/* xsns_06_dht.ino - DHTxx, AM23xx and SI7021 temperature and humidity sensor support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_DHT_V3 /*********************************************************************************************\ * DHT11, AM2301 (DHT21, DHT22, AM2302, AM2321), SI7021 - Temperature and Humidy * * Reading temperature or humidity takes about 250 milliseconds! * Sensor readings may also be up to 2 seconds 'old' (its a very slow sensor) * * This version is based on ESPEasy _P005_DHT.ino 20191201 \*********************************************************************************************/ #define XSNS_06 6 #define DHT_MAX_SENSORS 4 #define DHT_MAX_RETRY 8 uint8_t dht_data[5]; uint8_t dht_sensors = 0; uint8_t dht_pin_out = 0; // Shelly GPIO00 output only bool dht_active = true; // DHT configured bool dht_dual_mode = false; // Single pin mode struct DHTSTRUCT { uint8_t pin; uint8_t type; char stype[12]; uint32_t lastreadtime; uint8_t lastresult; float t = NAN; float h = NAN; } Dht[DHT_MAX_SENSORS]; bool DhtExpectPulse(uint8_t sensor, int level) { unsigned long timeout = micros() + 100; while (digitalRead(Dht[sensor].pin) != level) { if (micros() > timeout) { return false; } delayMicroseconds(1); } return true; } int DhtReadDat(uint8_t sensor) { uint8_t result = 0; for (uint32_t i = 0; i < 8; i++) { if (!DhtExpectPulse(sensor, HIGH)) { return -1; } delayMicroseconds(35); // was 30 if (digitalRead(Dht[sensor].pin)) { result |= (1 << (7 - i)); } if (!DhtExpectPulse(sensor, LOW)) { return -1; } } return result; } bool DhtRead(uint8_t sensor) { dht_data[0] = dht_data[1] = dht_data[2] = dht_data[3] = dht_data[4] = 0; if (!dht_dual_mode) { pinMode(Dht[sensor].pin, OUTPUT); digitalWrite(Dht[sensor].pin, LOW); } else { digitalWrite(dht_pin_out, LOW); } switch (Dht[sensor].type) { case GPIO_DHT11: delay(19); // minimum 18ms break; case GPIO_DHT22: delay(2); // minimum 1ms break; case GPIO_SI7021: delayMicroseconds(500); break; } if (!dht_dual_mode) { pinMode(Dht[sensor].pin, INPUT_PULLUP); } else { digitalWrite(dht_pin_out, HIGH); } switch (Dht[sensor].type) { case GPIO_DHT11: case GPIO_DHT22: delayMicroseconds(50); break; case GPIO_SI7021: // See: https://github.com/letscontrolit/ESPEasy/issues/1798 delayMicroseconds(20); break; } noInterrupts(); if (!DhtExpectPulse(sensor, LOW)) { interrupts(); AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE)); return false; } if (!DhtExpectPulse(sensor, HIGH)) { interrupts(); AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_HIGH " " D_PULSE)); return false; } if (!DhtExpectPulse(sensor, LOW)) { interrupts(); AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_START_SIGNAL_LOW " " D_PULSE)); return false; } int data = 0; for (uint32_t i = 0; i < 5; i++) { data = DhtReadDat(sensor); if (-1 == data) { AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_TIMEOUT_WAITING_FOR " " D_PULSE)); break; } dht_data[i] = data; } interrupts(); if (-1 == data) { return false; } uint8_t checksum = (dht_data[0] + dht_data[1] + dht_data[2] + dht_data[3]) & 0xFF; if (dht_data[4] != checksum) { char hex_char[15]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT D_CHECKSUM_FAILURE " %s =? %02X"), ToHex_P(dht_data, 5, hex_char, sizeof(hex_char), ' '), checksum); return false; } return true; } void DhtReadTempHum(uint8_t sensor) { if ((NAN == Dht[sensor].h) || (Dht[sensor].lastresult > DHT_MAX_RETRY)) { // Reset after 8 misses Dht[sensor].t = NAN; Dht[sensor].h = NAN; } if (DhtRead(sensor)) { switch (Dht[sensor].type) { case GPIO_DHT11: Dht[sensor].h = dht_data[0]; Dht[sensor].t = dht_data[2] + ((float)dht_data[3] * 0.1f); // Issue #3164 break; case GPIO_DHT22: case GPIO_SI7021: Dht[sensor].h = ((dht_data[0] << 8) | dht_data[1]) * 0.1; Dht[sensor].t = (((dht_data[2] & 0x7F) << 8 ) | dht_data[3]) * 0.1; if (dht_data[2] & 0x80) { Dht[sensor].t *= -1; } break; } Dht[sensor].t = ConvertTemp(Dht[sensor].t); Dht[sensor].h = ConvertHumidity(Dht[sensor].h); Dht[sensor].lastresult = 0; } else { Dht[sensor].lastresult++; } } /********************************************************************************************/ bool DhtPinState() { if ((XdrvMailbox.index >= GPIO_DHT11) && (XdrvMailbox.index <= GPIO_SI7021)) { if (dht_sensors < DHT_MAX_SENSORS) { Dht[dht_sensors].pin = XdrvMailbox.payload; Dht[dht_sensors].type = XdrvMailbox.index; dht_sensors++; XdrvMailbox.index = GPIO_DHT11; } else { XdrvMailbox.index = 0; } return true; } return false; } void DhtInit(void) { if (dht_sensors) { if (pin[GPIO_DHT11_OUT] < 99) { dht_pin_out = pin[GPIO_DHT11_OUT]; dht_dual_mode = true; // Dual pins mode as used by Shelly dht_sensors = 1; // We only support one sensor in pseudo mode pinMode(dht_pin_out, OUTPUT); } for (uint32_t i = 0; i < dht_sensors; i++) { pinMode(Dht[i].pin, INPUT_PULLUP); Dht[i].lastreadtime = 0; Dht[i].lastresult = 0; GetTextIndexed(Dht[i].stype, sizeof(Dht[i].stype), Dht[i].type, kSensorNames); if (dht_sensors > 1) { snprintf_P(Dht[i].stype, sizeof(Dht[i].stype), PSTR("%s%c%02d"), Dht[i].stype, IndexSeparator(), Dht[i].pin); } } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DHT "(v3) " D_SENSORS_FOUND " %d"), dht_sensors); } else { dht_active = false; } } void DhtEverySecond(void) { if (uptime &1) { // <1mS // DhtReadPrep(); } else { for (uint32_t i = 0; i < dht_sensors; i++) { // DHT11 and AM2301 25mS per sensor, SI7021 5mS per sensor DhtReadTempHum(i); } } } void DhtShow(bool json) { for (uint32_t i = 0; i < dht_sensors; i++) { char temperature[33]; dtostrfd(Dht[i].t, Settings.flag2.temperature_resolution, temperature); char humidity[33]; dtostrfd(Dht[i].h, Settings.flag2.humidity_resolution, humidity); if (json) { ResponseAppend_P(JSON_SNS_TEMPHUM, Dht[i].stype, temperature, humidity); #ifdef USE_DOMOTICZ if ((0 == tele_period) && (0 == i)) { DomoticzTempHumSensor(temperature, humidity); } #endif // USE_DOMOTICZ #ifdef USE_KNX if ((0 == tele_period) && (0 == i)) { KnxSensor(KNX_TEMPERATURE, Dht[i].t); KnxSensor(KNX_HUMIDITY, Dht[i].h); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_TEMP, Dht[i].stype, temperature, TempUnit()); WSContentSend_PD(HTTP_SNS_HUM, Dht[i].stype, humidity); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns06(uint8_t function) { bool result = false; if (dht_active) { switch (function) { case FUNC_EVERY_SECOND: DhtEverySecond(); break; case FUNC_JSON_APPEND: DhtShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: DhtShow(0); break; #endif // USE_WEBSERVER case FUNC_INIT: DhtInit(); break; case FUNC_PIN_STATE: result = DhtPinState(); break; } } return result; } #endif // USE_DHT