/* xsns_15_mhz19.ino - MH-Z19(B) CO2 sensor support for Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_MHZ19 /*********************************************************************************************\ * MH-Z19 - CO2 sensor * * Adapted from EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru) * * Hardware Serial will be selected if GPIO1 = [MHZ Rx] and GPIO3 = [MHZ Tx] ********************************************************************************************** * Filter usage * * Select filter usage on low stability readings \*********************************************************************************************/ #define XSNS_15 15 enum MhzFilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW}; #define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST /*********************************************************************************************\ * Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf * * Automatic Baseline Correction (ABC logic function) is enabled by default but may be disabled with command * Sensor15 0 * and enabled again with command * Sensor15 1 * * ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure * intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on. * * The zero point of automatic calibration is 400ppm. * * This function is usually suitable for indoor air quality monitor such as offices, schools and homes, * not suitable for greenhouse, farm and refrigeratory where this function should be off. * * Please do zero calibration timely, such as manual or commend calibration. \*********************************************************************************************/ #include #ifndef CO2_LOW #define CO2_LOW 800 // Below this CO2 value show green light #endif #ifndef CO2_HIGH #define CO2_HIGH 1200 // Above this CO2 value show red light #endif #define MHZ19_READ_TIMEOUT 400 // Must be way less than 1000 but enough to read 9 bytes at 9600 bps #define MHZ19_RETRY_COUNT 8 TasmotaSerial *MhzSerial; const char kMhzModels[] PROGMEM = "|B"; const char ABC_ENABLED[] = "ABC is Enabled"; const char ABC_DISABLED[] = "ABC is Disabled"; enum MhzCommands { MHZ_CMND_READPPM, MHZ_CMND_ABCENABLE, MHZ_CMND_ABCDISABLE, MHZ_CMND_ZEROPOINT, MHZ_CMND_RESET, MHZ_CMND_RANGE_1000, MHZ_CMND_RANGE_2000, MHZ_CMND_RANGE_3000, MHZ_CMND_RANGE_5000 }; const uint8_t kMhzCommands[][4] PROGMEM = { // 2 3 6 7 {0x86,0x00,0x00,0x00}, // mhz_cmnd_read_ppm {0x79,0xA0,0x00,0x00}, // mhz_cmnd_abc_enable {0x79,0x00,0x00,0x00}, // mhz_cmnd_abc_disable {0x87,0x00,0x00,0x00}, // mhz_cmnd_zeropoint {0x8D,0x00,0x00,0x00}, // mhz_cmnd_reset {0x99,0x00,0x03,0xE8}, // mhz_cmnd_set_range_1000 {0x99,0x00,0x07,0xD0}, // mhz_cmnd_set_range_2000 {0x99,0x00,0x0B,0xB8}, // mhz_cmnd_set_range_3000 {0x99,0x00,0x13,0x88}}; // mhz_cmnd_set_range_5000 uint8_t mhz_type = 1; uint16_t mhz_last_ppm = 0; uint8_t mhz_filter = MHZ19_FILTER_OPTION; bool mhz_abc_must_apply = false; float mhz_temperature = 0; uint8_t mhz_retry = MHZ19_RETRY_COUNT; uint8_t mhz_received = 0; uint8_t mhz_state = 0; /*********************************************************************************************/ uint8_t MhzCalculateChecksum(uint8_t *array) { uint8_t checksum = 0; for (uint32_t i = 1; i < 8; i++) { checksum += array[i]; } checksum = 255 - checksum; return (checksum +1); } size_t MhzSendCmd(uint8_t command_id) { uint8_t mhz_send[9] = { 0 }; mhz_send[0] = 0xFF; // Start byte, fixed mhz_send[1] = 0x01; // Sensor number, 0x01 by default memcpy_P(&mhz_send[2], kMhzCommands[command_id], sizeof(uint16_t)); /* mhz_send[4] = 0x00; mhz_send[5] = 0x00; */ memcpy_P(&mhz_send[6], kMhzCommands[command_id] + sizeof(uint16_t), sizeof(uint16_t)); mhz_send[8] = MhzCalculateChecksum(mhz_send); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("Final MhzCommand: %x %x %x %x %x %x %x %x %x"),mhz_send[0],mhz_send[1],mhz_send[2],mhz_send[3],mhz_send[4],mhz_send[5],mhz_send[6],mhz_send[7],mhz_send[8]); return MhzSerial->write(mhz_send, sizeof(mhz_send)); } /*********************************************************************************************/ bool MhzCheckAndApplyFilter(uint16_t ppm, uint8_t s) { if (1 == s) { return false; // S==1 => "A" version sensor bootup, do not use values. } if (mhz_last_ppm < 400 || mhz_last_ppm > 5000) { // Prevent unrealistic values during start-up with filtering enabled. // Just assume the entered value is correct. mhz_last_ppm = ppm; return true; } int32_t difference = ppm - mhz_last_ppm; if (s > 0 && s < 64 && mhz_filter != MHZ19_FILTER_OFF) { // Not the "B" version of the sensor, S value is used. // S==0 => "B" version, else "A" version // The S value is an indication of the stability of the reading. // S == 64 represents a stable reading and any lower value indicates (unusual) fast change. // Now we increase the delay filter for low values of S and increase response time when the // value is more stable. // This will make the reading useful in more turbulent environments, // where the sensor would report more rapid change of measured values. difference *= s; difference /= 64; } if (MHZ19_FILTER_OFF == mhz_filter) { if (s != 0 && s != 64) { return false; } } else { difference >>= (mhz_filter -1); } mhz_last_ppm = static_cast(mhz_last_ppm + difference); return true; } void MhzEverySecond(void) { mhz_state++; if (8 == mhz_state) { // Every 8 sec start a MH-Z19 measuring cycle (which takes 1005 +5% ms) mhz_state = 0; if (mhz_retry) { mhz_retry--; if (!mhz_retry) { mhz_last_ppm = 0; mhz_temperature = 0; } } MhzSerial->flush(); // Sync reception MhzSendCmd(MHZ_CMND_READPPM); mhz_received = 0; } if ((mhz_state > 2) && !mhz_received) { // Start reading response after 3 seconds every second until received uint8_t mhz_response[9]; unsigned long start = millis(); uint8_t counter = 0; while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) { if (MhzSerial->available() > 0) { mhz_response[counter++] = MhzSerial->read(); } else { delay(5); } } AddLogBuffer(LOG_LEVEL_DEBUG_MORE, mhz_response, counter); if (counter < 9) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout")); return; } uint8_t crc = MhzCalculateChecksum(mhz_response); if (mhz_response[8] != crc) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error")); return; } if (0xFF != mhz_response[0] || 0x86 != mhz_response[1]) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response")); return; } mhz_received = 1; uint16_t u = (mhz_response[6] << 8) | mhz_response[7]; if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000 if (Settings.SensorBits1.mhz19b_abc_disable) { // After bootup of the sensor the ABC will be enabled. // Thus only actively disable after bootup. mhz_abc_must_apply = true; } } else { uint16_t ppm = (mhz_response[2] << 8) | mhz_response[3]; mhz_temperature = ConvertTemp((float)mhz_response[4] - 40); uint8_t s = mhz_response[5]; mhz_type = (s) ? 1 : 2; if (MhzCheckAndApplyFilter(ppm, s)) { mhz_retry = MHZ19_RETRY_COUNT; LightSetSignal(CO2_LOW, CO2_HIGH, mhz_last_ppm); if (0 == s || 64 == s) { // Reading is stable. if (mhz_abc_must_apply) { mhz_abc_must_apply = false; if (!Settings.SensorBits1.mhz19b_abc_disable) { MhzSendCmd(MHZ_CMND_ABCENABLE); } else { MhzSendCmd(MHZ_CMND_ABCDISABLE); } } } } } } } /*********************************************************************************************\ * Command Sensor15 * * 0 - ABC Off * 1 - ABC On (Default) * 2 - Manual start = ABC Off * 3 - (Not implemented) Optional filter settings * 9 - Reset * 1000 - Range * 2000 - Range * 3000 - Range * 5000 - Range \*********************************************************************************************/ #define D_JSON_RANGE_1000 "1000 ppm range" #define D_JSON_RANGE_2000 "2000 ppm range" #define D_JSON_RANGE_3000 "3000 ppm range" #define D_JSON_RANGE_5000 "5000 ppm range" bool MhzCommandSensor(void) { bool serviced = true; switch (XdrvMailbox.payload) { case 0: Settings.SensorBits1.mhz19b_abc_disable = true; MhzSendCmd(MHZ_CMND_ABCDISABLE); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, ABC_DISABLED); break; case 1: Settings.SensorBits1.mhz19b_abc_disable = false; MhzSendCmd(MHZ_CMND_ABCENABLE); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, ABC_ENABLED); break; case 2: MhzSendCmd(MHZ_CMND_ZEROPOINT); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_ZERO_POINT_CALIBRATION); break; case 9: MhzSendCmd(MHZ_CMND_RESET); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RESET); break; case 1000: MhzSendCmd(MHZ_CMND_RANGE_1000); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RANGE_1000); break; case 2000: MhzSendCmd(MHZ_CMND_RANGE_2000); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RANGE_2000); break; case 3000: MhzSendCmd(MHZ_CMND_RANGE_3000); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RANGE_3000); break; case 5000: MhzSendCmd(MHZ_CMND_RANGE_5000); Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RANGE_5000); break; default: if (!Settings.SensorBits1.mhz19b_abc_disable) { Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, ABC_ENABLED); } else { Response_P(S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, ABC_DISABLED); } } return serviced; } /*********************************************************************************************/ void MhzInit(void) { mhz_type = 0; if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) { MhzSerial = new TasmotaSerial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD], 1); if (MhzSerial->begin(9600)) { if (MhzSerial->hardwareSerial()) { ClaimSerial(); } mhz_type = 1; } } } void MhzShow(bool json) { char types[7] = "MHZ19B"; // MHZ19B for legacy reasons. Prefered is MHZ19 char temperature[33]; dtostrfd(mhz_temperature, Settings.flag2.temperature_resolution, temperature); char model[3]; GetTextIndexed(model, sizeof(model), mhz_type -1, kMhzModels); if (json) { ResponseAppend_P(PSTR(",\"%s\":{\"" D_JSON_MODEL "\":\"%s\",\"" D_JSON_CO2 "\":%d,\"" D_JSON_TEMPERATURE "\":%s}"), types, model, mhz_last_ppm, temperature); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_AIRQUALITY, mhz_last_ppm); DomoticzSensor(DZ_TEMP, temperature); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_CO2, types, mhz_last_ppm); WSContentSend_PD(HTTP_SNS_TEMP, types, temperature, TempUnit()); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns15(uint8_t function) { bool result = false; if (mhz_type) { switch (function) { case FUNC_INIT: MhzInit(); break; case FUNC_EVERY_SECOND: MhzEverySecond(); break; case FUNC_COMMAND_SENSOR: if (XSNS_15 == XdrvMailbox.index) { result = MhzCommandSensor(); } break; case FUNC_JSON_APPEND: MhzShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: MhzShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_MHZ19