/* support_rotary.ino - rotary switch support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef ROTARY_V1 /*********************************************************************************************\ * Rotary support * * Supports full range in 10 steps of the Rotary Encoder: * - Light Dimmer * - Light Color for RGB lights when Button1 pressed * - Light Color Temperature for CW lights when Button1 pressed * * _______ _______ * GPIO_ROT1A ______| |_______| |______ GPIO_ROT1A * negative <-- _______ _______ __ --> positive * GPIO_ROT1B __| |_______| |_______| GPIO_ROT1B * \*********************************************************************************************/ #ifndef ROTARY_MAX_STEPS #define ROTARY_MAX_STEPS 10 // Rotary step boundary #endif // 1 pulse per step const uint8_t rotary_dimmer_increment = 100 / ROTARY_MAX_STEPS; // Dimmer 1..100 = 100 const uint8_t rotary_ct_increment = 350 / ROTARY_MAX_STEPS; // Ct 153..500 = 347 const uint8_t rotary_color_increment = 360 / ROTARY_MAX_STEPS; // Hue 0..359 = 360 const uint8_t ROTARY_TIMEOUT = 10; // 10 * RotaryHandler() call which is usually 10 * 0.05 seconds const uint8_t ROTARY_DEBOUNCE = 10; // Debounce time in milliseconds struct ROTARY { bool present = false; } Rotary; struct tEncoder { uint32_t debounce = 0; int8_t abs_position[2] = { 0 }; int8_t direction = 0; // Control consistent direction int8_t pin = -1; uint8_t position = 128; uint8_t last_position = 128; uint8_t timeout = 0; // Disallow direction change within 0.5 second bool changed = false; bool busy = false; }; tEncoder Encoder[MAX_ROTARIES]; /********************************************************************************************/ bool RotaryButtonPressed(uint32_t button_index) { if (!Rotary.present) { return false; } for (uint32_t index = 0; index < MAX_ROTARIES; index++) { if (-1 == Encoder[index].pin) { continue; } if (index != button_index) { continue; } bool powered_on = (power); #ifdef USE_LIGHT if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control powered_on = LightPower(); } #endif // USE_LIGHT if (Encoder[index].changed && powered_on) { Encoder[index].changed = false; // Color (temp) changed, no need to turn of the light return true; } return false; } return false; } void ICACHE_RAM_ATTR RotaryIsrArg(void *arg) { tEncoder* encoder = static_cast(arg); if (encoder->busy) { return; } uint32_t time = millis(); if ((encoder->debounce < time) || (encoder->debounce > time + ROTARY_DEBOUNCE)) { int direction = (digitalRead(encoder->pin)) ? -1 : 1; if ((0 == encoder->direction) || (direction == encoder->direction)) { encoder->position += direction; encoder->direction = direction; } encoder->debounce = time + ROTARY_DEBOUNCE; // Experimental debounce } } void RotaryInit(void) { Rotary.present = false; for (uint32_t index = 0; index < MAX_ROTARIES; index++) { #ifdef ESP8266 uint32_t idx = index *2; #else // ESP32 uint32_t idx = index; #endif // ESP8266 or ESP32 if (PinUsed(GPIO_ROT1A, idx) && PinUsed(GPIO_ROT1B, idx)) { Encoder[index].pin = Pin(GPIO_ROT1B, idx); pinMode(Encoder[index].pin, INPUT_PULLUP); pinMode(Pin(GPIO_ROT1A, idx), INPUT_PULLUP); attachInterruptArg(Pin(GPIO_ROT1A, idx), RotaryIsrArg, &Encoder[index], FALLING); } Rotary.present |= (Encoder[index].pin > -1); } } /*********************************************************************************************\ * Rotary handler \*********************************************************************************************/ void RotaryHandler(void) { if (!Rotary.present) { return; } for (uint32_t index = 0; index < MAX_ROTARIES; index++) { if (-1 == Encoder[index].pin) { continue; } if (Encoder[index].timeout) { Encoder[index].timeout--; if (!Encoder[index].timeout) { #ifdef USE_LIGHT if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control ResponseLightState(0); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_STATE)); XdrvRulesProcess(); } #endif // USE_LIGHT Encoder[index].direction = 0; } } if (Encoder[index].last_position == Encoder[index].position) { continue; } Encoder[index].busy = true; Encoder[index].timeout = ROTARY_TIMEOUT; // Prevent fast direction changes within 0.5 second int rotary_position = Encoder[index].position - Encoder[index].last_position; if (Settings.save_data && (save_data_counter < 2)) { save_data_counter = 3; // Postpone flash writes while rotary is turned } bool button_pressed = (Button.hold_timer[index]); // Button is pressed: set color temperature if (button_pressed) { Encoder[index].changed = true; } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ROT: Button1 %d, Position %d"), button_pressed, rotary_position); #ifdef USE_LIGHT if (!Settings.flag4.rotary_uses_rules) { // SetOption98 - Use rules instead of light control bool second_rotary = (Encoder[1].pin > -1); if (0 == index) { // Rotary1 if (button_pressed) { if (second_rotary) { // Color RGB LightColorOffset(rotary_position * rotary_color_increment); } else { // Color Temperature or Color RGB if (!LightColorTempOffset(rotary_position * rotary_ct_increment)) { LightColorOffset(rotary_position * rotary_color_increment); } } } else { // Dimmer RGBCW or RGB only if second rotary LightDimmerOffset(second_rotary ? 1 : 0, rotary_position * rotary_dimmer_increment); } } else { // Rotary2 if (button_pressed) { // Color Temperature LightColorTempOffset(rotary_position * rotary_ct_increment); } else { // Dimmer CW LightDimmerOffset(2, rotary_position * rotary_dimmer_increment); } } } else { #endif // USE_LIGHT Encoder[index].abs_position[button_pressed] += rotary_position; if (Encoder[index].abs_position[button_pressed] < 0) { Encoder[index].abs_position[button_pressed] = 0; } if (Encoder[index].abs_position[button_pressed] > ROTARY_MAX_STEPS) { Encoder[index].abs_position[button_pressed] = ROTARY_MAX_STEPS; } Response_P(PSTR("{\"Rotary%d\":{\"Pos1\":%d,\"Pos2\":%d}}"), index +1, Encoder[index].abs_position[0], Encoder[index].abs_position[1]); XdrvRulesProcess(); #ifdef USE_LIGHT } #endif // USE_LIGHT Encoder[index].last_position = 128; Encoder[index].position = 128; Encoder[index].busy = false; } } #endif // ROTARY_V1