/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ZIGBEE
#if defined(USE_WEBSERVER) && defined(USE_EMULATION) && defined(USE_EMULATION_HUE)
// Add global functions for Hue Emulation
// idx: index in the list of zigbee_devices
void HueLightStatus1Zigbee(uint16_t shortaddr, uint8_t local_light_subtype, String *response) {
static const char HUE_LIGHTS_STATUS_JSON1_SUFFIX_ZIGBEE[] PROGMEM =
"%s\"alert\":\"none\","
"\"effect\":\"none\","
"\"reachable\":%s}";
bool power = false;
bool reachable = false;
uint8_t colormode = 0xFF;
uint8_t bri = 0xFF;
uint8_t sat = 0xFF;
uint16_t ct = 0xFFFF;
uint16_t hue = 0xFFFF;
uint16_t x = 0xFFFF, y = 0xFFFF;
String light_status = "";
uint32_t echo_gen = findEchoGeneration(); // 1 for 1st gen =+ Echo Dot 2nd gen, 2 for 2nd gen and above
const Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
const Z_Data_Light & light = device.data.find();
if (&light != nullptr) {
bri = light.getDimmer();
colormode = light.getColorMode();
sat = light.getSat();
ct = light.getCT();
hue = light.getHue();
x = light.getX();
y = light.getY();
}
power = device.getPower();
reachable = device.getReachable();
if (bri > 254) bri = 254; // Philips Hue bri is between 1 and 254
if (bri < 1) bri = 1;
if (sat > 254) sat = 254; // Philips Hue only accepts 254 as max hue
uint16_t hue16 = changeUIntScale(hue, 0, 360, 0, 65535);
const size_t buf_size = 256;
char * buf = (char*) malloc(buf_size); // temp buffer for strings, avoid stack
snprintf_P(buf, buf_size, PSTR("{\"on\":%s,"), power ? PSTR("true") : PSTR("false"));
// Brightness for all devices with PWM
if ((1 == echo_gen) || (LST_SINGLE <= local_light_subtype)) { // force dimmer for 1st gen Echo
snprintf_P(buf, buf_size, PSTR("%s\"bri\":%d,"), buf, bri);
}
if (LST_COLDWARM <= local_light_subtype) {
snprintf_P(buf, buf_size, PSTR("%s\"colormode\":\"%s\","), buf, (0 == colormode) ? PSTR("hs") : (1 == colormode) ? PSTR("xy") : PSTR("ct"));
}
if (LST_RGB <= local_light_subtype) { // colors
if (prev_x_str[0] && prev_y_str[0]) {
snprintf_P(buf, buf_size, PSTR("%s\"xy\":[%s,%s],"), buf, prev_x_str, prev_y_str);
} else {
float x_f = x / 65536.0f;
float y_f = y / 65536.0f;
snprintf_P(buf, buf_size, PSTR("%s\"xy\":[%s,%s],"), buf, String(x_f, 5).c_str(), String(y_f, 5).c_str());
}
snprintf_P(buf, buf_size, PSTR("%s\"hue\":%d,\"sat\":%d,"), buf, hue16, sat);
}
if (LST_COLDWARM == local_light_subtype || LST_RGBW <= local_light_subtype) { // white temp
snprintf_P(buf, buf_size, PSTR("%s\"ct\":%d,"), buf, ct > 0 ? ct : 284);
}
snprintf_P(buf, buf_size, HUE_LIGHTS_STATUS_JSON1_SUFFIX_ZIGBEE, buf, reachable ? PSTR("true") : PSTR("false"));
*response += buf;
free(buf);
}
void HueLightStatus2Zigbee(uint16_t shortaddr, String *response)
{
const size_t buf_size = 300;
char * buf = (char*) malloc(buf_size);
const Z_Device & device = zigbee_devices.findShortAddr(shortaddr);
const char * friendlyName = device.friendlyName;
const char * modelId = device.modelId;
const char * manufacturerId = device.manufacturerId;
char shortaddrname[8];
snprintf_P(shortaddrname, sizeof(shortaddrname), PSTR("0x%04X"), shortaddr);
UnishoxStrings msg(HUE_LIGHTS);
snprintf_P(buf, buf_size, msg[HUE_LIGHTS_STATUS_JSON2],
(friendlyName) ? EscapeJSONString(friendlyName).c_str() : shortaddrname,
(modelId) ? EscapeJSONString(modelId).c_str() : PSTR("Unknown"),
(manufacturerId) ? EscapeJSONString(manufacturerId).c_str() : PSTR("Tasmota"),
GetHueDeviceId(shortaddr).c_str());
*response += buf;
free(buf);
}
void ZigbeeHueStatus(String * response, uint16_t shortaddr) {
*response += F("{\"state\":");
HueLightStatus1Zigbee(shortaddr, zigbee_devices.getHueBulbtype(shortaddr), response);
HueLightStatus2Zigbee(shortaddr, response);
}
void ZigbeeCheckHue(String * response, bool &appending) {
uint32_t zigbee_num = zigbee_devices.devicesSize();
for (uint32_t i = 0; i < zigbee_num; i++) {
uint16_t shortaddr = zigbee_devices.devicesAt(i).shortaddr;
int8_t bulbtype = zigbee_devices.getHueBulbtype(shortaddr);
if (bulbtype >= 0) {
// this bulb is advertized
if (appending) { *response += ","; }
*response += "\"";
*response += EncodeLightId(0, shortaddr);
*response += F("\":{\"state\":");
HueLightStatus1Zigbee(shortaddr, bulbtype, response); // TODO
HueLightStatus2Zigbee(shortaddr, response);
appending = true;
}
}
}
void ZigbeeHueGroups(String * lights) {
uint32_t zigbee_num = zigbee_devices.devicesSize();
for (uint32_t i = 0; i < zigbee_num; i++) {
uint16_t shortaddr = zigbee_devices.devicesAt(i).shortaddr;
int8_t bulbtype = zigbee_devices.getHueBulbtype(shortaddr);
if (bulbtype >= 0) {
*lights += ",\"";
*lights += EncodeLightId(i);
*lights += "\"";
}
}
}
void ZigbeeSendHue(uint16_t shortaddr, uint16_t cluster, uint8_t cmd, const SBuffer & s) {
zigbeeZCLSendCmd(ZigbeeZCLSendMessage({
shortaddr,
0 /* groupaddr */,
cluster /*cluster*/,
0 /* endpoint */,
cmd /* cmd */,
0, /* manuf */
true /* cluster specific */,
true /* response */,
false /* discover route */,
0, /* zcl transaction id */
(&s != nullptr) ? s.getBuffer() : nullptr,
(&s != nullptr) ? s.len() : 0
}));
}
// Send commands
// Power On/Off
void ZigbeeHuePower(uint16_t shortaddr, bool power) {
ZigbeeSendHue(shortaddr, 0x0006, power ? 1 : 0, *(SBuffer*)nullptr);
// zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0006, power ? 1 : 0, "");
zigbee_devices.getShortAddr(shortaddr).setPower(power, 0);
}
// Dimmer
void ZigbeeHueDimmer(uint16_t shortaddr, uint8_t dimmer) {
if (dimmer > 0xFE) { dimmer = 0xFE; }
SBuffer s(4);
s.add8(dimmer);
s.add16(0x000A); // transition time = 1s
ZigbeeSendHue(shortaddr, 0x0008, 0x04, s);
// char param[8];
// snprintf_P(param, sizeof(param), PSTR("%02X0A00"), dimmer);
// zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0008, 0x04, param);
zigbee_devices.getLight(shortaddr).setDimmer(dimmer);
}
// CT
void ZigbeeHueCT(uint16_t shortaddr, uint16_t ct) {
if (ct > 0xFEFF) { ct = 0xFEFF; }
// AddLog(LOG_LEVEL_INFO, PSTR("ZigbeeHueCT 0x%04X - %d"), shortaddr, ct);
SBuffer s(4);
s.add16(ct);
s.add16(0x000A); // transition time = 1s
ZigbeeSendHue(shortaddr, 0x0300, 0x0A, s);
// char param[12];
// snprintf_P(param, sizeof(param), PSTR("%02X%02X0A00"), ct & 0xFF, ct >> 8);
// zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x0A, param);
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(2); // "ct"
light.setCT(ct);
}
// XY
void ZigbeeHueXY(uint16_t shortaddr, uint16_t x, uint16_t y) {
if (x > 0xFEFF) { x = 0xFEFF; }
if (y > 0xFEFF) { y = 0xFEFF; }
SBuffer s(8);
s.add16(x);
s.add16(y);
s.add16(0x000A); // transition time = 1s
ZigbeeSendHue(shortaddr, 0x0300, 0x07, s);
// char param[16];
// snprintf_P(param, sizeof(param), PSTR("%02X%02X%02X%02X0A00"), x & 0xFF, x >> 8, y & 0xFF, y >> 8);
// uint8_t colormode = 1; // "xy"
// zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x07, param);
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(1); // "xy"
light.setX(x);
light.setY(y);
}
// HueSat
void ZigbeeHueHS(uint16_t shortaddr, uint16_t hue, uint8_t sat) {
uint8_t hue8 = changeUIntScale(hue, 0, 360, 0, 254);
if (sat > 0xFE) { sat = 0xFE; }
SBuffer s(4);
s.add8(hue);
s.add8(sat);
s.add16(0);
ZigbeeSendHue(shortaddr, 0x0300, 0x06, s);
// char param[16];
// snprintf_P(param, sizeof(param), PSTR("%02X%02X0000"), hue8, sat);
// uint8_t colormode = 0; // "hs"
// zigbeeZCLSendStr(shortaddr, 0, 0, true, 0, 0x0300, 0x06, param);
Z_Data_Light & light = zigbee_devices.getLight(shortaddr);
light.setColorMode(0); // "hs"
light.setSat(sat);
light.setHue(hue);
}
void ZigbeeHandleHue(uint16_t shortaddr, uint32_t device_id, String &response) {
uint8_t bri, sat;
uint16_t ct, hue;
int code = 200;
bool resp = false; // is the response non null (add comma between parameters)
bool on = false;
uint8_t bulbtype = zigbee_devices.getHueBulbtype(shortaddr);
const size_t buf_size = 100;
char * buf = (char*) malloc(buf_size);
UnishoxStrings msg(HUE_LIGHTS);
if (Webserver->args()) {
response = "[";
JsonParser parser((char*) Webserver->arg((Webserver->args())-1).c_str());
JsonParserObject root = parser.getRootObject();
JsonParserToken hue_on = root[PSTR("on")];
if (hue_on) {
on = hue_on.getBool();
snprintf_P(buf, buf_size,
msg[HUE_RESP_ON],
device_id, on ? PSTR("true") : PSTR("false"));
if (on) {
ZigbeeHuePower(shortaddr, 0x01);
} else {
ZigbeeHuePower(shortaddr, 0x00);
}
response += buf;
resp = true;
}
parser.setCurrent();
JsonParserToken hue_bri = root[PSTR("bri")];
if (hue_bri) { // Brightness is a scale from 1 (the minimum the light is capable of) to 254 (the maximum). Note: a brightness of 1 is not off.
bri = hue_bri.getUInt();
prev_bri = bri; // store command value
if (resp) { response += ","; }
snprintf_P(buf, buf_size,
msg[HUE_RESP_NUM],
device_id, PSTR("bri"), bri);
response += buf;
if (LST_SINGLE <= bulbtype) {
// extend bri value if set to max
if (254 <= bri) { bri = 255; }
ZigbeeHueDimmer(shortaddr, bri);
}
resp = true;
}
// handle xy before Hue/Sat
// If the request contains both XY and HS, we wan't to give priority to HS
parser.setCurrent();
JsonParserToken hue_xy = root[PSTR("xy")];
if (hue_xy) {
JsonParserArray arr_xy = JsonParserArray(hue_xy);
JsonParserToken tok_x = arr_xy[0];
JsonParserToken tok_y = arr_xy[1];
float x = tok_x.getFloat();
float y = tok_y.getFloat();
strlcpy(prev_x_str, tok_x.getStr(), sizeof(prev_x_str));
strlcpy(prev_y_str, tok_y.getStr(), sizeof(prev_y_str));
if (resp) { response += ","; }
snprintf_P(buf, buf_size,
msg[HUE_RESP_XY],
device_id, prev_x_str, prev_y_str);
response += buf;
resp = true;
uint16_t xi = x * 65536.0f;
uint16_t yi = y * 65536.0f;
ZigbeeHueXY(shortaddr, xi, yi);
}
bool huesat_changed = false;
parser.setCurrent();
JsonParserToken hue_hue = root[PSTR("hue")];
if (hue_hue) { // The hue value is a wrapping value between 0 and 65535. Both 0 and 65535 are red, 25500 is green and 46920 is blue.
hue = hue_hue.getUInt();
prev_hue = hue;
if (resp) { response += ","; }
snprintf_P(buf, buf_size,
msg[HUE_RESP_NUM],
device_id, PSTR("hue"), hue);
response += buf;
if (LST_RGB <= bulbtype) {
// change range from 0..65535 to 0..360
hue = changeUIntScale(hue, 0, 65535, 0, 360);
huesat_changed = true;
}
resp = true;
}
parser.setCurrent();
JsonParserToken hue_sat = root[PSTR("sat")];
if (hue_sat) { // Saturation of the light. 254 is the most saturated (colored) and 0 is the least saturated (white).
sat = hue_sat.getUInt();
prev_sat = sat; // store command value
if (resp) { response += ","; }
snprintf_P(buf, buf_size,
msg[HUE_RESP_NUM],
device_id, PSTR("sat"), sat);
response += buf;
if (LST_RGB <= bulbtype) {
// extend sat value if set to max
if (254 <= sat) { sat = 255; }
huesat_changed = true;
}
if (huesat_changed) {
ZigbeeHueHS(shortaddr, hue, sat);
}
resp = true;
}
parser.setCurrent();
JsonParserToken hue_ct = root[PSTR("ct")];
if (hue_ct) { // Color temperature 153 (Cold) to 500 (Warm)
ct = hue_ct.getUInt();
prev_ct = ct; // store commande value
if (resp) { response += ","; }
snprintf_P(buf, buf_size,
msg[HUE_RESP_NUM],
device_id, PSTR("ct"), ct);
response += buf;
if ((LST_COLDWARM == bulbtype) || (LST_RGBW <= bulbtype)) {
ZigbeeHueCT(shortaddr, ct);
}
resp = true;
}
response += "]";
if (2 == response.length()) {
response = msg[HUE_ERROR_JSON];
}
}
else {
response = msg[HUE_ERROR_JSON];
}
AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_HTTP D_HUE " Result (%s)"), response.c_str());
WSSend(code, CT_JSON, response);
free(buf);
}
#endif // USE_WEBSERVER && USE_EMULATION && USE_EMULATION_HUE
#endif // USE_ZIGBEE