/* xnrg_14_bl09xx.ino - BL09XX energy sensor support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #if defined(USE_BL0940) || defined(USE_BL09XX) #ifdef USE_BL0940 #warning **** USE_BL0940 is obsolete. Please replace with USE_BLE09XX **** #endif /*********************************************************************************************\ * Support the following Shangai Belling energy sensors: * * BL0940 - Energy (as in Blitzwolf SHP10) * Template {"NAME":"BW-SHP10","GPIO":[0,148,0,207,158,21,0,0,0,17,0,0,0],"FLAG":0,"BASE":18} * Based on datasheet from http://www.belling.com.cn/media/file_object/bel_product/BL09XX/datasheet/BL09XX_V1.1_en.pdf * * BL0939 - Energy (as in Sonoff Dual R3 v2) * {"NAME":"Sonoff Dual R3 v2","GPIO":[32,0,0,0,0,0,0,0,0,576,225,0,0,0,0,0,0,0,0,0,0,3200,8128,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1} * Based on datasheet from https://www.belling.com.cn/product_info.html?id=368 * See https://github.com/arendst/Tasmota/discussions/10793 \*********************************************************************************************/ #define XNRG_14 14 //#define DEBUG_BL09XX #define BL0939_PREF 713 // =(4046*1*0,51*1000)/(1,218*1,218*(390*5+0,51)) = 713,105 #define BL0939_UREF 17159 // =(79931*0,51*1000)/(1,218*(390*5+0,51)) = 17158,92 #define BL0939_IREF 266013 // =(324004*1)/1,218 = 266013,14 #define BL0940_PREF 1430 #define BL0940_UREF 33000 #define BL0940_IREF 275000 #define BL0942_PREF 596 #define BL0942_UREF 15187 #define BL0942_IREF 251213 #define BL09XX_WRITE_COMMAND 0xA0 // 0xA8 according to documentation #define BL09XX_REG_I_FAST_RMS_CTRL 0x10 #define BL09XX_REG_MODE 0x18 #define BL09XX_REG_SOFT_RESET 0x19 #define BL09XX_REG_USR_WRPROT 0x1A #define BL09XX_REG_TPS_CTRL 0x1B #define BL09XX_READ_COMMAND 0x50 // 0x58 according to documentation #define BL09XX_FULL_PACKET 0xAA #define BL09XX_PACKET_HEADER 0x55 // 0x58 according to documentation #include TasmotaSerial *Bl09XXSerial = nullptr; enum Bl09xxModel { BL0939_MODEL, BL0940_MODEL, BL0942_MODEL, BL09XX_MODEL }; // Model index number starting from 0 const uint32_t bl09xx_pref[] = { BL0939_PREF, BL0940_PREF, BL0942_PREF }; // Power reference constant const uint32_t bl09xx_uref[] = { BL0939_UREF, BL0940_UREF, BL0942_UREF }; // Voltage reference constant const uint32_t bl09xx_iref[] = { BL0939_IREF, BL0940_IREF, BL0942_IREF }; // Current reference constant const uint8_t bl09xx_type[] = { 39, 40, 42 }; // Device name BL09xx const uint8_t bl09xx_phase_count[] = { 2, 1, 1 }; // Supported phase/channel count const uint8_t bl09xx_address[] = { 0x05, 0x00, 0x08 }; // Device address const uint8_t bl09xx_buffer_size[] = { 35, 35, 23 }; // Serial receive buffer size const uint8_t bl09xx_init[5][4] = { { BL09XX_REG_SOFT_RESET, 0x5A, 0x5A, 0x5A }, // Reset to default { BL09XX_REG_USR_WRPROT, 0x55, 0x00, 0x00 }, // Enable User Operation Write { BL09XX_REG_MODE, 0x00, 0x10, 0x00 }, // 0x0100 = CF_UNABLE energy pulse, AC_FREQ_SEL 50Hz, RMS_UPDATE_SEL 800mS { BL09XX_REG_TPS_CTRL, 0xFF, 0x47, 0x00 }, // 0x47FF = Over-current and leakage alarm on, Automatic temperature measurement, Interval 100mS { BL09XX_REG_I_FAST_RMS_CTRL, 0x1C, 0x18, 0x00 } // 0x181C = Half cycle, Fast RMS threshold 6172 }; struct BL09XX { uint32_t voltage = 0; uint32_t current[2] = { 0, }; uint32_t power[2] = { 0, }; float temperature; uint16_t tps1 = 0; uint8_t *rx_buffer = nullptr; uint8_t buffer_size = 0; uint8_t byte_counter = 0; uint8_t address = 0; uint8_t model = 0; uint8_t rx_pin; bool received = false; } Bl09XX; bool Bl09XXDecode3940(void) { // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 // Sample from BL0940 (single channel) // 55 F2 03 00 00 00 00 7E 02 00 D4 B0 72 AC 01 00 00 00 00 02 01 00 00 00 00 00 00 00 BA 01 00 FE 03 00 83 // 55 88 02 00 49 00 00 FE 02 00 AF EF 71 D2 01 00 EB FF FF 49 01 00 00 00 00 02 00 00 CF 01 00 FE 03 00 9F // 55 B9 33 00 DE 45 00 94 02 00 CF E4 70 63 02 00 6C 4C 00 13 01 00 09 00 00 00 00 00 E4 01 00 FE 03 00 72 // 55 B8 55 00 2F 73 00 D2 02 00 00 C6 74 F9 01 00 97 89 00 37 01 00 AB 00 00 2D 00 00 02 02 00 FE 03 00 6E = U 7652864, I 29487/0, P 35223/0, C 171/0, T 514 // Hd IFRms--- Current- Reserved Voltage- Reserved Power--- Reserved CF------ Reserved TPS1---- TPS2---- Ck // // Sample from BL0939 (dual channel) // 55 82 03 00 00 00 00 1E 15 01 65 80 3E E5 C6 00 00 00 00 50 B1 00 00 00 00 00 00 00 F9 01 00 FE 03 00 D2 = U 4096101, I 0/70942, P 0/45392, C 0/0, T 505 // 55 E6 02 00 00 00 00 37 15 01 0F 83 3E F4 C7 00 00 00 00 69 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 7E = U 4096783, I 0/70967, P 0/45417, C 0/1, T 506 // 55 29 03 00 00 00 00 27 15 01 3A 86 3E AF C8 00 00 00 00 67 B1 00 00 00 00 01 00 00 FA 01 00 FE 03 00 62 = U 4097594, I 0/70951, P 0/45415, C 0/1, T 506 // 55 04 03 00 00 00 00 D6 14 01 7D 8E 3E 25 C7 00 00 00 00 53 B1 00 00 00 00 01 00 00 F9 01 00 FE 03 00 2E = U 4099709, I 0/70870, P 0/45395, C 0/1, T 505 // Hd IFRms-A- CurrentA CurrentB Voltage- IFRms-B- PowerA-- PowerB-- CF-A---- CF-B---- TPS1---- TPS2---- Ck uint16_t tps1 = Bl09XX.rx_buffer[29] << 8 | Bl09XX.rx_buffer[28]; // TPS1 unsigned if ((Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) || // Bad header (Bl09XX.tps1 && ((tps1 < (Bl09XX.tps1 -10)) || (tps1 > (Bl09XX.tps1 +10)))) // Invalid temperature change ) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X, tps1:%d"), Bl09XX.rx_buffer[0], tps1); return false; } Bl09XX.tps1 = tps1; float t = ((170.0f/448.0f)*(((float)Bl09XX.tps1/2.0f)-32.0f))-45.0f; Bl09XX.temperature = ConvertTemp(t); Bl09XX.voltage = Bl09XX.rx_buffer[12] << 16 | Bl09XX.rx_buffer[11] << 8 | Bl09XX.rx_buffer[10]; // V_RMS unsigned Bl09XX.current[0] = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // IA_RMS unsigned int32_t tmp = Bl09XX.rx_buffer[18] << 24 | Bl09XX.rx_buffer[17] << 16 | Bl09XX.rx_buffer[16] << 8; // WATT_A signed Bl09XX.power[0] = abs(tmp >> 8); // WATT_A unsigned if (Energy.phase_count > 1) { Bl09XX.current[1] = Bl09XX.rx_buffer[9] << 16 | Bl09XX.rx_buffer[8] << 8 | Bl09XX.rx_buffer[7]; // IB_RMS unsigned tmp = Bl09XX.rx_buffer[21] << 24 | Bl09XX.rx_buffer[20] << 16 | Bl09XX.rx_buffer[19] << 8; // WATT_B signed Bl09XX.power[1] = abs(tmp >> 8); // WATT_B unsigned } #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d/%d, P %d/%d, T %d"), Bl09XX.voltage, Bl09XX.current[0], Bl09XX.current[1], Bl09XX.power[0], Bl09XX.power[1], Bl09XX.tps1); #endif return true; } bool Bl09XXDecode42(void) { // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 // Hd Current- Voltage- IFRms--- Power--- CF------ Freq- 00 St 00 00 Ck // 55 A3 B9 00 9E 4C 36 93 43 00 F4 98 FF 99 00 00 16 4E 00 01 01 00 // U 3558558, I 47523, P 26380, C 153 // 55 AC B9 00 79 4D 36 C4 43 00 EF 98 FF 99 00 00 16 4E 00 01 01 00 // U 3558777, I 47532, P 26385, C 153 // 55 40 BA 00 2D 50 36 FE 43 00 96 98 FF 99 00 00 16 4E 00 01 01 00 // U 3559469, I 47680, P 26474, C 153 // 55 91 B9 00 33 4C 36 FB 43 00 FC 98 FF 99 00 00 1E 4E 00 21 01 00 // U 3558451, I 47505, P 26372, C 153 // 55 AF B9 00 05 51 36 D1 43 00 E4 98 FF 99 00 00 1E 4E 00 21 01 00 // U 3559685, I 47535, P 26396, C 153 // 55 21 BA 00 3A 5E 36 10 44 00 8B 98 FF 99 00 00 16 4E 00 01 01 00 // U 3563066, I 47649, P 26485, C 153 // 55 BE B9 00 B2 55 36 9D 42 00 D7 98 FF 99 00 00 1E 4E 00 21 01 00 // U 3560882, I 47550, P 26409, C 153 // All above from a single test with a 40W buld on 230V if (Bl09XX.rx_buffer[0] != BL09XX_PACKET_HEADER) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Invalid data hd=%02X"), Bl09XX.rx_buffer[0]); return false; } Bl09XX.voltage = Bl09XX.rx_buffer[6] << 16 | Bl09XX.rx_buffer[5] << 8 | Bl09XX.rx_buffer[4]; // V_RMS unsigned Bl09XX.current[0] = Bl09XX.rx_buffer[3] << 16 | Bl09XX.rx_buffer[2] << 8 | Bl09XX.rx_buffer[1]; // IA_RMS unsigned int32_t tmp = Bl09XX.rx_buffer[12] << 24 | Bl09XX.rx_buffer[11] << 16 | Bl09XX.rx_buffer[10] << 8; // WATT_A signed Bl09XX.power[0] = abs(tmp >> 8); // WATT_A unsigned #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %d, I %d, P %d"), Bl09XX.voltage, Bl09XX.current[0], Bl09XX.power[0]); #endif return true; } void Bl09XXUpdateEnergy() { if (Energy.power_on) { // Powered on Energy.voltage[0] = (float)Bl09XX.voltage / Settings->energy_voltage_calibration; #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: U %2_f, T %2_f"), &Energy.voltage[0], &Bl09XX.temperature); #endif for (uint32_t chan = 0; chan < Energy.phase_count; chan++) { if (Bl09XX.power[chan] > Settings->energy_power_calibration) { // We need at least 1W Energy.active_power[chan] = (float)Bl09XX.power[chan] / Settings->energy_power_calibration; Energy.current[chan] = (float)Bl09XX.current[chan] / Settings->energy_current_calibration; } else { Energy.active_power[chan] = 0; Energy.current[chan] = 0; } #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Chan[%d] I %2_f, P %2_f"), chan, &Energy.current[chan], &Energy.active_power[chan]); #endif } } else { // Powered off Energy.voltage[0] = 0; Energy.active_power[0] = Energy.active_power[1] = 0; Energy.current[0] = Energy.current[1] = 0; } } void Bl09XXSerialInput(void) { while (Bl09XXSerial->available()) { yield(); uint8_t serial_in_byte = Bl09XXSerial->read(); if (!Bl09XX.received && (BL09XX_PACKET_HEADER == serial_in_byte)) { Bl09XX.received = true; Bl09XX.byte_counter = 0; } if (Bl09XX.received) { Bl09XX.rx_buffer[Bl09XX.byte_counter++] = serial_in_byte; if (Bl09XX.buffer_size == Bl09XX.byte_counter) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL9: Rx %*_H"), Bl09XX.buffer_size, Bl09XX.rx_buffer); uint8_t checksum = BL09XX_READ_COMMAND | Bl09XX.address; for (uint32_t i = 0; i < Bl09XX.buffer_size -1; i++) { checksum += Bl09XX.rx_buffer[i]; } checksum ^= 0xFF; if (checksum == Bl09XX.rx_buffer[Bl09XX.buffer_size -1]) { Energy.data_valid[0] = 0; bool ok; if (BL0942_MODEL == Bl09XX.model) { ok = Bl09XXDecode42(); } else { ok = Bl09XXDecode3940(); } if (ok) { Bl09XXUpdateEnergy(); } Bl09XX.received = false; return; } else { #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE " received 0x%02X instead of 0x%02X"), Bl09XX.rx_buffer[Bl09XX.buffer_size -1], checksum); #endif do { // Sync buffer with data (issue #1907 and #3425) memmove(Bl09XX.rx_buffer, Bl09XX.rx_buffer +1, Bl09XX.buffer_size -1); Bl09XX.byte_counter--; } while ((Bl09XX.byte_counter > 1) && (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0])); if (BL09XX_PACKET_HEADER != Bl09XX.rx_buffer[0]) { AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: " D_CHECKSUM_FAILURE)); Bl09XX.received = false; Bl09XX.byte_counter = 0; } } } } } } /********************************************************************************************/ void Bl09XXEverySecond(void) { if (Energy.data_valid[0] > ENERGY_WATCHDOG) { Bl09XX.voltage = 0; memset(Bl09XX.current, 0, sizeof(Bl09XX.current)); memset(Bl09XX.power, 0, sizeof(Bl09XX.power)); } else { // Calculate energy by using active power for (uint32_t channel = 0; channel < Energy.phase_count; channel++) { Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36; } EnergyUpdateToday(); } // AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Poll")); Bl09XXSerial->flush(); Bl09XXSerial->write(BL09XX_READ_COMMAND | Bl09XX.address); Bl09XXSerial->write(BL09XX_FULL_PACKET); } void Bl09XXInit(void) { // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions Bl09XXSerial = new TasmotaSerial(Bl09XX.rx_pin, Pin(GPIO_TXD), 1); if (Bl09XXSerial->begin(4800)) { if (Bl09XXSerial->hardwareSerial()) { ClaimSerial(); } if (HLW_UREF_PULSE == Settings->energy_voltage_calibration) { Settings->energy_voltage_calibration = bl09xx_uref[Bl09XX.model]; Settings->energy_current_calibration = bl09xx_iref[Bl09XX.model]; Settings->energy_power_calibration = bl09xx_pref[Bl09XX.model]; } if ((BL0940_MODEL == Bl09XX.model) && (Settings->energy_current_calibration < (BL0940_IREF / 20))) { Settings->energy_current_calibration *= 100; } if (BL0942_MODEL != Bl09XX.model) { #ifdef DEBUG_BL09XX AddLog(LOG_LEVEL_DEBUG, PSTR("BL9: Send Init string")); #endif Energy.use_overtemp = true; // Use global temperature for overtemp detection for (uint32_t i = 0; i < 5; i++) { uint8_t crc, byte; crc = byte = BL09XX_WRITE_COMMAND | Bl09XX.address; Bl09XXSerial->write(byte); for (uint32_t j = 0; j < 4; j++) { crc += byte = bl09xx_init[i][j]; Bl09XXSerial->write(byte); } Bl09XXSerial->write(0xFF ^ crc); delay(1); } } else { Energy.use_overtemp = false; // Use global temperature for overtemp detection } } else { TasmotaGlobal.energy_driver = ENERGY_NONE; } } void Bl09XXPreInit(void) { if (PinUsed(GPIO_TXD)) { Bl09XX.model = BL09XX_MODEL; if (PinUsed(GPIO_BL0939_RX)) { Bl09XX.model = BL0939_MODEL; Bl09XX.rx_pin = Pin(GPIO_BL0939_RX); } else if (PinUsed(GPIO_BL0940_RX)) { Bl09XX.model = BL0940_MODEL; Bl09XX.rx_pin = Pin(GPIO_BL0940_RX); } else if (PinUsed(GPIO_BL0942_RX)) { Bl09XX.model = BL0942_MODEL; Bl09XX.rx_pin = Pin(GPIO_BL0942_RX); } if (Bl09XX.model != BL09XX_MODEL) { Bl09XX.address = bl09xx_address[Bl09XX.model]; Bl09XX.buffer_size = bl09xx_buffer_size[Bl09XX.model]; Bl09XX.rx_buffer = (uint8_t*)(malloc(Bl09XX.buffer_size)); if (Bl09XX.rx_buffer != nullptr) { Energy.voltage_common = true; // Use common voltage Energy.frequency_common = true; // Use common frequency Energy.use_overtemp = true; // Use global temperature for overtemp detection Energy.phase_count = bl09xx_phase_count[Bl09XX.model]; // Handle two channels as two phases TasmotaGlobal.energy_driver = XNRG_14; AddLog(LOG_LEVEL_DEBUG,PSTR("BL9: Enabling BL09%02d"), bl09xx_type[Bl09XX.model]); } } } } bool Bl09XXCommand(void) { bool serviced = true; uint32_t channel = (2 == XdrvMailbox.index) && (Energy.phase_count > 1) ? 1 : 0; uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123 if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len && Bl09XX.power[channel]) { Settings->energy_power_calibration = (Bl09XX.power[channel] * 100) / value; } } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len && Bl09XX.voltage) { Settings->energy_voltage_calibration = (Bl09XX.voltage * 100) / value; } } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len && Bl09XX.current[channel]) { Settings->energy_current_calibration = (Bl09XX.current[channel] * 100) / value; } } else serviced = false; // Unknown command return serviced; } void Bl09XXShow(bool json) { if (BL0942_MODEL != Bl09XX.model) { if (json) { ResponseAppend_P(JSON_SNS_F_TEMP, "BL09XX", Settings->flag2.temperature_resolution, &Bl09XX.temperature); if (0 == TasmotaGlobal.tele_period) { #ifdef USE_DOMOTICZ DomoticzFloatSensor(DZ_TEMP, Bl09XX.temperature); #endif // USE_DOMOTICZ #ifdef USE_KNX KnxSensor(KNX_TEMPERATURE, Bl09XX.temperature); #endif // USE_KNX } #ifdef USE_WEBSERVER } else { WSContentSend_Temp("", Bl09XX.temperature); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg14(uint8_t function) { bool result = false; switch (function) { case FUNC_LOOP: if (Bl09XXSerial) { Bl09XXSerialInput(); } break; case FUNC_EVERY_SECOND: Bl09XXEverySecond(); break; case FUNC_JSON_APPEND: Bl09XXShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: Bl09XXShow(0); break; #endif // USE_WEBSERVER case FUNC_COMMAND: result = Bl09XXCommand(); break; case FUNC_INIT: Bl09XXInit(); break; case FUNC_PRE_INIT: Bl09XXPreInit(); break; } return result; } #endif // USE_BL09XX #endif // USE_ENERGY_SENSOR