/* xnrg_06_pzem2.ino - PZEM-003,017 and PZEM-014,016 Modbus energy sensor support for Sonoff-Tasmota Copyright (C) 2018 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_PZEM2 /*********************************************************************************************\ * PZEM-003 - DC 300V 10A Energy * PZEM-014 - AC 220V 10A Energy * PZEM-016 - AC 220V 100A Energy * PZEM-017 - DC 300V 50A - 300A Energy * * Based on: * PZEM-003,017 docs Https://pan.baidu.com/s/1V9bDWj3RK2u6_fbBJ3GtqQ password rq37 * PZEM-014,016 docs https://pan.baidu.com/s/1B0MdMgURyjtO1oQa2lavKw password ytkv * * Hardware Serial will be selected if GPIO1 = [99 PZEM Rx] and GPIO3 = [98 PZEM Tx] \*********************************************************************************************/ #define XNRG_05 5 #define PZEM2_TYPES_003_017 8 // Result 16 bit register count #define PZEM2_TYPES_014_016 10 // Result 16 bit register count #define PZEM2_READ_RESULT 0x04 #include TasmotaSerial *Pzem2Serial; uint8_t pzem2_type = PZEM2_TYPES_014_016; /*********************************************************************************************/ uint16_t Pzem2ModbusCalculateCRC(uint8_t *frame, uint8_t num) { uint16_t crc = 0xFFFF; uint16_t flag; for (uint8_t i = 0; i < num; i++) { crc ^= frame[i]; for (uint8_t j = 8; j; j--) { if ((crc & 0x0001) != 0) { // If the LSB is set crc >>= 1; // Shift right and XOR 0xA001 crc ^= 0xA001; } else { // Else LSB is not set crc >>= 1; // Just shift right } } } return crc; } void Pzem2ModbusSend(uint8_t function_code, uint16_t start_address, uint16_t register_count) { uint8_t frame[8]; frame[0] = 0xFE; // Any Address frame[1] = function_code; frame[2] = (uint8_t)(start_address >> 8); frame[3] = (uint8_t)(start_address); frame[4] = (uint8_t)(register_count >> 8); frame[5] = (uint8_t)(register_count); uint16_t crc = Pzem2ModbusCalculateCRC(frame, 6); frame[6] = (uint8_t)((crc >> 8) & 0xFF); frame[7] = (uint8_t)(crc & 0xFF); Pzem2Serial->flush(); Pzem2Serial->write(frame, sizeof(frame)); } bool Pzem2ModbusReceiveReady() { return (Pzem2Serial->available() >= 5); // 5 - Error frame, 21 or 25 - Ok frame } uint8_t Pzem2ModbusReceive(uint8_t *buffer, uint8_t register_count) { // 0 1 2 3 4 5 6 // FE 04 02 08 98 HH LL // Id Cc Sz Regis Crc-- uint8_t len = 0; while ((Pzem2Serial->available() > 0) && (len < (register_count *2) + 5)) { buffer[len++] = (uint8_t)Pzem2Serial->read(); if (3 == len) { if (buffer[1] & 0x80) { // fe 84 02 f2 f1 return buffer[2]; // 1 = Illegal Function, 2 = Illegal Address, 3 = Illegal Data, 4 = Slave Error } } } AddLogSerial(LOG_LEVEL_DEBUG_MORE, buffer, len); if (len < 7) { return 7; } // 7 = Not enough data if (len != buffer[2] + 5) { return 8; } // 8 = Unexpected result uint16_t crc = (buffer[len -2] << 8) | buffer[len -1]; if (Pzem2ModbusCalculateCRC(buffer, len -3) != crc) { return 9; } // 9 = crc error return 0; // 0 = No error } /*********************************************************************************************/ uint8_t pzem2_sendRetry = 0; void Pzem2Every200ms() { bool data_ready = Pzem2ModbusReceiveReady(); if (data_ready) { uint8_t buffer[26]; uint8_t error = Pzem2ModbusReceive(buffer, pzem2_type); if (error) { snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_DEBUG "PZEM2 response error %d"), error); AddLog(LOG_LEVEL_DEBUG); // if (9 == error) { if (PZEM2_TYPES_014_016 == pzem2_type) { pzem2_type = PZEM2_TYPES_003_017; } else { pzem2_type = PZEM2_TYPES_014_016; } // } } else { float energy = 0; if (PZEM2_TYPES_003_017 == pzem2_type) { energy_type_dc = true; // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 // FE 04 10 27 10 00 64 03 E8 00 00 00 00 00 00 00 00 00 00 HH LL = PZEM-017 // Id Cc Sz Volt- Curre Power------ Energy----- HiAlm LoAlm Crc-- energy_voltage = (float)((buffer[3] << 8) + buffer[4]) / 100.0; // 655.00 V energy_current = (float)((buffer[5] << 8) + buffer[6]) / 100.0; // 655.00 A energy_active_power = (float)((uint32_t)buffer[9] << 24 + (uint32_t)buffer[10] << 16 + (uint32_t)buffer[7] << 8 + buffer[8]) / 10.0; // 429496729.0 W energy = (float)((uint32_t)buffer[13] << 24 + (uint32_t)buffer[14] << 16 + (uint32_t)buffer[11] << 8 + buffer[12]); // 4294967295 Wh if (!energy_start || (energy < energy_start)) { energy_start = energy; } // Init after restart and hanlde roll-over if any energy_kWhtoday += (energy - energy_start) * 100; energy_start = energy; EnergyUpdateToday(); } else if (PZEM2_TYPES_014_016 == pzem2_type) { // PZEM-014,016 energy_type_dc = false; // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 // FE 04 14 08 98 03 E8 00 00 08 98 00 00 00 00 00 00 01 F4 00 64 00 00 HH LL = PZEM-014 // Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc-- energy_voltage = (float)((buffer[3] << 8) + buffer[4]) / 10.0; // 6553.0 V energy_current = (float)((uint32_t)buffer[7] << 24 + (uint32_t)buffer[8] << 16 + (uint32_t)buffer[5] << 8 + buffer[6]) / 1000.0; // 4294967.000 A energy_active_power = (float)((uint32_t)buffer[11] << 24 + (uint32_t)buffer[12] << 16 + (uint32_t)buffer[9] << 8 + buffer[10]) / 10.0; // 429496729.0 W energy_frequency = (float)((buffer[17] << 8) + buffer[18]) / 10.0; // 50.0 Hz energy_power_factor = (float)((buffer[19] << 8) + buffer[20]) / 100.0; // 1.00 energy = (float)((uint32_t)buffer[15] << 24 + (uint32_t)buffer[16] << 16 + (uint32_t)buffer[13] << 8 + buffer[14]); // 4294967295 Wh if (!energy_start || (energy < energy_start)) { energy_start = energy; } // Init after restart and hanlde roll-over if any energy_kWhtoday += (energy - energy_start) * 100; energy_start = energy; EnergyUpdateToday(); } } } if (0 == pzem2_sendRetry || data_ready) { pzem2_sendRetry = 5; Pzem2ModbusSend(PZEM2_READ_RESULT, 0, pzem2_type); } else { pzem2_sendRetry--; } } void Pzem2SnsInit() { // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions Pzem2Serial = new TasmotaSerial(pin[GPIO_PZEM2_RX], pin[GPIO_PZEM2_TX], 1); if (Pzem2Serial->begin(9600)) { if (Pzem2Serial->hardwareSerial()) { ClaimSerial(); } } else { energy_flg = ENERGY_NONE; } } void Pzem2DrvInit() { if (!energy_flg) { if ((pin[GPIO_PZEM2_RX] < 99) && (pin[GPIO_PZEM2_TX] < 99)) { // Any device with a Pzem-003,014,016,017 energy_flg = XNRG_05; } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ int Xnrg05(byte function) { int result = 0; if (FUNC_PRE_INIT == function) { Pzem2DrvInit(); } else if (XNRG_05 == energy_flg) { switch (function) { case FUNC_INIT: Pzem2SnsInit(); break; case FUNC_EVERY_200_MSECOND: Pzem2Every200ms(); break; } } return result; } #endif // USE_PZEM2 #endif // USE_ENERGY_SENSOR