr) { *endptr = (char *)(any ? s - 1 : nptr); }
return acc;
}
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
// Get span until single character in string
size_t strchrspn(const char *str1, int character)
{
size_t ret = 0;
char *start = (char*)str1;
char *end = strchr(str1, character);
if (end) ret = end - start;
return ret;
}
// Function to return a substring defined by a delimiter at an index
char* subStr(char* dest, char* str, const char *delim, int index)
{
char *act;
char *sub = nullptr;
char *ptr;
int i;
// Since strtok consumes the first arg, make a copy
strncpy(dest, str, strlen(str)+1);
for (i = 1, act = dest; i <= index; i++, act = nullptr) {
sub = strtok_r(act, delim, &ptr);
if (sub == nullptr) break;
}
sub = Trim(sub);
return sub;
}
float CharToFloat(const char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt = strbuf;
while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces
signed char sign = 1;
if (*pt == '-') { sign = -1; }
if (*pt == '-' || *pt=='+') { pt++; } // Skip any sign
float left = 0;
if (*pt != '.') {
left = atoi(pt); // Get left part
while (isdigit(*pt)) { pt++; } // Skip number
}
float right = 0;
if (*pt == '.') {
pt++;
right = atoi(pt); // Decimal part
while (isdigit(*pt)) {
pt++;
right /= 10.0f;
}
}
float result = left + right;
if (sign < 0) {
return -result; // Add negative sign
}
return result;
}
int TextToInt(char *str)
{
char *p;
uint8_t radix = 10;
if ('#' == str[0]) {
radix = 16;
str++;
}
return strtol(str, &p, radix);
}
char* ulltoa(unsigned long long value, char *str, int radix)
{
char digits[64];
char *dst = str;
int i = 0;
// if (radix < 2 || radix > 36) { radix = 10; }
do {
int n = value % radix;
digits[i++] = (n < 10) ? (char)n+'0' : (char)n-10+'A';
value /= radix;
} while (value != 0);
while (i > 0) { *dst++ = digits[--i]; }
*dst = 0;
return str;
}
// see https://stackoverflow.com/questions/6357031/how-do-you-convert-a-byte-array-to-a-hexadecimal-string-in-c
// char* ToHex_P(unsigned char * in, size_t insz, char * out, size_t outsz, char inbetween = '\0'); in tasmota_post.h
char* ToHex_P(const unsigned char * in, size_t insz, char * out, size_t outsz, char inbetween)
{
// ToHex_P(in, insz, out, outz) -> "12345667"
// ToHex_P(in, insz, out, outz, ' ') -> "12 34 56 67"
// ToHex_P(in, insz, out, outz, ':') -> "12:34:56:67"
static const char * hex = "0123456789ABCDEF";
int between = (inbetween) ? 3 : 2;
const unsigned char * pin = in;
char * pout = out;
for (; pin < in+insz; pout += between, pin++) {
pout[0] = hex[(pgm_read_byte(pin)>>4) & 0xF];
pout[1] = hex[ pgm_read_byte(pin) & 0xF];
if (inbetween) { pout[2] = inbetween; }
if (pout + 3 - out > outsz) { break; } // Better to truncate output string than overflow buffer
}
pout[(inbetween && insz) ? -1 : 0] = 0; // Discard last inbetween if any input
return out;
}
char* Uint64toHex(uint64_t value, char *str, uint16_t bits)
{
ulltoa(value, str, 16); // Get 64bit value
int fill = 8;
if ((bits > 3) && (bits < 65)) {
fill = bits / 4; // Max 16
if (bits % 4) { fill++; }
}
int len = strlen(str);
fill -= len;
if (fill > 0) {
memmove(str + fill, str, len +1);
memset(str, '0', fill);
}
return str;
}
char* dtostrfd(double number, unsigned char prec, char *s)
{
if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript)
strcpy(s, "null");
return s;
} else {
return dtostrf(number, 1, prec, s);
}
}
char* Unescape(char* buffer, uint32_t* size)
{
uint8_t* read = (uint8_t*)buffer;
uint8_t* write = (uint8_t*)buffer;
int32_t start_size = *size;
int32_t end_size = *size;
uint8_t che = 0;
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
while (start_size > 0) {
uint8_t ch = *read++;
start_size--;
if (ch != '\\') {
*write++ = ch;
} else {
if (start_size > 0) {
uint8_t chi = *read++;
start_size--;
end_size--;
switch (chi) {
case '\\': che = '\\'; break; // 5C Backslash
case 'a': che = '\a'; break; // 07 Bell (Alert)
case 'b': che = '\b'; break; // 08 Backspace
case 'e': che = '\e'; break; // 1B Escape
case 'f': che = '\f'; break; // 0C Formfeed
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
case 'r': che = '\r'; break; // 0D Carriage return
case 's': che = ' '; break; // 20 Space
case 't': che = '\t'; break; // 09 Horizontal tab
case 'v': che = '\v'; break; // 0B Vertical tab
case 'x': {
uint8_t* start = read;
che = (uint8_t)strtol((const char*)read, (char**)&read, 16);
start_size -= (uint16_t)(read - start);
end_size -= (uint16_t)(read - start);
break;
}
case '"': che = '\"'; break; // 22 Quotation mark
// case '?': che = '\?'; break; // 3F Question mark
default : {
che = chi;
*write++ = ch;
end_size++;
}
}
*write++ = che;
}
}
}
*size = end_size;
*write++ = 0; // add the end string pointer reference
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size);
return buffer;
}
char* RemoveSpace(char* p)
{
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!isspace(ch)) {
*write++ = ch;
}
}
// *write = '\0'; // Removed 20190223 as it buffer overflows on no isspace found - no need either
return p;
}
char* LowerCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = tolower(ch);
}
return dest;
}
char* UpperCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = toupper(ch);
}
return dest;
}
char* UpperCase_P(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = pgm_read_byte(read++);
*write++ = toupper(ch);
}
return dest;
}
char* Trim(char* p)
{
while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces
char* q = p + strlen(p) -1;
while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces
q++;
*q = '\0';
return p;
}
char* NoAlNumToUnderscore(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
}
return dest;
}
char IndexSeparator()
{
/*
// 20 bytes more costly !?!
const char separators[] = { "-_" };
return separators[Settings.flag3.use_underscore];
*/
if (Settings.flag3.use_underscore) { // SetOption64 - Enable "_" instead of "-" as sensor index separator
return '_';
} else {
return '-';
}
}
void SetShortcutDefault(void)
{
if ('\0' != XdrvMailbox.data[0]) { // There must be at least one character in the buffer
XdrvMailbox.data[0] = '0' + SC_DEFAULT; // SC_CLEAR, SC_DEFAULT, SC_USER
XdrvMailbox.data[1] = '\0';
}
}
uint8_t Shortcut()
{
uint8_t result = 10;
if ('\0' == XdrvMailbox.data[1]) { // Only allow single character input for shortcut
if (('"' == XdrvMailbox.data[0]) || ('0' == XdrvMailbox.data[0])) {
result = SC_CLEAR;
} else {
result = atoi(XdrvMailbox.data); // 1 = SC_DEFAULT, 2 = SC_USER
if (0 == result) {
result = 10;
}
}
}
return result;
}
bool ValidIpAddress(const char* str)
{
const char* p = str;
while (*p && ((*p == '.') || ((*p >= '0') && (*p <= '9')))) { p++; }
return (*p == '\0');
}
bool ParseIp(uint32_t* addr, const char* str)
{
uint8_t *part = (uint8_t*)addr;
uint8_t i;
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, nullptr, 10); // Convert byte
str = strchr(str, '.');
if (str == nullptr || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
// Function to parse & check if version_str is newer than our currently installed version.
bool NewerVersion(char* version_str)
{
uint32_t version = 0;
uint32_t i = 0;
char *str_ptr;
char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it.
if (!version_dup) {
return false; // Bail if we can't duplicate. Assume bad.
}
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
free(version_dup);
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
free(version_dup); // We no longer need this.
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
char* GetPowerDevice(char* dest, uint32_t idx, size_t size, uint32_t option)
{
strncpy_P(dest, S_RSLT_POWER, size); // POWER
if ((devices_present + option) > 1) {
char sidx[8];
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x
strncat(dest, sidx, size - strlen(dest) -1); // POWERx
}
return dest;
}
char* GetPowerDevice(char* dest, uint32_t idx, size_t size)
{
return GetPowerDevice(dest, idx, size, 0);
}
float ConvertTemp(float c)
{
float result = c;
global_update = uptime;
global_temperature = c;
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = c * 1.8 + 32; // Fahrenheit
}
return result;
}
float ConvertTempToCelsius(float c)
{
float result = c;
if (!isnan(c) && Settings.flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit
result = (c - 32) / 1.8; // Celsius
}
return result;
}
char TempUnit(void)
{
return (Settings.flag.temperature_conversion) ? 'F' : 'C'; // SetOption8 - Switch between Celsius or Fahrenheit
}
float ConvertHumidity(float h)
{
global_update = uptime;
global_humidity = h;
return h;
}
float ConvertPressure(float p)
{
float result = p;
global_update = uptime;
global_pressure = p;
if (!isnan(p) && Settings.flag.pressure_conversion) { // SetOption24 - Switch between hPa or mmHg pressure unit
result = p * 0.75006375541921; // mmHg
}
return result;
}
String PressureUnit(void)
{
return (Settings.flag.pressure_conversion) ? String(D_UNIT_MILLIMETER_MERCURY) : String(D_UNIT_PRESSURE);
}
void ResetGlobalValues(void)
{
if ((uptime - global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
global_update = 0;
global_temperature = 9999;
global_humidity = 0;
global_pressure = 0;
}
}
uint32_t SqrtInt(uint32_t num)
{
if (num <= 1) {
return num;
}
uint32_t x = num / 2;
uint32_t y;
do {
y = (x + num / x) / 2;
if (y >= x) {
return x;
}
x = y;
} while (true);
}
uint32_t RoundSqrtInt(uint32_t num)
{
uint32_t s = SqrtInt(4 * num);
if (s & 1) {
s++;
}
return s / 2;
}
char* GetTextIndexed(char* destination, size_t destination_size, uint32_t index, const char* haystack)
{
// Returns empty string if not found
// Returns text of found
char* write = destination;
const char* read = haystack;
index++;
while (index--) {
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
if (0 == ch) {
if (index) {
write = destination;
}
break;
}
}
*write = '\0';
return destination;
}
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
{
// Returns -1 of not found
// Returns index and command if found
int result = -1;
const char* read = haystack;
char* write = destination;
while (true) {
result++;
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
*write = '\0';
if (!strcasecmp(needle, destination)) {
break;
}
if (0 == ch) {
result = -1;
break;
}
}
return result;
}
bool DecodeCommand(const char* haystack, void (* const MyCommand[])(void))
{
GetTextIndexed(XdrvMailbox.command, CMDSZ, 0, haystack); // Get prefix if available
int prefix_length = strlen(XdrvMailbox.command);
int command_code = GetCommandCode(XdrvMailbox.command + prefix_length, CMDSZ, XdrvMailbox.topic + prefix_length, haystack);
if (command_code > 0) { // Skip prefix
XdrvMailbox.command_code = command_code -1;
MyCommand[XdrvMailbox.command_code]();
return true;
}
return false;
}
const char kOptions[] PROGMEM = "OFF|" D_OFF "|" D_FALSE "|" D_STOP "|" D_CELSIUS "|" // 0
"ON|" D_ON "|" D_TRUE "|" D_START "|" D_FAHRENHEIT "|" D_USER "|" // 1
"TOGGLE|" D_TOGGLE "|" D_ADMIN "|" // 2
"BLINK|" D_BLINK "|" // 3
"BLINKOFF|" D_BLINKOFF "|" // 4
"ALL" ; // 255
const uint8_t sNumbers[] PROGMEM = { 0,0,0,0,0,
1,1,1,1,1,1,
2,2,2,
3,3,
4,4,
255 };
int GetStateNumber(char *state_text)
{
char command[CMDSZ];
int state_number = GetCommandCode(command, sizeof(command), state_text, kOptions);
if (state_number >= 0) {
state_number = pgm_read_byte(sNumbers + state_number);
}
return state_number;
}
void SetSerialBaudrate(int baudrate)
{
Settings.baudrate = baudrate / 300;
if (Serial.baudRate() != baudrate) {
if (seriallog_level) {
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate);
}
delay(100);
Serial.flush();
Serial.begin(baudrate, serial_config);
delay(10);
Serial.println();
}
}
void ClaimSerial(void)
{
serial_local = true;
AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
SetSeriallog(LOG_LEVEL_NONE);
baudrate = Serial.baudRate();
Settings.baudrate = baudrate / 300;
}
void SerialSendRaw(char *codes)
{
char *p;
char stemp[3];
uint8_t code;
int size = strlen(codes);
while (size > 1) {
strlcpy(stemp, codes, sizeof(stemp));
code = strtol(stemp, &p, 16);
Serial.write(code);
size -= 2;
codes += 2;
}
}
uint32_t GetHash(const char *buffer, size_t size)
{
uint32_t hash = 0;
for (uint32_t i = 0; i <= size; i++) {
hash += (uint8_t)*buffer++ * (i +1);
}
return hash;
}
void ShowSource(uint32_t source)
{
if ((source > 0) && (source < SRC_MAX)) {
char stemp1[20];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource));
}
}
void WebHexCode(uint32_t i, const char* code)
{
char scolor[10];
strlcpy(scolor, code, sizeof(scolor));
char* p = scolor;
if ('#' == p[0]) { p++; } // Skip
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
p[6] = p[3]; // \0
p[5] = p[2]; // 3
p[4] = p[2]; // 3
p[3] = p[1]; // 2
p[2] = p[1]; // 2
p[1] = p[0]; // 1
}
uint32_t color = strtol(p, nullptr, 16);
/*
if (3 == strlen(p)) { // Convert 3 character to 6 character color code
uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203
color = w | (w << 4); // 00112233
}
*/
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
if (i < j) {
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
} else {
Settings.web_color2[i-j][0] = (color >> 16) & 0xFF; // Red
Settings.web_color2[i-j][1] = (color >> 8) & 0xFF; // Green
Settings.web_color2[i-j][2] = color & 0xFF; // Blue
}
*/
if (i >= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red
Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green
Settings.web_color[i][2] = color & 0xFF; // Blue
}
uint32_t WebColor(uint32_t i)
{
uint32_t j = sizeof(Settings.web_color) / 3; // First area contains j = 18 colors
/*
uint32_t tcolor = (i= j) {
// Calculate i to index in Settings.web_color2 - Dirty(!) but saves 128 bytes code
i += ((((uint8_t*)&Settings.web_color2 - (uint8_t*)&Settings.web_color) / 3) - j);
}
uint32_t tcolor = (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2];
return tcolor;
}
/*********************************************************************************************\
* Response data handling
\*********************************************************************************************/
const uint16_t TIMESZ = 100; // Max number of characters in time string
char* ResponseGetTime(uint32_t format, char* time_str)
{
switch (format) {
case 1:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\",\"Epoch\":%u"), GetDateAndTime(DT_LOCAL).c_str(), UtcTime());
break;
case 2:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":%u"), UtcTime());
break;
default:
snprintf_P(time_str, TIMESZ, PSTR("{\"" D_JSON_TIME "\":\"%s\""), GetDateAndTime(DT_LOCAL).c_str());
}
return time_str;
}
int Response_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
int len = vsnprintf_P(mqtt_data, sizeof(mqtt_data), format, args);
va_end(args);
return len;
}
int ResponseTime_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
ResponseGetTime(Settings.flag2.time_format, mqtt_data);
int mlen = strlen(mqtt_data);
int len = vsnprintf_P(mqtt_data + mlen, sizeof(mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data
{
// This uses char strings. Be aware of sending %% if % is needed
va_list args;
va_start(args, format);
int mlen = strlen(mqtt_data);
int len = vsnprintf_P(mqtt_data + mlen, sizeof(mqtt_data) - mlen, format, args);
va_end(args);
return len + mlen;
}
int ResponseAppendTimeFormat(uint32_t format)
{
char time_str[TIMESZ];
return ResponseAppend_P(ResponseGetTime(format, time_str));
}
int ResponseAppendTime(void)
{
return ResponseAppendTimeFormat(Settings.flag2.time_format);
}
int ResponseJsonEnd(void)
{
return ResponseAppend_P(PSTR("}"));
}
int ResponseJsonEndEnd(void)
{
return ResponseAppend_P(PSTR("}}"));
}
/*********************************************************************************************\
* GPIO Module and Template management
\*********************************************************************************************/
uint8_t ModuleNr()
{
// 0 = User module (255)
// 1 up = Template module 0 up
return (USER_MODULE == Settings.module) ? 0 : Settings.module +1;
}
bool ValidTemplateModule(uint32_t index)
{
for (uint32_t i = 0; i < sizeof(kModuleNiceList); i++) {
if (index == pgm_read_byte(kModuleNiceList + i)) {
return true;
}
}
return false;
}
bool ValidModule(uint32_t index)
{
if (index == USER_MODULE) { return true; }
return ValidTemplateModule(index);
}
String AnyModuleName(uint32_t index)
{
if (USER_MODULE == index) {
return String(Settings.user_template.name);
} else {
return FPSTR(kModules[index].name);
}
}
String ModuleName()
{
return AnyModuleName(Settings.module);
}
void ModuleGpios(myio *gp)
{
uint8_t *dest = (uint8_t *)gp;
memset(dest, GPIO_NONE, sizeof(myio));
uint8_t src[sizeof(mycfgio)];
if (USER_MODULE == Settings.module) {
memcpy(&src, &Settings.user_template.gp, sizeof(mycfgio));
} else {
memcpy_P(&src, &kModules[Settings.module].gp, sizeof(mycfgio));
}
// 11 85 00 85 85 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio));
uint32_t j = 0;
for (uint32_t i = 0; i < sizeof(mycfgio); i++) {
if (6 == i) { j = 9; }
if (8 == i) { j = 12; }
dest[j] = src[i];
j++;
}
// 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81
// AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio));
}
gpio_flag ModuleFlag()
{
gpio_flag flag;
if (USER_MODULE == Settings.module) {
flag = Settings.user_template.flag;
} else {
memcpy_P(&flag, &kModules[Settings.module].flag, sizeof(gpio_flag));
}
return flag;
}
void ModuleDefault(uint32_t module)
{
if (USER_MODULE == module) { module = WEMOS; } // Generic
Settings.user_template_base = module;
memcpy_P(&Settings.user_template, &kModules[module], sizeof(mytmplt));
}
void SetModuleType()
{
my_module_type = (USER_MODULE == Settings.module) ? Settings.user_template_base : Settings.module;
}
bool FlashPin(uint32_t pin)
{
return (((pin > 5) && (pin < 9)) || (11 == pin));
}
uint8_t ValidPin(uint32_t pin, uint32_t gpio)
{
uint8_t result = gpio;
if (FlashPin(pin)) {
result = GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11
}
if ((WEMOS == Settings.module) && (!Settings.flag3.user_esp8285_enable)) { // SetOption51 - Enable ESP8285 user GPIO's
if ((pin == 9) || (pin == 10)) { result = GPIO_NONE; } // Disable possible flash GPIO9 and GPIO10
}
return result;
}
bool ValidGPIO(uint32_t pin, uint32_t gpio)
{
return (GPIO_USER == ValidPin(pin, gpio)); // Only allow GPIO_USER pins
}
bool ValidAdc()
{
gpio_flag flag = ModuleFlag();
uint32_t template_adc0 = flag.data &15;
return (ADC0_USER == template_adc0);
}
bool GetUsedInModule(uint32_t val, uint8_t *arr)
{
int offset = 0;
if (!val) { return false; } // None
if ((val >= GPIO_KEY1) && (val < GPIO_KEY1 + MAX_KEYS)) {
offset = (GPIO_KEY1_NP - GPIO_KEY1);
}
if ((val >= GPIO_KEY1_NP) && (val < GPIO_KEY1_NP + MAX_KEYS)) {
offset = -(GPIO_KEY1_NP - GPIO_KEY1);
}
if ((val >= GPIO_KEY1_INV) && (val < GPIO_KEY1_INV + MAX_KEYS)) {
offset = -(GPIO_KEY1_INV - GPIO_KEY1);
}
if ((val >= GPIO_KEY1_INV_NP) && (val < GPIO_KEY1_INV_NP + MAX_KEYS)) {
offset = -(GPIO_KEY1_INV_NP - GPIO_KEY1);
}
if ((val >= GPIO_SWT1) && (val < GPIO_SWT1 + MAX_SWITCHES)) {
offset = (GPIO_SWT1_NP - GPIO_SWT1);
}
if ((val >= GPIO_SWT1_NP) && (val < GPIO_SWT1_NP + MAX_SWITCHES)) {
offset = -(GPIO_SWT1_NP - GPIO_SWT1);
}
if ((val >= GPIO_REL1) && (val < GPIO_REL1 + MAX_RELAYS)) {
offset = (GPIO_REL1_INV - GPIO_REL1);
}
if ((val >= GPIO_REL1_INV) && (val < GPIO_REL1_INV + MAX_RELAYS)) {
offset = -(GPIO_REL1_INV - GPIO_REL1);
}
if ((val >= GPIO_LED1) && (val < GPIO_LED1 + MAX_LEDS)) {
offset = (GPIO_LED1_INV - GPIO_LED1);
}
if ((val >= GPIO_LED1_INV) && (val < GPIO_LED1_INV + MAX_LEDS)) {
offset = -(GPIO_LED1_INV - GPIO_LED1);
}
if ((val >= GPIO_PWM1) && (val < GPIO_PWM1 + MAX_PWMS)) {
offset = (GPIO_PWM1_INV - GPIO_PWM1);
}
if ((val >= GPIO_PWM1_INV) && (val < GPIO_PWM1_INV + MAX_PWMS)) {
offset = -(GPIO_PWM1_INV - GPIO_PWM1);
}
if ((val >= GPIO_CNTR1) && (val < GPIO_CNTR1 + MAX_COUNTERS)) {
offset = (GPIO_CNTR1_NP - GPIO_CNTR1);
}
if ((val >= GPIO_CNTR1_NP) && (val < GPIO_CNTR1_NP + MAX_COUNTERS)) {
offset = -(GPIO_CNTR1_NP - GPIO_CNTR1);
}
for (uint32_t i = 0; i < MAX_GPIO_PIN; i++) {
if (arr[i] == val) { return true; }
if (arr[i] == val + offset) { return true; }
}
return false;
}
bool JsonTemplate(const char* dataBuf)
{
// {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255}
if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks
StaticJsonBuffer<350> jb; // 331 from https://arduinojson.org/v5/assistant/
JsonObject& obj = jb.parseObject(dataBuf);
if (!obj.success()) { return false; }
// All parameters are optional allowing for partial changes
const char* name = obj[D_JSON_NAME];
if (name != nullptr) {
strlcpy(Settings.user_template.name, name, sizeof(Settings.user_template.name));
}
if (obj[D_JSON_GPIO].success()) {
for (uint32_t i = 0; i < sizeof(mycfgio); i++) {
Settings.user_template.gp.io[i] = obj[D_JSON_GPIO][i] | 0;
}
}
if (obj[D_JSON_FLAG].success()) {
uint8_t flag = obj[D_JSON_FLAG] | 0;
memcpy(&Settings.user_template.flag, &flag, sizeof(gpio_flag));
}
if (obj[D_JSON_BASE].success()) {
uint8_t base = obj[D_JSON_BASE];
if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; }
Settings.user_template_base = base -1; // Default WEMOS
}
return true;
}
void TemplateJson()
{
Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), Settings.user_template.name);
for (uint32_t i = 0; i < sizeof(Settings.user_template.gp); i++) {
ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", Settings.user_template.gp.io[i]);
}
ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1);
}
/*********************************************************************************************\
* Sleep aware time scheduler functions borrowed from ESPEasy
\*********************************************************************************************/
long TimeDifference(unsigned long prev, unsigned long next)
{
// Return the time difference as a signed value, taking into account the timers may overflow.
// Returned timediff is between -24.9 days and +24.9 days.
// Returned value is positive when "next" is after "prev"
long signed_diff = 0;
// To cast a value to a signed long, the difference may not exceed half 0xffffffffUL (= 4294967294)
const unsigned long half_max_unsigned_long = 2147483647u; // = 2^31 -1
if (next >= prev) {
const unsigned long diff = next - prev;
if (diff <= half_max_unsigned_long) { // Normal situation, just return the difference.
signed_diff = static_cast(diff); // Difference is a positive value.
} else {
// prev has overflow, return a negative difference value
signed_diff = static_cast((0xffffffffUL - next) + prev + 1u);
signed_diff = -1 * signed_diff;
}
} else {
// next < prev
const unsigned long diff = prev - next;
if (diff <= half_max_unsigned_long) { // Normal situation, return a negative difference value
signed_diff = static_cast(diff);
signed_diff = -1 * signed_diff;
} else {
// next has overflow, return a positive difference value
signed_diff = static_cast((0xffffffffUL - prev) + next + 1u);
}
}
return signed_diff;
}
long TimePassedSince(unsigned long timestamp)
{
// Compute the number of milliSeconds passed since timestamp given.
// Note: value can be negative if the timestamp has not yet been reached.
return TimeDifference(timestamp, millis());
}
bool TimeReached(unsigned long timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSince(timer);
return (passed >= 0);
}
void SetNextTimeInterval(unsigned long& timer, const unsigned long step)
{
timer += step;
const long passed = TimePassedSince(timer);
if (passed < 0) { return; } // Event has not yet happened, which is fine.
if (static_cast(passed) > step) {
// No need to keep running behind, start again.
timer = millis() + step;
return;
}
// Try to get in sync again.
timer = millis() + (step - passed);
}
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
const uint8_t I2C_RETRY_COUNTER = 3;
uint32_t i2c_active[4] = { 0 };
uint32_t i2c_buffer = 0;
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
{
uint8_t retry = I2C_RETRY_COUNTER;
bool status = false;
i2c_buffer = 0;
while (!status && retry) {
Wire.beginTransmission(addr); // start transmission to device
Wire.write(reg); // sends register address to read from
if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
Wire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (Wire.available() == size) {
for (uint32_t i = 0; i < size; i++) {
i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA
}
status = true;
}
}
retry--;
}
return status;
}
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 1);
*data = (uint8_t)i2c_buffer;
return status;
}
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (uint16_t)i2c_buffer;
return status;
}
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (int16_t)i2c_buffer;
return status;
}
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16(&ldata, addr, reg);
*data = (ldata >> 8) | (ldata << 8);
return status;
}
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16LE(&ldata, addr, reg);
*data = (int16_t)ldata;
return status;
}
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 3);
*data = i2c_buffer;
return status;
}
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 1);
return (uint8_t)i2c_buffer;
}
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (uint16_t)i2c_buffer;
}
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (int16_t)i2c_buffer;
}
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
uint16_t temp = (uint16_t)i2c_buffer;
return (temp >> 8) | (temp << 8);
}
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
{
return (int16_t)I2cRead16LE(addr, reg);
}
int32_t I2cRead24(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 3);
return i2c_buffer;
}
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
{
uint8_t x = I2C_RETRY_COUNTER;
do {
Wire.beginTransmission((uint8_t)addr); // start transmission to device
Wire.write(reg); // sends register address to write to
uint8_t bytes = size;
while (bytes--) {
Wire.write((val >> (8 * bytes)) & 0xFF); // write data
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 1);
}
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 2);
}
int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
Wire.endTransmission();
if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) {
return 1;
}
while (len--) {
*reg_data = (uint8_t)Wire.read();
reg_data++;
}
return 0;
}
int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
while (len--) {
Wire.write(*reg_data);
reg_data++;
}
Wire.endTransmission();
return 0;
}
void I2cScan(char *devs, unsigned int devs_len)
{
// Return error codes defined in twi.h and core_esp8266_si2c.c
// I2C_OK 0
// I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover
// I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond slave clock stretch time
// I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by slave/another_master after n bits
// I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master?
uint8_t error = 0;
uint8_t address = 0;
uint8_t any = 0;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
for (address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (0 == error) {
any = 1;
snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address);
}
else if (error != 2) { // Seems to happen anyway using this scan
any = 2;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address);
break;
}
}
if (any) {
strncat(devs, "\"}", devs_len - strlen(devs) -1);
}
else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
}
}
void I2cSetActive(uint32_t addr, uint32_t count = 1)
{
addr &= 0x7F; // Max I2C address is 127
count &= 0x7F; // Max 4 x 32 bits available
while (count-- && (addr < 128)) {
i2c_active[addr / 32] |= (1 << (addr % 32));
addr++;
}
// AddLog_P2(LOG_LEVEL_DEBUG, PSTR("I2C: Active %08X,%08X,%08X,%08X"), i2c_active[0], i2c_active[1], i2c_active[2], i2c_active[3]);
}
bool I2cActive(uint32_t addr)
{
addr &= 0x7F; // Max I2C address is 127
if (i2c_active[addr / 32] & (1 << (addr % 32))) {
return true;
}
return false;
}
bool I2cDevice(uint8_t addr)
{
addr &= 0x7F; // Max I2C address is 127
if (I2cActive(addr)) {
return false; // If already active report as not present;
}
Wire.beginTransmission(addr);
return (0 == Wire.endTransmission());
}
#endif // USE_I2C
/*********************************************************************************************\
* Syslog
*
* Example:
* AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value);
*
\*********************************************************************************************/
void SetSeriallog(uint32_t loglevel)
{
Settings.seriallog_level = loglevel;
seriallog_level = loglevel;
seriallog_timer = 0;
}
void SetSyslog(uint32_t loglevel)
{
Settings.syslog_level = loglevel;
syslog_level = loglevel;
syslog_timer = 0;
}
#ifdef USE_WEBSERVER
void GetLog(uint32_t idx, char** entry_pp, size_t* len_p)
{
char* entry_p = nullptr;
size_t len = 0;
if (idx) {
char* it = web_log;
do {
uint32_t cur_idx = *it;
it++;
size_t tmp = strchrspn(it, '\1');
tmp++; // Skip terminating '\1'
if (cur_idx == idx) { // Found the requested entry
len = tmp;
entry_p = it;
break;
}
it += tmp;
} while (it < web_log + WEB_LOG_SIZE && *it != '\0');
}
*entry_pp = entry_p;
*len_p = len;
}
#endif // USE_WEBSERVER
void Syslog(void)
{
// Destroys log_data
uint32_t current_hash = GetHash(Settings.syslog_host, strlen(Settings.syslog_host));
if (syslog_host_hash != current_hash) {
syslog_host_hash = current_hash;
WiFi.hostByName(Settings.syslog_host, syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash
}
if (PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) {
char syslog_preamble[64]; // Hostname + Id
snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), my_hostname);
memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble));
log_data[sizeof(log_data) -1] = '\0';
memcpy(log_data, syslog_preamble, strlen(syslog_preamble));
PortUdp.write(log_data, strlen(log_data));
PortUdp.endPacket();
delay(1); // Add time for UDP handling (#5512)
} else {
syslog_level = 0;
syslog_timer = SYSLOG_TIMER;
AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
}
}
void AddLog(uint32_t loglevel)
{
char mxtime[10]; // "13:45:21 "
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d "), RtcTime.hour, RtcTime.minute, RtcTime.second);
if (loglevel <= seriallog_level) {
Serial.printf("%s%s\r\n", mxtime, log_data);
}
#ifdef USE_WEBSERVER
if (Settings.webserver && (loglevel <= Settings.weblog_level)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][log data]['\1']
web_log_index &= 0xFF;
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
while (web_log_index == web_log[0] || // If log already holds the next index, remove it
strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0'
{
char* it = web_log;
it++; // Skip web_log_index
it += strchrspn(it, '\1'); // Skip log line
it++; // Skip delimiting "\1"
memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line
}
snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data);
web_log_index &= 0xFF;
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
}
#endif // USE_WEBSERVER
if (!global_state.mqtt_down && (loglevel <= Settings.mqttlog_level)) { MqttPublishLogging(mxtime); }
if (!global_state.wifi_down && (loglevel <= syslog_level)) { Syslog(); }
}
void AddLog_P(uint32_t loglevel, const char *formatP)
{
snprintf_P(log_data, sizeof(log_data), formatP);
AddLog(loglevel);
}
void AddLog_P(uint32_t loglevel, const char *formatP, const char *formatP2)
{
char message[sizeof(log_data)];
snprintf_P(log_data, sizeof(log_data), formatP);
snprintf_P(message, sizeof(message), formatP2);
strncat(log_data, message, sizeof(log_data) - strlen(log_data) -1);
AddLog(loglevel);
}
void AddLog_P2(uint32_t loglevel, PGM_P formatP, ...)
{
va_list arg;
va_start(arg, formatP);
vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLog(loglevel);
}
void AddLog_Debug(PGM_P formatP, ...)
{
va_list arg;
va_start(arg, formatP);
vsnprintf_P(log_data, sizeof(log_data), formatP, arg);
va_end(arg);
AddLog(LOG_LEVEL_DEBUG);
}
void AddLogBuffer(uint32_t loglevel, uint8_t *buffer, uint32_t count)
{
/*
snprintf_P(log_data, sizeof(log_data), PSTR("DMP:"));
for (uint32_t i = 0; i < count; i++) {
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer++));
}
AddLog(loglevel);
*/
/*
strcpy_P(log_data, PSTR("DMP: "));
ToHex_P(buffer, count, log_data + strlen(log_data), sizeof(log_data) - strlen(log_data), ' ');
AddLog(loglevel);
*/
char hex_char[(count * 3) + 2];
AddLog_P2(loglevel, PSTR("DMP: %s"), ToHex_P(buffer, count, hex_char, sizeof(hex_char), ' '));
}
void AddLogSerial(uint32_t loglevel)
{
AddLogBuffer(loglevel, (uint8_t*)serial_in_buffer, serial_in_byte_counter);
}
void AddLogMissed(char *sensor, uint32_t misses)
{
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses);
}