/* xdrv_05_irremote.ino - infra red support for Sonoff-Tasmota Copyright (C) 2019 Heiko Krupp, Lazar Obradovic and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #if defined(USE_IR_REMOTE) && !defined(USE_IR_REMOTE_FULL) /*********************************************************************************************\ * IR Remote send and receive using IRremoteESP8266 library \*********************************************************************************************/ #define XDRV_05 5 #include enum IrErrors { IE_NO_ERROR, IE_INVALID_RAWDATA, IE_INVALID_JSON, IE_SYNTAX_IRSEND, IE_SYNTAX_IRHVAC }; const char kIrRemoteCommands[] PROGMEM = "|" // No prefix #ifdef USE_IR_HVAC D_CMND_IRHVAC "|" #endif D_CMND_IRSEND ; void (* const IrRemoteCommand[])(void) PROGMEM = { #ifdef USE_IR_HVAC &CmndIrHvac, #endif &CmndIrSend }; // Based on IRremoteESP8266.h enum decode_type_t static const uint8_t MAX_STANDARD_IR = SHARP; // this is the last code mapped to decode_type_t enum IrVendors { IR_BASE = MAX_STANDARD_IR, #ifdef USE_IR_SEND_PIONEER IR_PIONEER, #endif // USE_IR_SEND_PIONEER }; const char kIrRemoteProtocols[] PROGMEM = "UNKNOWN|RC5|RC6|NEC|SONY|PANASONIC|JVC|SAMSUNG|WHYNTER|AIWA_RC_T501|LG|SANYO|MITSUBISHI|DISH|SHARP" // now allow for other codes beyond the first series; #ifdef USE_IR_SEND_PIONEER "|PIONEER" #endif // USE_IR_SEND_PIONEER ; /*********************************************************************************************\ * IR Send \*********************************************************************************************/ #include IRsend *irsend = nullptr; bool irsend_active = false; void IrSendInit(void) { irsend = new IRsend(pin[GPIO_IRSEND]); // an IR led is at GPIO_IRSEND irsend->begin(); } #ifdef USE_IR_RECEIVE /*********************************************************************************************\ * IR Receive \*********************************************************************************************/ const bool IR_RCV_SAVE_BUFFER = false; // false = do not use buffer, true = use buffer for decoding const uint32_t IR_TIME_AVOID_DUPLICATE = 500; // Milliseconds #include IRrecv *irrecv = nullptr; unsigned long ir_lasttime = 0; void IrReceiveUpdateThreshold() { if (irrecv != nullptr) { if (Settings.param[P_IR_UNKNOW_THRESHOLD] < 6) { Settings.param[P_IR_UNKNOW_THRESHOLD] = 6; } irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]); } } void IrReceiveInit(void) { // an IR led is at GPIO_IRRECV irrecv = new IRrecv(pin[GPIO_IRRECV], IR_RCV_BUFFER_SIZE, IR_RCV_TIMEOUT, IR_RCV_SAVE_BUFFER); irrecv->setUnknownThreshold(Settings.param[P_IR_UNKNOW_THRESHOLD]); irrecv->enableIRIn(); // Start the receiver // AddLog_P(LOG_LEVEL_DEBUG, PSTR("IrReceive initialized")); } void IrReceiveCheck(void) { char sirtype[14]; // Max is AIWA_RC_T501 int8_t iridx = 0; decode_results results; if (irrecv->decode(&results)) { char hvalue[65]; // Max 256 bits iridx = results.decode_type; if ((iridx < 0) || (iridx > 14)) { iridx = 0; } // UNKNOWN if (iridx) { if (results.bits > 64) { // This emulates IRutils resultToHexidecimal and may needs a larger IR_RCV_BUFFER_SIZE uint32_t digits2 = results.bits / 8; if (results.bits % 8) { digits2++; } ToHex_P((unsigned char*)results.state, digits2, hvalue, sizeof(hvalue)); // Get n-bit value as hex 56341200 } else { Uint64toHex(results.value, hvalue, results.bits); // Get 64bit value as hex 00123456 } } else { Uint64toHex(results.value, hvalue, 32); // UNKNOWN is always 32 bits hash } AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_IRR "Echo %d, RawLen %d, Overflow %d, Bits %d, Value 0x%s, Decode %d"), irsend_active, results.rawlen, results.overflow, results.bits, hvalue, results.decode_type); unsigned long now = millis(); // if ((now - ir_lasttime > IR_TIME_AVOID_DUPLICATE) && (UNKNOWN != results.decode_type) && (results.bits > 0)) { if (!irsend_active && (now - ir_lasttime > IR_TIME_AVOID_DUPLICATE)) { ir_lasttime = now; char svalue[64]; if (Settings.flag.ir_receive_decimal) { ulltoa(results.value, svalue, 10); } else { snprintf_P(svalue, sizeof(svalue), PSTR("\"0x%s\""), hvalue); } ResponseTime_P(PSTR(",\"" D_JSON_IRRECEIVED "\":{\"" D_JSON_IR_PROTOCOL "\":\"%s\",\"" D_JSON_IR_BITS "\":%d"), GetTextIndexed(sirtype, sizeof(sirtype), iridx, kIrRemoteProtocols), results.bits); if (iridx) { ResponseAppend_P(PSTR(",\"" D_JSON_IR_DATA "\":%s"), svalue); } else { ResponseAppend_P(PSTR(",\"" D_JSON_IR_HASH "\":%s"), svalue); } if (Settings.flag3.receive_raw) { ResponseAppend_P(PSTR(",\"" D_JSON_IR_RAWDATA "\":[")); uint16_t i; for (i = 1; i < results.rawlen; i++) { if (i > 1) { ResponseAppend_P(PSTR(",")); } uint32_t usecs; for (usecs = results.rawbuf[i] * kRawTick; usecs > UINT16_MAX; usecs -= UINT16_MAX) { ResponseAppend_P(PSTR("%d,0,"), UINT16_MAX); } ResponseAppend_P(PSTR("%d"), usecs); if (strlen(mqtt_data) > sizeof(mqtt_data) - 40) { break; } // Quit if char string becomes too long } uint16_t extended_length = results.rawlen - 1; for (uint32_t j = 0; j < results.rawlen - 1; j++) { uint32_t usecs = results.rawbuf[j] * kRawTick; // Add two extra entries for multiple larger than UINT16_MAX it is. extended_length += (usecs / (UINT16_MAX + 1)) * 2; } ResponseAppend_P(PSTR("],\"" D_JSON_IR_RAWDATA "Info\":[%d,%d,%d]"), extended_length, i -1, results.overflow); } ResponseJsonEndEnd(); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_IRRECEIVED)); if (iridx) { XdrvRulesProcess(); #ifdef USE_DOMOTICZ unsigned long value = results.value | (iridx << 28); // [Protocol:4, Data:28] DomoticzSensor(DZ_COUNT, value); // Send data as Domoticz Counter value #endif // USE_DOMOTICZ } } irrecv->resume(); } } #endif // USE_IR_RECEIVE #ifdef USE_IR_HVAC /*********************************************************************************************\ * IR Heating, Ventilation and Air Conditioning \*********************************************************************************************/ enum IrHvacVendors { VNDR_TOSHIBA, VNDR_MITSUBISHI, VNDR_LG, VNDR_FUJITSU, VNDR_MIDEA }; const char kIrHvacVendors[] PROGMEM = "Toshiba|Mitsubishi|LG|Fujitsu|Midea" ; const char kFanSpeedOptions[] = "A12345S"; const char kHvacModeOptions[] = "HDCA"; #ifdef USE_IR_HVAC_TOSHIBA /*-------------------------------------------------------------------------------------------*\ * Toshiba \*-------------------------------------------------------------------------------------------*/ const uint16_t HVAC_TOSHIBA_HDR_MARK = 4400; const uint16_t HVAC_TOSHIBA_HDR_SPACE = 4300; const uint16_t HVAC_TOSHIBA_BIT_MARK = 543; const uint16_t HVAC_TOSHIBA_ONE_SPACE = 1623; const uint16_t HVAC_MISTUBISHI_ZERO_SPACE = 472; const uint16_t HVAC_TOSHIBA_RPT_MARK = 440; const uint16_t HVAC_TOSHIBA_RPT_SPACE = 7048; // Above original iremote limit const uint8_t HVAC_TOSHIBA_DATALEN = 9; uint8_t IrHvacToshiba(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp) { uint16_t rawdata[2 + 2 * 8 * HVAC_TOSHIBA_DATALEN + 2]; uint8_t data[HVAC_TOSHIBA_DATALEN] = {0xF2, 0x0D, 0x03, 0xFC, 0x01, 0x00, 0x00, 0x00, 0x00}; char *p; uint8_t mode; if (HVAC_Mode == nullptr) { p = (char *)kHvacModeOptions; // default HVAC_HOT } else { p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } data[6] = (p - kHvacModeOptions) ^ 0x03; // HOT = 0x03, DRY = 0x02, COOL = 0x01, AUTO = 0x00 if (!HVAC_Power) { data[6] = (uint8_t)0x07; // Turn OFF HVAC } if (HVAC_FanMode == nullptr) { p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO } else { p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } mode = p - kFanSpeedOptions + 1; if ((1 == mode) || (7 == mode)) { mode = 0; } mode = mode << 5; // AUTO = 0x00, SPEED = 0x40, 0x60, 0x80, 0xA0, 0xC0, SILENT = 0x00 data[6] = data[6] | mode; uint8_t Temp; if (HVAC_Temp > 30) { Temp = 30; } else if (HVAC_Temp < 17) { Temp = 17; } else { Temp = HVAC_Temp; } data[5] = (uint8_t)(Temp - 17) << 4; data[HVAC_TOSHIBA_DATALEN - 1] = 0; for (uint32_t x = 0; x < HVAC_TOSHIBA_DATALEN - 1; x++) { data[HVAC_TOSHIBA_DATALEN - 1] = (uint8_t)data[x] ^ data[HVAC_TOSHIBA_DATALEN - 1]; // CRC is a simple bits addition } int i = 0; uint8_t mask = 1; //header rawdata[i++] = HVAC_TOSHIBA_HDR_MARK; rawdata[i++] = HVAC_TOSHIBA_HDR_SPACE; //data for (uint32_t b = 0; b < HVAC_TOSHIBA_DATALEN; b++) { for (mask = B10000000; mask > 0; mask >>= 1) { //iterate through bit mask if (data[b] & mask) { // Bit ONE rawdata[i++] = HVAC_TOSHIBA_BIT_MARK; rawdata[i++] = HVAC_TOSHIBA_ONE_SPACE; } else { // Bit ZERO rawdata[i++] = HVAC_TOSHIBA_BIT_MARK; rawdata[i++] = HVAC_MISTUBISHI_ZERO_SPACE; } } } //trailer rawdata[i++] = HVAC_TOSHIBA_RPT_MARK; rawdata[i++] = HVAC_TOSHIBA_RPT_SPACE; // noInterrupts(); irsend->sendRaw(rawdata, i, 38); irsend->sendRaw(rawdata, i, 38); // interrupts(); return IE_NO_ERROR; } #endif // USE_IR_HVAC_TOSHIBA #ifdef USE_IR_HVAC_MIDEA /*-------------------------------------------------------------------------------------------*\ * Midea / Komeco \*-------------------------------------------------------------------------------------------*/ // http://veillard.com/embedded/midea.html // https://github.com/sheinz/esp-midea-ir/blob/master/midea-ir.c const uint16_t HVAC_MIDEA_HDR_MARK = 4420; // 8T high const uint16_t HVAC_MIDEA_HDR_SPACE = 4420; // 8T low const uint16_t HVAC_MIDEA_BIT_MARK = 553; // 1T const uint16_t HVAC_MIDEA_ONE_SPACE = 1660; // 3T low const uint16_t HVAC_MIDEA_ZERO_SPACE = 553; // 1T high const uint16_t HVAC_MIDEA_RPT_MARK = 553; // 1T const uint16_t HVAC_MIDEA_RPT_SPACE = 5530; // 10T const uint8_t HVAC_MIDEA_DATALEN = 3; uint8_t IrHvacMidea(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp) { uint16_t rawdata[2 + 2 * 2 * 8 * HVAC_MIDEA_DATALEN + 2]; // START + 2* (2 * 3 BYTES) + STOP uint8_t data[HVAC_MIDEA_DATALEN] = {0xB2, 0x00, 0x00}; char *p; uint8_t mode; if (!HVAC_Power) { // Turn OFF HVAC data[1] = 0x7B; data[2] = 0xE0; } else { // FAN if (HVAC_FanMode == nullptr) { p = (char*)kFanSpeedOptions; // default auto } else { p = (char*)HVAC_FanMode; } switch(p[0]) { case '1': data[1] = 0xBF; break; // off case '2': data[1] = 0x9F; break; // low case '3': data[1] = 0x5F; break; // med case '4': data[1] = 0x3F; break; // high case '5': data[1] = 0x1F; break; // auto case 'A': data[1] = 0x1F; break; // auto default: return IE_SYNTAX_IRHVAC; } // TEMPERATURE uint8_t Temp; if (HVAC_Temp > 30) { Temp = 30; } else if (HVAC_Temp < 17) { Temp = 17; } else { Temp = HVAC_Temp-17; } if (10 == Temp) { // Temp is encoded as gray code; except 27 and 28. Go figure... data[2] = 0x90; } else if (11 == Temp) { data[2] = 0x80; } else { Temp = (Temp >> 1) ^Temp; data[2] = (Temp << 4); } // MODE if (HVAC_Mode == nullptr) { p = (char*)kHvacModeOptions + 3; // default to auto } else { p = (char*)HVAC_Mode; } switch(toupper(p[0])) { case 'D': data[2] = 0xE4; break; // for fan Temp must be 0XE case 'C': data[2] = 0x0 | data[2]; break; case 'A': data[2] = 0x8 | data[2]; data[1] = 0x1F; break; // for auto Fan must be 0x1 case 'H': data[2] = 0xC | data[2]; break; default: return IE_SYNTAX_IRHVAC; } } int i = 0; uint8_t mask = 1; //header rawdata[i++] = HVAC_MIDEA_HDR_MARK; rawdata[i++] = HVAC_MIDEA_HDR_SPACE; //data for (int b = 0; b < HVAC_MIDEA_DATALEN; b++) { // Send value for (mask = B10000000; mask > 0; mask >>= 1) { if (data[b] & mask) { // Bit ONE rawdata[i++] = HVAC_MIDEA_BIT_MARK; rawdata[i++] = HVAC_MIDEA_ONE_SPACE; } else { // Bit ZERO rawdata[i++] = HVAC_MIDEA_BIT_MARK; rawdata[i++] = HVAC_MIDEA_ZERO_SPACE; } } for (mask = B10000000; mask > 0; mask >>= 1) { // Send complement if (data[b] & mask) { // Bit ONE rawdata[i++] = HVAC_MIDEA_BIT_MARK; rawdata[i++] = HVAC_MIDEA_ZERO_SPACE; } else { // Bit ZERO rawdata[i++] = HVAC_MIDEA_BIT_MARK; rawdata[i++] = HVAC_MIDEA_ONE_SPACE; } } } //trailer rawdata[i++] = HVAC_MIDEA_RPT_MARK; rawdata[i++] = HVAC_MIDEA_RPT_SPACE; // this takes ~180 ms : irsend->sendRaw(rawdata, i, 38); irsend->sendRaw(rawdata, i, 38); return IE_NO_ERROR; } #endif // USE_IR_HVAC_MIDEA #ifdef USE_IR_HVAC_MITSUBISHI /*-------------------------------------------------------------------------------------------*\ * Mitsubishi \*-------------------------------------------------------------------------------------------*/ #include uint8_t IrHvacMitsubishi(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp) { char *p; uint8_t mode; IRMitsubishiAC mitsubir(pin[GPIO_IRSEND]); mitsubir.stateReset(); if (HVAC_Mode == nullptr) { p = (char *)kHvacModeOptions; // default HVAC_HOT } else { p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } mode = (p - kHvacModeOptions + 1) << 3; // HOT = 0x08, DRY = 0x10, COOL = 0x18, AUTO = 0x20 mitsubir.setMode(mode); mitsubir.setPower(HVAC_Power); if (HVAC_FanMode == nullptr) { p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO } else { p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } mode = p - kFanSpeedOptions; // AUTO = 0, SPEED = 1 .. 5, SILENT = 6 mitsubir.setFan(mode); mitsubir.setTemp(HVAC_Temp); mitsubir.setVane(MITSUBISHI_AC_VANE_AUTO); mitsubir.send(); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: Mitsubishi Power %d, Mode %d, FanSpeed %d, Temp %d, VaneMode %d"), // mitsubir->getPower(), mitsubir->getMode(), mitsubir->getFan(), mitsubir->getTemp(), mitsubir->getVane()); return IE_NO_ERROR; } #endif // USE_IR_HVAC_MITSUBISHI #ifdef USE_IR_HVAC_LG /*-------------------------------------------------------------------------------------------*\ * LG \*-------------------------------------------------------------------------------------------*/ const uint8_t HVAC_LG_DATALEN = 7; uint8_t IrHvacLG(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp) { uint32_t LG_Code; uint8_t data[HVAC_LG_DATALEN]; static bool hvacOn = false; char *p; uint8_t mode; uint8_t Temp; // Constant data data[0] = 0x08; data[1] = 0x08; data[2] = 0x00; if (!HVAC_Power) { data[2] = (uint8_t)0x0C; // Turn OFF HVAC, code 0x88C0051 data[3] = (uint8_t)0x00; data[4] = (uint8_t)0x00; data[5] = (uint8_t)0x05; data[6] = (uint8_t)0x01; hvacOn = false; } else { // Set code for HVAC Mode - data[3] if (HVAC_Mode == nullptr) { p = (char *)kHvacModeOptions; // default HVAC_HOT } else { p = strchr(kHvacModeOptions, toupper(HVAC_Mode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } mode = (p - kHvacModeOptions) ^ 0x03; // HOT = 0x03, DRY = 0x02, COOL = 0x01, AUTO = 0x00 switch (mode) { case 0: // AUTO data[3] = 11; break; case 1: // COOL data[3] = 8; break; case 2: // DRY data[3] = 9; break; case 3: // HOT data[3] = 12; break; } if (!hvacOn) { data[3] = data[3] & 7; // reset bit3 hvacOn = true; } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: HvacMode %s, ModeVal %d, Code %d"), p, mode, data[3]); // Set code for HVAC temperature - data[4] if (HVAC_Temp > 30) { Temp = 30; } else if (HVAC_Temp < 18) { Temp = 18; } else { Temp = HVAC_Temp; } data[4] = (uint8_t)(Temp - 15); // Set code for HVAC fan mode - data[5] if (HVAC_FanMode == nullptr) { p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO } else { p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } mode = p - kFanSpeedOptions; if ((mode == 0) || (mode > 3)) { data[5] = 5; // Auto = 0x05 } else { data[5] = (mode * 2) - 2; // Low = 0x00, Mid = 0x02, High = 0x04 } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: FanMode %s, ModeVal %d, Code %d"), p, mode, data[5]); // Set CRC code - data[6] data[6] = (data[3] + data[4] + data[5]) & 0x0f; // CRC } // Build LG IR code LG_Code = data[0] << 4; for (uint32_t i = 1; i < 6; i++) { LG_Code = (LG_Code + data[i]) << 4; } LG_Code = LG_Code + data[6]; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: LG_Code %d"), LG_Code); // Send LG IR Code irsend->sendLG(LG_Code, 28); return IE_NO_ERROR; } #endif // USE_IR_HVAC_LG #ifdef USE_IR_HVAC_FUJITSU /*-------------------------------------------------------------------------------------------*\ * Fujitsu \*-------------------------------------------------------------------------------------------*/ #include uint8_t IrHvacFujitsu(const char *HVAC_Mode, const char *HVAC_FanMode, bool HVAC_Power, int HVAC_Temp) { const char kFujitsuHvacModeOptions[] = "HDCAF"; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("FUJITSU: mode:%s, fan:%s, power:%u, temp:%u"), HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); IRFujitsuAC ac(pin[GPIO_IRSEND]); if (0 == HVAC_Power) { ac.off(); ac.send(); return IE_NO_ERROR; } uint8_t modes[5] = {FUJITSU_AC_MODE_HEAT, FUJITSU_AC_MODE_DRY, FUJITSU_AC_MODE_COOL, FUJITSU_AC_MODE_AUTO, FUJITSU_AC_MODE_FAN}; uint8_t fanModes[7] = {FUJITSU_AC_FAN_AUTO, FUJITSU_AC_FAN_LOW, FUJITSU_AC_FAN_MED, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_HIGH, FUJITSU_AC_FAN_QUIET}; ac.setCmd(FUJITSU_AC_CMD_TURN_ON); ac.setSwing(FUJITSU_AC_SWING_VERT); char *p; if (nullptr == HVAC_Mode) { p = (char *)kFujitsuHvacModeOptions; } else { p = strchr(kFujitsuHvacModeOptions, toupper(HVAC_Mode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } ac.setMode(modes[p - kFujitsuHvacModeOptions]); if (HVAC_FanMode == nullptr) { p = (char *)kFanSpeedOptions; // default FAN_SPEED_AUTO } else { p = strchr(kFanSpeedOptions, toupper(HVAC_FanMode[0])); } if (!p) { return IE_SYNTAX_IRHVAC; } ac.setFanSpeed(fanModes[p - kFanSpeedOptions]); ac.setTemp(HVAC_Temp); ac.send(); return IE_NO_ERROR; } #endif // USE_IR_HVAC_FUJITSU /*-------------------------------------------------------------------------------------------*/ uint32_t IrRemoteCmndIrHvacJson(void) { // IrHvac { "Vendor": "", "Power": <0|1>, "Mode": "", "FanSpeed": "<1|2|3|4|5|Auto|Silence>", "Temp": <17..30> } const char *HVAC_Mode; const char *HVAC_FanMode; const char *HVAC_Vendor; char parm_uc[12]; int HVAC_Temp = 21; bool HVAC_Power = true; char dataBufUc[XdrvMailbox.data_len]; UpperCase(dataBufUc, XdrvMailbox.data); RemoveSpace(dataBufUc); if (strlen(dataBufUc) < 8) { return IE_INVALID_JSON; } StaticJsonBuffer<164> jsonBufer; JsonObject &root = jsonBufer.parseObject(dataBufUc); if (!root.success()) { return IE_INVALID_JSON; } HVAC_Vendor = root[UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_VENDOR))]; HVAC_Power = root[UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_POWER))]; HVAC_Mode = root[UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_MODE))]; HVAC_FanMode = root[UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_FANSPEED))]; HVAC_Temp = root[UpperCase_P(parm_uc, PSTR(D_JSON_IRHVAC_TEMP))]; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRHVAC: Received Vendor %s, Power %d, Mode %s, FanSpeed %s, Temp %d"), HVAC_Vendor, HVAC_Power, HVAC_Mode, HVAC_FanMode, HVAC_Temp); char vendor[20]; int vendor_code = GetCommandCode(vendor, sizeof(vendor), HVAC_Vendor, kIrHvacVendors); irsend_active = true; switch (vendor_code) { #ifdef USE_IR_HVAC_TOSHIBA case VNDR_TOSHIBA: return IrHvacToshiba(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); #endif #ifdef USE_IR_HVAC_MITSUBISHI case VNDR_MITSUBISHI: return IrHvacMitsubishi(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); #endif #ifdef USE_IR_HVAC_LG case VNDR_LG: return IrHvacLG(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); #endif #ifdef USE_IR_HVAC_FUJITSU case VNDR_FUJITSU: return IrHvacFujitsu(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); #endif #ifdef USE_IR_HVAC_MIDEA case VNDR_MIDEA: return IrHvacMidea(HVAC_Mode, HVAC_FanMode, HVAC_Power, HVAC_Temp); #endif default: irsend_active = false; } return IE_SYNTAX_IRHVAC; } void CmndIrHvac(void) { uint8_t error = IE_SYNTAX_IRHVAC; if (XdrvMailbox.data_len) { error = IrRemoteCmndIrHvacJson(); } IrRemoteCmndResponse(error); } #endif // USE_IR_HVAC /*********************************************************************************************\ * Commands \*********************************************************************************************/ uint32_t IrRemoteCmndIrSendRaw(void) { // IRsend ,, ... // or // IRsend raw,,, (one space = zero space *2) // IRsend raw,,,, // IRsend raw,,,, // IRsend raw,,
,
,,,, char *p; char *str = strtok_r(XdrvMailbox.data, ", ", &p); if (p == nullptr) { return IE_INVALID_RAWDATA; } // repeat uint16_t repeat = XdrvMailbox.index > 0 ? XdrvMailbox.index - 1 : 0; uint16_t freq = atoi(str); if (!freq && (*str != '0')) { // First parameter is any string uint16_t count = 0; char *q = p; for (; *q; count += (*q++ == ',')); if (count < 2) { return IE_INVALID_RAWDATA; } // Parameters must be at least 3 uint16_t parm[count]; for (uint32_t i = 0; i < count; i++) { parm[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); if (!parm[i]) { if (!i) { parm[0] = 38000; // Frequency default to 38kHz } else { return IE_INVALID_RAWDATA; // Other parameters may not be 0 } } } uint16_t i = 0; if (count < 4) { // IRsend raw,0,889,000000100110000001001 uint16_t mark = parm[1] *2; // Protocol where 0 = t, 1 = 2t (RC5) if (3 == count) { if (parm[2] < parm[1]) { // IRsend raw,0,889,2,000000100110000001001 mark = parm[1] * parm[2]; // Protocol where 0 = t1, 1 = t1*t2 (Could be RC5) } else { // IRsend raw,0,889,1778,000000100110000001001 mark = parm[2]; // Protocol where 0 = t1, 1 = t2 (Could be RC5) } } uint16_t raw_array[strlen(p)]; // Bits for (; *p; *p++) { if (*p == '0') { raw_array[i++] = parm[1]; // Space } else if (*p == '1') { raw_array[i++] = mark; // Mark } } irsend_active = true; for (uint32_t r = 0; r <= repeat; r++) { irsend->sendRaw(raw_array, i, parm[0]); if (r < repeat) { // if it's not the last message irsend->space(40000); // since we don't know the inter-message gap, place an arbitrary 40ms gap } } } else if (6 == count) { // NEC Protocol // IRsend raw,0,8620,4260,544,411,1496,010101101000111011001110000000001100110000000001100000000000000010001100 uint16_t raw_array[strlen(p)*2+3]; // Header + bits + end raw_array[i++] = parm[1]; // Header mark raw_array[i++] = parm[2]; // Header space uint32_t inter_message_32 = (parm[1] + parm[2]) * 3; // compute an inter-message gap (32 bits) uint16_t inter_message = (inter_message_32 > 65000) ? 65000 : inter_message_32; // avoid 16 bits overflow for (; *p; *p++) { if (*p == '0') { raw_array[i++] = parm[3]; // Bit mark raw_array[i++] = parm[4]; // Zero space } else if (*p == '1') { raw_array[i++] = parm[3]; // Bit mark raw_array[i++] = parm[5]; // One space } } raw_array[i++] = parm[3]; // Trailing mark irsend_active = true; for (uint32_t r = 0; r <= repeat; r++) { irsend->sendRaw(raw_array, i, parm[0]); if (r < repeat) { // if it's not the last message irsend->space(inter_message); // since we don't know the inter-message gap, place an arbitrary 40ms gap } } } else { return IE_INVALID_RAWDATA; // Invalid number of parameters } } else { if (!freq) { freq = 38000; } // Default to 38kHz uint16_t count = 0; char *q = p; for (; *q; count += (*q++ == ',')); if (0 == count) { return IE_INVALID_RAWDATA; } // IRsend 0,896,876,900,888,894,876,1790,874,872,1810,1736,948,872,880,872,936,872,1792,900,888,1734 count++; if (count < 200) { uint16_t raw_array[count]; // It's safe to use stack for up to 200 packets (limited by mqtt_data length) for (uint32_t i = 0; i < count; i++) { raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: stack count %d"), count); irsend_active = true; for (uint32_t r = 0; r <= repeat; r++) { irsend->sendRaw(raw_array, count, freq); } } else { uint16_t *raw_array = reinterpret_cast(malloc(count * sizeof(uint16_t))); if (raw_array == nullptr) { return IE_INVALID_RAWDATA; } for (uint32_t i = 0; i < count; i++) { raw_array[i] = strtol(strtok_r(nullptr, ", ", &p), nullptr, 0); // Allow decimal (20496) and hexadecimal (0x5010) input } // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("DBG: heap count %d"), count); irsend_active = true; for (uint32_t r = 0; r <= repeat; r++) { irsend->sendRaw(raw_array, count, freq); } free(raw_array); } } return IE_NO_ERROR; } uint32_t IrRemoteCmndIrSendJson(void) { // ArduinoJSON entry used to calculate jsonBuf: JSON_OBJECT_SIZE(3) + 40 = 96 // IRsend { "protocol": "RC5", "bits": 12, "data":"0xC86" } // IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 } char dataBufUc[XdrvMailbox.data_len]; UpperCase(dataBufUc, XdrvMailbox.data); RemoveSpace(dataBufUc); if (strlen(dataBufUc) < 8) { return IE_INVALID_JSON; } StaticJsonBuffer<140> jsonBuf; JsonObject &root = jsonBuf.parseObject(dataBufUc); if (!root.success()) { return IE_INVALID_JSON; } // IRsend { "protocol": "SAMSUNG", "bits": 32, "data": 551502015 } // IRsend { "protocol": "NEC", "bits": 32, "data":"0x02FDFE80", "repeat": 2 } char parm_uc[10]; const char *protocol = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_PROTOCOL))]; uint16_t bits = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_BITS))]; uint64_t data = strtoull(root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_DATA))], nullptr, 0); uint16_t repeat = root[UpperCase_P(parm_uc, PSTR(D_JSON_IR_REPEAT))]; // check if the IRSend is great than repeat if (XdrvMailbox.index > repeat + 1) { repeat = XdrvMailbox.index - 1; } if (!(protocol && bits)) { return IE_SYNTAX_IRSEND; } char protocol_text[20]; int protocol_code = GetCommandCode(protocol_text, sizeof(protocol_text), protocol, kIrRemoteProtocols); char dvalue[64]; char hvalue[20]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("IRS: protocol_text %s, protocol %s, bits %d, data %s (0x%s), repeat %d, protocol_code %d"), protocol_text, protocol, bits, ulltoa(data, dvalue, 10), Uint64toHex(data, hvalue, bits), repeat, protocol_code); irsend_active = true; switch (protocol_code) { // Equals IRremoteESP8266.h enum decode_type_t #ifdef USE_IR_SEND_RC5 case RC5: irsend->sendRC5(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_RC6 case RC6: irsend->sendRC6(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_NEC case NEC: irsend->sendNEC(data, (bits > NEC_BITS) ? NEC_BITS : bits, repeat); break; #endif #ifdef USE_IR_SEND_SONY case SONY: irsend->sendSony(data, (bits > SONY_20_BITS) ? SONY_20_BITS : bits, repeat > kSonyMinRepeat ? repeat : kSonyMinRepeat); break; #endif #ifdef USE_IR_SEND_PANASONIC case PANASONIC: irsend->sendPanasonic64(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_JVC case JVC: irsend->sendJVC(data, (bits > JVC_BITS) ? JVC_BITS : bits, repeat > 1 ? repeat : 1); break; #endif #ifdef USE_IR_SEND_SAMSUNG case SAMSUNG: irsend->sendSAMSUNG(data, (bits > SAMSUNG_BITS) ? SAMSUNG_BITS : bits, repeat); break; #endif #ifdef USE_IR_SEND_WHYNTER case WHYNTER: irsend->sendWhynter(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_AIWA case AIWA_RC_T501: irsend->sendAiwaRCT501(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_LG case LG: irsend->sendLG(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_SANYO case SANYO: irsend->sendSanyoLC7461(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_MITSUBISHI case MITSUBISHI: irsend->sendMitsubishi(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_DISH case DISH: irsend->sendDISH(data, (bits > DISH_BITS) ? DISH_BITS : bits, repeat > kDishMinRepeat ? repeat : kDishMinRepeat); break; #endif #ifdef USE_IR_SEND_SHARP case SHARP: irsend->sendSharpRaw(data, bits, repeat); break; #endif #ifdef USE_IR_SEND_PIONEER case IR_PIONEER: irsend->sendPioneer(data, bits, repeat); break; #endif // USE_IR_SEND_PIONEER default: irsend_active = false; ResponseCmndChar(D_JSON_PROTOCOL_NOT_SUPPORTED); } return IE_NO_ERROR; } void CmndIrSend(void) { uint8_t error = IE_SYNTAX_IRSEND; if (XdrvMailbox.data_len) { // error = (strstr(XdrvMailbox.data, "{") == nullptr) ? IrRemoteCmndIrSendRaw() : IrRemoteCmndIrSendJson(); if (strstr(XdrvMailbox.data, "{") == nullptr) { error = IrRemoteCmndIrSendRaw(); } else { error = IrRemoteCmndIrSendJson(); } } IrRemoteCmndResponse(error); } void IrRemoteCmndResponse(uint32_t error) { switch (error) { case IE_INVALID_RAWDATA: ResponseCmndChar(D_JSON_INVALID_RAWDATA); break; case IE_INVALID_JSON: ResponseCmndChar(D_JSON_INVALID_JSON); break; case IE_SYNTAX_IRSEND: Response_P(PSTR("{\"" D_CMND_IRSEND "\":\"" D_JSON_NO " " D_JSON_IR_PROTOCOL ", " D_JSON_IR_BITS " " D_JSON_OR " " D_JSON_IR_DATA "\"}")); break; #ifdef USE_IR_HVAC case IE_SYNTAX_IRHVAC: Response_P(PSTR("{\"" D_CMND_IRHVAC "\":\"" D_JSON_WRONG " " D_JSON_IRHVAC_VENDOR ", " D_JSON_IRHVAC_MODE " " D_JSON_OR " " D_JSON_IRHVAC_FANSPEED "\"}")); break; #endif // USE_IR_HVAC default: // IE_NO_ERROR ResponseCmndDone(); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv05(uint8_t function) { bool result = false; if ((pin[GPIO_IRSEND] < 99) || (pin[GPIO_IRRECV] < 99)) { switch (function) { case FUNC_PRE_INIT: if (pin[GPIO_IRSEND] < 99) { IrSendInit(); } #ifdef USE_IR_RECEIVE if (pin[GPIO_IRRECV] < 99) { IrReceiveInit(); } #endif // USE_IR_RECEIVE break; case FUNC_EVERY_50_MSECOND: #ifdef USE_IR_RECEIVE if (pin[GPIO_IRRECV] < 99) { IrReceiveCheck(); // check if there's anything on IR side } #endif // USE_IR_RECEIVE irsend_active = false; // re-enable IR reception break; case FUNC_COMMAND: if (pin[GPIO_IRSEND] < 99) { result = DecodeCommand(kIrRemoteCommands, IrRemoteCommand); } break; } } return result; } #endif // defined(USE_IR_REMOTE) && !defined(USE_IR_REMOTE_FULL)