/*
xnrg_06_pzem2.ino - PZEM-003,017 and PZEM-014,016 Modbus energy sensor support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_PZEM2
/*********************************************************************************************\
* PZEM-003 - DC 300V 10A Energy
* PZEM-014 - AC 220V 10A Energy
* PZEM-016 - AC 220V 100A Energy
* PZEM-017 - DC 300V 50A - 300A Energy
*
* Based on:
* PZEM-003,017 docs Https://pan.baidu.com/s/1V9bDWj3RK2u6_fbBJ3GtqQ password rq37
* PZEM-014,016 docs https://pan.baidu.com/s/1B0MdMgURyjtO1oQa2lavKw password ytkv
*
* Hardware Serial will be selected if GPIO1 = [99 PZEM Rx] and GPIO3 = [98 PZEM Tx]
\*********************************************************************************************/
#define XNRG_05 5
#define PZEM2_TYPES_003_017 8 // Result 16 bit register count
#define PZEM2_TYPES_014_016 10 // Result 16 bit register count
#define PZEM2_READ_RESULT 0x04
#include
TasmotaSerial *Pzem2Serial;
uint8_t pzem2_type = PZEM2_TYPES_014_016;
/*********************************************************************************************/
uint16_t Pzem2ModbusCalculateCRC(uint8_t *frame, uint8_t num)
{
uint16_t crc = 0xFFFF;
uint16_t flag;
for (uint8_t i = 0; i < num; i++) {
crc ^= frame[i];
for (uint8_t j = 8; j; j--) {
if ((crc & 0x0001) != 0) { // If the LSB is set
crc >>= 1; // Shift right and XOR 0xA001
crc ^= 0xA001;
} else { // Else LSB is not set
crc >>= 1; // Just shift right
}
}
}
return crc;
}
void Pzem2ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count)
{
uint8_t frame[8];
frame[0] = 0xFE; // Any Address
frame[1] = function_code;
frame[2] = (uint8_t)(start_address >> 8);
frame[3] = (uint8_t)(start_address);
frame[4] = (uint8_t)(register_count >> 8);
frame[5] = (uint8_t)(register_count);
uint16_t crc = Pzem2ModbusCalculateCRC(frame, 6);
frame[6] = (uint8_t)((crc >> 8) & 0xFF);
frame[7] = (uint8_t)(crc & 0xFF);
Pzem2Serial->flush();
Pzem2Serial->write(frame, sizeof(frame));
}
bool Pzem2ModbusReceiveReady()
{
return (Pzem2Serial->available() >= 5); // 5 - Error frame, 21 or 25 - Ok frame
}
uint8_t Pzem2ModbusReceive(uint8_t *buffer, uint8_t register_count)
{
// 0 1 2 3 4 5 6
// FE 04 02 08 98 HH LL
// Id Cc Sz Regis Crc--
uint8_t len = 0;
while ((Pzem2Serial->available() > 0) && (len < (register_count *2) + 5)) {
buffer[len++] = (uint8_t)Pzem2Serial->read();
if (3 == len) {
if (buffer[1] & 0x80) { // fe 84 02 f2 f1
return buffer[2]; // 1 = Illegal Function, 2 = Illegal Address, 3 = Illegal Data, 4 = Slave Error
}
}
}
AddLogSerial(LOG_LEVEL_DEBUG_MORE, buffer, len);
if (len < 7) { return 7; } // 7 = Not enough data
if (len != buffer[2] + 5) { return 8; } // 8 = Unexpected result
uint16_t crc = (buffer[len -2] << 8) | buffer[len -1];
if (Pzem2ModbusCalculateCRC(buffer, len -3) != crc) { return 9; } // 9 = crc error
return 0; // 0 = No error
}
/*********************************************************************************************/
uint8_t pzem2_sendRetry = 0;
void Pzem2Every200ms()
{
bool data_ready = Pzem2ModbusReceiveReady();
if (data_ready) {
uint8_t buffer[26];
uint8_t error = Pzem2ModbusReceive(buffer, pzem2_type);
if (error) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "PZEM2 response error %d"), error);
AddLog(LOG_LEVEL_DEBUG);
// if (9 == error) {
if (PZEM2_TYPES_014_016 == pzem2_type) {
pzem2_type = PZEM2_TYPES_003_017;
} else {
pzem2_type = PZEM2_TYPES_014_016;
}
// }
} else {
float energy = 0;
if (PZEM2_TYPES_003_017 == pzem2_type) {
energy_type_dc = true;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// FE 04 10 27 10 00 64 03 E8 00 00 00 00 00 00 00 00 00 00 HH LL = PZEM-017
// Id Cc Sz Volt- Curre Power------ Energy----- HiAlm LoAlm Crc--
energy_voltage = (float)((buffer[3] << 8) + buffer[4]) / 100.0; // 655.00 V
energy_current = (float)((buffer[5] << 8) + buffer[6]) / 100.0; // 655.00 A
energy_active_power = (float)((uint32_t)buffer[9] << 24 + (uint32_t)buffer[10] << 16 + (uint32_t)buffer[7] << 8 + buffer[8]) / 10.0; // 429496729.0 W
energy = (float)((uint32_t)buffer[13] << 24 + (uint32_t)buffer[14] << 16 + (uint32_t)buffer[11] << 8 + buffer[12]); // 4294967295 Wh
if (!energy_start || (energy < energy_start)) { energy_start = energy; } // Init after restart and hanlde roll-over if any
energy_kWhtoday += (energy - energy_start) * 100;
energy_start = energy;
EnergyUpdateToday();
}
else if (PZEM2_TYPES_014_016 == pzem2_type) { // PZEM-014,016
energy_type_dc = false;
// 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
// FE 04 14 08 98 03 E8 00 00 08 98 00 00 00 00 00 00 01 F4 00 64 00 00 HH LL = PZEM-014
// Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc--
energy_voltage = (float)((buffer[3] << 8) + buffer[4]) / 10.0; // 6553.0 V
energy_current = (float)((uint32_t)buffer[7] << 24 + (uint32_t)buffer[8] << 16 + (uint32_t)buffer[5] << 8 + buffer[6]) / 1000.0; // 4294967.000 A
energy_active_power = (float)((uint32_t)buffer[11] << 24 + (uint32_t)buffer[12] << 16 + (uint32_t)buffer[9] << 8 + buffer[10]) / 10.0; // 429496729.0 W
energy_frequency = (float)((buffer[17] << 8) + buffer[18]) / 10.0; // 50.0 Hz
energy_power_factor = (float)((buffer[19] << 8) + buffer[20]) / 100.0; // 1.00
energy = (float)((uint32_t)buffer[15] << 24 + (uint32_t)buffer[16] << 16 + (uint32_t)buffer[13] << 8 + buffer[14]); // 4294967295 Wh
if (!energy_start || (energy < energy_start)) { energy_start = energy; } // Init after restart and hanlde roll-over if any
energy_kWhtoday += (energy - energy_start) * 100;
energy_start = energy;
EnergyUpdateToday();
}
}
}
if (0 == pzem2_sendRetry || data_ready) {
pzem2_sendRetry = 5;
Pzem2ModbusSend(PZEM2_READ_RESULT, 0, pzem2_type);
}
else {
pzem2_sendRetry--;
}
}
void Pzem2SnsInit()
{
// Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions
Pzem2Serial = new TasmotaSerial(pin[GPIO_PZEM2_RX], pin[GPIO_PZEM2_TX], 1);
if (Pzem2Serial->begin(9600)) {
if (Pzem2Serial->hardwareSerial()) { ClaimSerial(); }
} else {
energy_flg = ENERGY_NONE;
}
}
void Pzem2DrvInit()
{
if (!energy_flg) {
if ((pin[GPIO_PZEM2_RX] < 99) && (pin[GPIO_PZEM2_TX] < 99)) { // Any device with a Pzem-003,014,016,017
energy_flg = XNRG_05;
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
int Xnrg05(byte function)
{
int result = 0;
if (FUNC_PRE_INIT == function) {
Pzem2DrvInit();
}
else if (XNRG_05 == energy_flg) {
switch (function) {
case FUNC_INIT:
Pzem2SnsInit();
break;
case FUNC_EVERY_200_MSECOND:
Pzem2Every200ms();
break;
}
}
return result;
}
#endif // USE_PZEM2
#endif // USE_ENERGY_SENSOR