/* xsns_13_ina219.ino - INA219 & ISL28022 Current Sensor support for Tasmota Copyright (C) 2021 Stefan Bode and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_INA219 /*********************************************************************************************\ * INA219 - Low voltage (max 32V!) Current sensor * Supports also ISL28022 * * Source: Adafruit Industries * * I2C Address: 0x40, 0x41 0x44 or 0x45 \*********************************************************************************************/ #define XSNS_13 13 #define XI2C_14 14 // See I2CDEVICES.md #ifndef INA219_MAX_COUNT #define INA219_MAX_COUNT 4 #endif #if (INA219_MAX_COUNT > 4) #error "**** INA219_MAX_COUNT can't be greater than 4 ****" #endif #ifndef INA219_FIRST_ADDRESS #define INA219_FIRST_ADDRESS (0) #endif #if ((INA219_FIRST_ADDRESS + INA219_MAX_COUNT) > 4) #error "**** INA219 bad combination for FIRST_ADDRESS and MAX_COUNT ****" #endif #ifndef INA219_SHUNT_RESISTOR #define INA219_SHUNT_RESISTOR (0.100) // 0.1 Ohm default on most INA219 modules #endif #define INA219_ADDRESS1 (0x40) // 1000000 (A0+A1=GND) #define INA219_ADDRESS2 (0x41) // 1000000 (A0=Vcc, A1=GND) #define INA219_ADDRESS3 (0x44) // 1000000 (A0=GND, A1=Vcc) #define INA219_ADDRESS4 (0x45) // 1000000 (A0+A1=Vcc) #define INA219_READ (0x01) #define INA219_REG_CONFIG (0x00) #define INA219_CONFIG_RESET (0x8000) // Reset Bit #define INA219_CONFIG_BVOLTAGERANGE_MASK (0x2000) // Bus Voltage Range Mask #define INA219_CONFIG_BVOLTAGERANGE_16V (0x0000) // 0-16V Range #define INA219_CONFIG_BVOLTAGERANGE_32V (0x2000) // 0-32V Range #define ISL28022_CONFIG_BVOLTAGERANGE_60V (0x6000) // 0-60V Range for ISL28022 #define INA219_CONFIG_GAIN_MASK (0x1800) // Gain Mask #define INA219_CONFIG_GAIN_1_40MV (0x0000) // Gain 1, 40mV Range #define INA219_CONFIG_GAIN_2_80MV (0x0800) // Gain 2, 80mV Range #define INA219_CONFIG_GAIN_4_160MV (0x1000) // Gain 4, 160mV Range #define INA219_CONFIG_GAIN_8_320MV (0x1800) // Gain 8, 320mV Range #define INA219_CONFIG_BADCRES_MASK (0x0780) // Bus ADC Resolution Mask #define INA219_CONFIG_BADCRES_9BIT_1S_84US (0x0<<7) // 9-bit bus res = 0..511 #define INA219_CONFIG_BADCRES_10BIT_1S_148US (0x1<<7) // 10-bit bus res = 0..1023 #define INA219_CONFIG_BADCRES_11BIT_1S_276US (0x2<<7) // 11-bit bus res = 0..2047 #define INA219_CONFIG_BADCRES_12BIT_1S_532US (0x3<<7) // 12-bit bus res = 0..4097 #define INA219_CONFIG_BADCRES_12BIT_2S_1060US (0x9<<7) // 2 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_4S_2130US (0xA<<7) // 4 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_8S_4260US (0xB<<7) // 8 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_16S_8510US (0xC<<7) // 16 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_32S_17MS (0xD<<7) // 32 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_64S_34MS (0xE<<7) // 64 x 12-bit bus samples averaged together #define INA219_CONFIG_BADCRES_12BIT_128S_69MS (0xF<<7) // 128 x 12-bit bus samples averaged together // Note: for IS28022, the ADC has 3 more bits and approximatively similar conversion times #define INA219_CONFIG_SADCRES_MASK (0x0078) // Shunt ADC Resolution and Averaging Mask #define INA219_CONFIG_SADCRES_9BIT_1S_84US (0x0<<3) // 1 x 9-bit shunt sample #define INA219_CONFIG_SADCRES_10BIT_1S_148US (0x1<<3) // 1 x 10-bit shunt sample #define INA219_CONFIG_SADCRES_11BIT_1S_276US (0x2<<3) // 1 x 11-bit shunt sample #define INA219_CONFIG_SADCRES_12BIT_1S_532US (0x3<<3) // 1 x 12-bit shunt sample #define INA219_CONFIG_SADCRES_12BIT_2S_1060US (0x9<<3) // 2 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_4S_2130US (0xA<<3) // 4 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_8S_4260US (0xB<<3) // 8 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_16S_8510US (0xC<<3) // 16 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_32S_17MS (0xD<<3) // 32 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_64S_34MS (0xE<<3) // 64 x 12-bit shunt samples averaged together #define INA219_CONFIG_SADCRES_12BIT_128S_69MS (0xF<<3) // 128 x 12-bit shunt samples averaged together #define INA219_CONFIG_MODE_MASK (0x0007) // Operating Mode Mask #define INA219_CONFIG_MODE_POWERDOWN (0x0000) #define INA219_CONFIG_MODE_SVOLT_TRIGGERED (0x0001) #define INA219_CONFIG_MODE_BVOLT_TRIGGERED (0x0002) #define INA219_CONFIG_MODE_SANDBVOLT_TRIGGERED (0x0003) #define INA219_CONFIG_MODE_ADCOFF (0x0004) #define INA219_CONFIG_MODE_SVOLT_CONTINUOUS (0x0005) #define INA219_CONFIG_MODE_BVOLT_CONTINUOUS (0x0006) #define INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS (0x0007) #define INA219_REG_SHUNTVOLTAGE (0x01) #define INA219_REG_BUSVOLTAGE (0x02) #define INA219_REG_POWER (0x03) #define INA219_REG_CURRENT (0x04) #define INA219_REG_CALIBRATION (0x05) #define ISL28022_REG_SHUNTTHRESHOLD (0x06) #define ISL28022_REG_BUSTHRESHOLD (0x07) #define ISL28022_REG_INTRSTATUS (0x08) #define ISL28022_REG_AUXCTRL (0x09) #define INA219_BUS_ADC_LSB (0.004) // VBus ADC LSB=4mV=0.004V #define INA219_SHUNT_ADC_LSB_MV (0.01) // VShunt ADC LSB=10µV=0.01mV #ifdef DEBUG_TASMOTA_SENSOR // temporary strings for floating point in debug messages char __ina219_dbg1[FLOATSZ]; char __ina219_dbg2[FLOATSZ]; #endif #define INA219_MODEL 1 #define ISL28022_MODEL 2 struct INA219_Data { float voltage; float current; // The following multiplier is used to convert shunt voltage (in mV) to current (in A) // Current_A = ShuntVoltage_mV / ShuntResistor_milliOhms = ShuntVoltage_mV * ina219_current_multiplier // ina219_current_multiplier = 1 / ShuntResistor_milliOhms float current_multiplier; uint8_t model; uint8_t addr; }; struct INA219_Data *Ina219Data = nullptr; uint8_t Ina219Count = 0; const char INA219_SENSORCMND_START[] PROGMEM = "{\"" D_CMND_SENSOR "%d\":{\"mode\":%d,\"rshunt\":["; const char INA219_SENSORCMND_END[] PROGMEM = "]}}"; const char *INA219_TYPE[] = { "INA219", "ISL28022" }; const uint8_t INA219_ADDRESSES[] = { INA219_ADDRESS1, INA219_ADDRESS2, INA219_ADDRESS3, INA219_ADDRESS4 }; /*********************************************************************************************\ * Calculate current multiplier depending on the selected mode * For mode = 0, 1, 2 : legacy modes simplified as Vmax: 32V, Imax: 3.2A range * For mode = 10..255 : specify Rshunt encoded as RRM where resistor value is RR * 10^M milliOhms * Vmax: 32V, Imax: 0.320 / Rshunt * Exemple: * 10: Rshunt = 1 * 10^0 = 1 millOhms => Max current = 320A ! * 11: Rshunt = 1 * 10^1 = 10 milliOhms => Max current = 32A * 21: Rshunt = 2 * 10^1 = 20 milliOhms => Max current = 16A * 12: Rshunt = 1 * 10^2 = 100 milliOhms => Max current = 3.2A == mode 0,1,2 * 13: Rshunt = 1 * 10^3 = 1 Ohms => Max current = 320mA * Note that some shunt values can be represented by 2 different encoded values such as * 11 or 100 both present 10 milliOhms * Because it is difficult to make a range check on such encoded value, none is performed \*********************************************************************************************/ void Ina219SetShuntMode(uint8_t index, uint8_t mode, float shunt) { if (mode < 10) { // All legacy modes: shunt is INA219_SHUNT_RESISTOR unless provided by `Sensor13 ` // Shunt value provided this way is NOT stored in flash and requires an "on system#boot" rule } else { // Modes >= 10 allow to provide shunt values that is stored in flash but limited in possible // values due to the encoding mode used to store the value in a single uint8_t int mult = mode % 10; int shunt_milliOhms = mode / 10; shunt = shunt_milliOhms / 1000.0; for ( ; mult > 0 ; mult-- ) shunt *= 10.0; } Ina219Data[index].current_multiplier = 0.001 / shunt; #ifdef DEBUG_TASMOTA_SENSOR dtostrfd(shunt,6,__ina219_dbg1); dtostrfd(Ina219Data[index].current_multiplier,5,__ina219_dbg2); DEBUG_SENSOR_LOG("Ina219SetShuntMode[%d]: mode=%d, shunt=%s, cur_mul=%s", index, mode, __ina219_dbg1, __ina219_dbg2); #endif } float Ina219GetShunt(uint8_t index) { return 0.001 / Ina219Data[index].current_multiplier; } /*********************************************************************************************\ * Return 0 if configuration failed * Return 1 if chip identified as INA219 * Return 2 if chip identified as ISL28022 \*********************************************************************************************/ uint8_t Ina219Init(uint16_t addr) { uint16_t config = 0; config = ISL28022_CONFIG_BVOLTAGERANGE_60V // If INA219 0..32V, If ISL28022 0..60V | INA219_CONFIG_GAIN_8_320MV // Use max scale | INA219_CONFIG_BADCRES_12BIT_16S_8510US // use averaging to improve accuracy | INA219_CONFIG_SADCRES_12BIT_16S_8510US // use averaging to improve accuracy | INA219_CONFIG_MODE_SANDBVOLT_CONTINUOUS; DEBUG_SENSOR_LOG(PSTR("Ina219Init: Config=0x%04X (%d)"), config, config); // Set Config register to take into account the settings above if (!I2cWrite16(addr, INA219_REG_CONFIG, config)) return 0; uint16_t intr_reg = 0x0FFFF; bool status = I2cValidRead16(&intr_reg, addr, ISL28022_REG_INTRSTATUS); DEBUG_SENSOR_LOG(PSTR("Ina219Init: IntrReg=0x%04X (%d)"), intr_reg, status); if (status && 0 == intr_reg) return ISL28022_MODEL; // ISL28022 return INA219_MODEL; // INA219 } float Ina219GetShuntVoltage_mV(uint16_t addr) { // raw shunt voltage (16-bit signed integer, so +-32767) int16_t shunt_voltage = I2cReadS16(addr, INA219_REG_SHUNTVOLTAGE); DEBUG_SENSOR_LOG("Ina219GetShuntVoltage_mV: ShReg = 0x%04X (%d)",shunt_voltage, shunt_voltage); // convert to shunt voltage in mV (so +-327mV) (LSB=10µV=0.01mV) return (float)shunt_voltage * INA219_SHUNT_ADC_LSB_MV; } float Ina219GetBusVoltage_V(uint16_t addr, uint8_t model) { uint16_t bus_voltage = I2cRead16(addr, INA219_REG_BUSVOLTAGE); bus_voltage >>= (ISL28022_MODEL == model) ? 2 : 3; DEBUG_SENSOR_LOG("Ina219GetBusVoltage_V: BusReg = 0x%04X (%d)",bus_voltage, bus_voltage); // and multiply by LSB raw bus voltage to return bus voltage in volts (LSB=4mV=0.004V) return (float)bus_voltage * INA219_BUS_ADC_LSB; } bool Ina219Read(void) { for (int i=0 ; i < Ina219Count; i++) { uint16_t addr = Ina219Data[i].addr; if (!addr) { continue; } float bus_voltage_V = Ina219GetBusVoltage_V(addr, Ina219Data[i].model); float shunt_voltage_mV = Ina219GetShuntVoltage_mV(addr); #ifdef DEBUG_TASMOTA_SENSOR dtostrfd(bus_voltage_V,5,__ina219_dbg1); dtostrfd(shunt_voltage_mV,5,__ina219_dbg2); DEBUG_SENSOR_LOG("Ina219Read[%d]: bV=%sV, sV=%smV", i, __ina219_dbg1, __ina219_dbg2); #endif // we return the power-supply-side voltage (as bus_voltage register provides the load-side voltage) Ina219Data[i].voltage = bus_voltage_V + (shunt_voltage_mV / 1000); // current is simply calculted from shunt voltage using pre-calculated multiplier Ina219Data[i].current = shunt_voltage_mV * Ina219Data[i].current_multiplier; #ifdef DEBUG_TASMOTA_SENSOR dtostrfd(Ina219Data[i].voltage,5,__ina219_dbg1); dtostrfd(Ina219Data[i].current,5,__ina219_dbg2); DEBUG_SENSOR_LOG("Ina219Read[%d]: V=%sV, I=%smA", i, __ina219_dbg1,__ina219_dbg2); #endif } return true; } /*********************************************************************************************\ * Command Sensor13 \*********************************************************************************************/ bool Ina219CommandSensor(void) { char argument[XdrvMailbox.data_len]; if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 255)) { Settings->ina219_mode = XdrvMailbox.payload; for (int i=0; i < Ina219Count; i++) { float shunt = INA219_SHUNT_RESISTOR; if (ArgC() > (i +1)) { shunt = CharToFloat(ArgV(argument, 2 +i)); } Ina219SetShuntMode(i, Settings->ina219_mode, shunt); } } Response_P(INA219_SENSORCMND_START, XSNS_13, Settings->ina219_mode); for (int i = 0 ; i < Ina219Count ; i++ ) { dtostrfd(Ina219GetShunt(i),5,argument); ResponseAppend_P(PSTR("%s%c"), argument, ((i < (Ina219Count-1))?',':'\0')); } ResponseAppend_P(INA219_SENSORCMND_END); return true; } /********************************************************************************************/ void Ina219Detect(void) { for (uint32_t i = 0; i < INA219_MAX_COUNT; i++) { uint16_t addr = INA219_ADDRESSES[INA219_FIRST_ADDRESS +i]; if (!I2cSetDevice(addr)) { continue; } if (!Ina219Data) { Ina219Data = (struct INA219_Data*)calloc(INA219_MAX_COUNT,sizeof(struct INA219_Data)); if (!Ina219Data) { AddLog(LOG_LEVEL_ERROR,PSTR("INA219: Mem Error")); return; } } int model = Ina219Init(addr); if (model) { I2cSetActiveFound(addr, INA219_TYPE[model-1]); Ina219SetShuntMode(Ina219Count, Settings->ina219_mode, INA219_SHUNT_RESISTOR); Ina219Data[Ina219Count].model = model; Ina219Data[Ina219Count].addr = addr; Ina219Count++; } } } void Ina219EverySecond(void) { // 4 x 3mS Ina219Read(); } #ifdef USE_WEBSERVER const char HTTP_SNS_INA219_DATA[] PROGMEM = "{s}%s " D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}" "{s}%s " D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}" "{s}%s " D_POWERUSAGE "{m}%s " D_UNIT_WATT "{e}"; #endif // USE_WEBSERVER void Ina219Show(bool json) { for (int i = 0; i < Ina219Count; i++) { if (!Ina219Data[i].model) continue; char voltage[16]; dtostrfd(Ina219Data[i].voltage, Settings->flag2.voltage_resolution, voltage); char current[16]; dtostrfd(Ina219Data[i].current, Settings->flag2.current_resolution, current); char power[16]; dtostrfd(Ina219Data[i].voltage * Ina219Data[i].current, Settings->flag2.wattage_resolution, power); char name[16]; if (Ina219Count>1) snprintf_P(name, sizeof(name), PSTR("%s%c%d"), INA219_TYPE[Ina219Data[i].model-1], IndexSeparator(), i +1); else snprintf_P(name, sizeof(name), PSTR("%s"), INA219_TYPE[Ina219Data[i].model-1]); if (json) { ResponseAppend_P(PSTR(",\"%s\":{\"Id\":%02x,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s,\"" D_JSON_POWERUSAGE "\":%s}"), name, INA219_ADDRESSES[i], voltage, current, power); #ifdef USE_DOMOTICZ if (0 == TasmotaGlobal.tele_period) { DomoticzSensor(DZ_VOLTAGE, voltage); DomoticzSensor(DZ_CURRENT, current); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_INA219_DATA, name, voltage, name, current, name, power); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns13(uint8_t function) { if (!I2cEnabled(XI2C_14)) { return false; } bool result = false; if (FUNC_INIT == function) { Ina219Detect(); } else if (Ina219Data) { switch (function) { case FUNC_COMMAND_SENSOR: if (XSNS_13 == XdrvMailbox.index) { result = Ina219CommandSensor(); } break; case FUNC_EVERY_SECOND: Ina219EverySecond(); break; case FUNC_JSON_APPEND: Ina219Show(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: Ina219Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_INA219 #endif // USE_I2C