/* xsns_12_ads1115_ada.ino - ADS1115 A/D Converter support for Sonoff-Tasmota Copyright (C) 2018 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_ADS1115 /*********************************************************************************************\ * ADS1115 - 4 channel 16BIT A/D converter * * Required library: none but based on Adafruit Industries ADS1015 library * * I2C Address: 0x48, 0x49, 0x4A or 0x4B * * The ADC input range (or gain) can be changed via the following * defines, but be careful never to exceed VDD +0.3V max, or to * exceed the upper and lower limits if you adjust the input range! * Setting these values incorrectly may destroy your ADC! * ADS1115 * ------- * ADS1115_REG_CONFIG_PGA_6_144V // 2/3x gain +/- 6.144V 1 bit = 0.1875mV (default) * ADS1115_REG_CONFIG_PGA_4_096V // 1x gain +/- 4.096V 1 bit = 0.125mV * ADS1115_REG_CONFIG_PGA_2_048V // 2x gain +/- 2.048V 1 bit = 0.0625mV * ADS1115_REG_CONFIG_PGA_1_024V // 4x gain +/- 1.024V 1 bit = 0.03125mV * ADS1115_REG_CONFIG_PGA_0_512V // 8x gain +/- 0.512V 1 bit = 0.015625mV * ADS1115_REG_CONFIG_PGA_0_256V // 16x gain +/- 0.256V 1 bit = 0.0078125mV \*********************************************************************************************/ #define ADS1115_ADDRESS_ADDR_GND 0x48 // address pin low (GND) #define ADS1115_ADDRESS_ADDR_VDD 0x49 // address pin high (VCC) #define ADS1115_ADDRESS_ADDR_SDA 0x4A // address pin tied to SDA pin #define ADS1115_ADDRESS_ADDR_SCL 0x4B // address pin tied to SCL pin #define ADS1115_CONVERSIONDELAY (8) // CONVERSION DELAY (in mS) /*====================================================================== POINTER REGISTER -----------------------------------------------------------------------*/ #define ADS1115_REG_POINTER_MASK (0x03) #define ADS1115_REG_POINTER_CONVERT (0x00) #define ADS1115_REG_POINTER_CONFIG (0x01) #define ADS1115_REG_POINTER_LOWTHRESH (0x02) #define ADS1115_REG_POINTER_HITHRESH (0x03) /*====================================================================== CONFIG REGISTER -----------------------------------------------------------------------*/ #define ADS1115_REG_CONFIG_OS_MASK (0x8000) #define ADS1115_REG_CONFIG_OS_SINGLE (0x8000) // Write: Set to start a single-conversion #define ADS1115_REG_CONFIG_OS_BUSY (0x0000) // Read: Bit = 0 when conversion is in progress #define ADS1115_REG_CONFIG_OS_NOTBUSY (0x8000) // Read: Bit = 1 when device is not performing a conversion #define ADS1115_REG_CONFIG_MUX_MASK (0x7000) #define ADS1115_REG_CONFIG_MUX_DIFF_0_1 (0x0000) // Differential P = AIN0, N = AIN1 (default) #define ADS1115_REG_CONFIG_MUX_DIFF_0_3 (0x1000) // Differential P = AIN0, N = AIN3 #define ADS1115_REG_CONFIG_MUX_DIFF_1_3 (0x2000) // Differential P = AIN1, N = AIN3 #define ADS1115_REG_CONFIG_MUX_DIFF_2_3 (0x3000) // Differential P = AIN2, N = AIN3 #define ADS1115_REG_CONFIG_MUX_SINGLE_0 (0x4000) // Single-ended AIN0 #define ADS1115_REG_CONFIG_MUX_SINGLE_1 (0x5000) // Single-ended AIN1 #define ADS1115_REG_CONFIG_MUX_SINGLE_2 (0x6000) // Single-ended AIN2 #define ADS1115_REG_CONFIG_MUX_SINGLE_3 (0x7000) // Single-ended AIN3 #define ADS1115_REG_CONFIG_PGA_MASK (0x0E00) #define ADS1115_REG_CONFIG_PGA_6_144V (0x0000) // +/-6.144V range = Gain 2/3 (default) #define ADS1115_REG_CONFIG_PGA_4_096V (0x0200) // +/-4.096V range = Gain 1 #define ADS1115_REG_CONFIG_PGA_2_048V (0x0400) // +/-2.048V range = Gain 2 #define ADS1115_REG_CONFIG_PGA_1_024V (0x0600) // +/-1.024V range = Gain 4 #define ADS1115_REG_CONFIG_PGA_0_512V (0x0800) // +/-0.512V range = Gain 8 #define ADS1115_REG_CONFIG_PGA_0_256V (0x0A00) // +/-0.256V range = Gain 16 #define ADS1115_REG_CONFIG_MODE_MASK (0x0100) #define ADS1115_REG_CONFIG_MODE_CONTIN (0x0000) // Continuous conversion mode #define ADS1115_REG_CONFIG_MODE_SINGLE (0x0100) // Power-down single-shot mode (default) #define ADS1115_REG_CONFIG_DR_MASK (0x00E0) #define ADS1115_REG_CONFIG_DR_128SPS (0x0000) // 128 samples per second #define ADS1115_REG_CONFIG_DR_250SPS (0x0020) // 250 samples per second #define ADS1115_REG_CONFIG_DR_490SPS (0x0040) // 490 samples per second #define ADS1115_REG_CONFIG_DR_920SPS (0x0060) // 920 samples per second #define ADS1115_REG_CONFIG_DR_1600SPS (0x0080) // 1600 samples per second (default) #define ADS1115_REG_CONFIG_DR_2400SPS (0x00A0) // 2400 samples per second #define ADS1115_REG_CONFIG_DR_3300SPS (0x00C0) // 3300 samples per second #define ADS1115_REG_CONFIG_DR_6000SPS (0x00E0) // 6000 samples per second #define ADS1115_REG_CONFIG_CMODE_MASK (0x0010) #define ADS1115_REG_CONFIG_CMODE_TRAD (0x0000) // Traditional comparator with hysteresis (default) #define ADS1115_REG_CONFIG_CMODE_WINDOW (0x0010) // Window comparator #define ADS1115_REG_CONFIG_CPOL_MASK (0x0008) #define ADS1115_REG_CONFIG_CPOL_ACTVLOW (0x0000) // ALERT/RDY pin is low when active (default) #define ADS1115_REG_CONFIG_CPOL_ACTVHI (0x0008) // ALERT/RDY pin is high when active #define ADS1115_REG_CONFIG_CLAT_MASK (0x0004) // Determines if ALERT/RDY pin latches once asserted #define ADS1115_REG_CONFIG_CLAT_NONLAT (0x0000) // Non-latching comparator (default) #define ADS1115_REG_CONFIG_CLAT_LATCH (0x0004) // Latching comparator #define ADS1115_REG_CONFIG_CQUE_MASK (0x0003) #define ADS1115_REG_CONFIG_CQUE_1CONV (0x0000) // Assert ALERT/RDY after one conversions #define ADS1115_REG_CONFIG_CQUE_2CONV (0x0001) // Assert ALERT/RDY after two conversions #define ADS1115_REG_CONFIG_CQUE_4CONV (0x0002) // Assert ALERT/RDY after four conversions #define ADS1115_REG_CONFIG_CQUE_NONE (0x0003) // Disable the comparator and put ALERT/RDY in high state (default) uint8_t ads1115_type = 0; uint8_t ads1115_address; uint8_t ads1115_addresses[] = { ADS1115_ADDRESS_ADDR_GND, ADS1115_ADDRESS_ADDR_VDD, ADS1115_ADDRESS_ADDR_SDA, ADS1115_ADDRESS_ADDR_SCL }; //Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_SINGLE); //Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_CONTIN); void Ads1115StartComparator(uint8_t channel, uint16_t mode) { // Start with default values uint16_t config = mode | ADS1115_REG_CONFIG_CQUE_NONE | // Comparator enabled and asserts on 1 match ADS1115_REG_CONFIG_CLAT_NONLAT | // Non Latching mode ADS1115_REG_CONFIG_PGA_6_144V | // ADC Input voltage range (Gain) ADS1115_REG_CONFIG_CPOL_ACTVLOW | // Alert/Rdy active low (default val) ADS1115_REG_CONFIG_CMODE_TRAD | // Traditional comparator (default val) ADS1115_REG_CONFIG_DR_6000SPS; // 6000 samples per second // Set single-ended input channel config |= (ADS1115_REG_CONFIG_MUX_SINGLE_0 + (0x1000 * channel)); // Write config register to the ADC I2cWrite16(ads1115_address, ADS1115_REG_POINTER_CONFIG, config); } int16_t Ads1115GetConversion(uint8_t channel) { Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_SINGLE); // Wait for the conversion to complete delay(ADS1115_CONVERSIONDELAY); // Read the conversion results I2cRead16(ads1115_address, ADS1115_REG_POINTER_CONVERT); Ads1115StartComparator(channel, ADS1115_REG_CONFIG_MODE_CONTIN); delay(ADS1115_CONVERSIONDELAY); // Read the conversion results uint16_t res = I2cRead16(ads1115_address, ADS1115_REG_POINTER_CONVERT); return (int16_t)res; } /********************************************************************************************/ void Ads1115Detect() { uint16_t buffer; if (ads1115_type) { return; } for (byte i = 0; i < sizeof(ads1115_addresses); i++) { ads1115_address = ads1115_addresses[i]; if (I2cValidRead16(&buffer, ads1115_address, ADS1115_REG_POINTER_CONVERT)) { Ads1115StartComparator(i, ADS1115_REG_CONFIG_MODE_CONTIN); ads1115_type = 1; snprintf_P(log_data, sizeof(log_data), S_LOG_I2C_FOUND_AT, "ADS1115", ads1115_address); AddLog(LOG_LEVEL_DEBUG); break; } } } void Ads1115Show(boolean json) { if (ads1115_type) { char stemp[10]; byte dsxflg = 0; for (byte i = 0; i < 4; i++) { int16_t adc_value = Ads1115GetConversion(i); if (json) { if (!dsxflg ) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"ADS1115\":{"), mqtt_data); stemp[0] = '\0'; } dsxflg++; snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s%s\"" D_ANALOG_INPUT "%d\":%d"), mqtt_data, stemp, i, adc_value); strcpy(stemp, ","); #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ANALOG, mqtt_data, "ADS1115", i, adc_value); #endif // USE_WEBSERVER } } if (json) { if (dsxflg) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s}"), mqtt_data); } } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ #define XSNS_12 boolean Xsns12(byte function) { boolean result = false; if (i2c_flg) { switch (function) { // case FUNC_XSNS_INIT: // break; case FUNC_XSNS_PREP_BEFORE_TELEPERIOD: Ads1115Detect(); break; case FUNC_XSNS_JSON_APPEND: Ads1115Show(1); break; #ifdef USE_WEBSERVER case FUNC_XSNS_WEB_APPEND: Ads1115Show(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_ADS1115 #endif // USE_I2C