/* xdrv_87_tm1621_sonoff.ino - Sonoff POWR3xxD and THR3xxD display support for Tasmota SPDX-FileCopyrightText: 2022 Theo Arends SPDX-License-Identifier: GPL-3.0-only */ #ifdef USE_DISPLAY_TM1621_SONOFF /*********************************************************************************************\ * Sonoff POWR3xxD and THR3xxD LCD support * * {"NAME":"Sonoff POWR316D","GPIO":[32,0,0,0,0,576,0,0,0,224,9280,0,3104,0,320,0,0,0,0,0,0,9184,9248,9216,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1} * {"NAME":"Sonoff POWR320D","GPIO":[32,0,224,0,225,576,0,0,0,0,9280,0,3104,0,320,0,0,0,0,0,0,9184,9248,9216,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1} * {"NAME":"Sonoff THR316D","GPIO":[32,0,0,0,225,9280,0,0,0,321,0,576,320,9184,9216,0,0,224,0,9248,0,1,0,3840,0,0,0,0,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":1} \*********************************************************************************************/ #define XDRV_87 87 #define TM1621_PULSE_WIDTH 10 // microseconds (Sonoff = 100) #define TM1621_SYS_EN 0x01 // 0b00000001 #define TM1621_LCD_ON 0x03 // 0b00000011 #define TM1621_TIMER_DIS 0x04 // 0b00000100 #define TM1621_WDT_DIS 0x05 // 0b00000101 #define TM1621_TONE_OFF 0x08 // 0b00001000 #define TM1621_BIAS 0x29 // 0b00101001 = LCD 1/3 bias 4 commons option #define TM1621_IRQ_DIS 0x80 // 0b100x0xxx enum Tm1621Device { TM1621_USER, TM1621_POWR316D, TM1621_THR316D }; const uint8_t tm1621_commands[] = { TM1621_SYS_EN, TM1621_LCD_ON, TM1621_BIAS, TM1621_TIMER_DIS, TM1621_WDT_DIS, TM1621_TONE_OFF, TM1621_IRQ_DIS }; const char tm1621_kchar[] PROGMEM = { "0|1|2|3|4|5|6|7|8|9|-| " }; // 0 1 2 3 4 5 6 7 8 9 - off const uint8_t tm1621_digit_row[2][12] = {{ 0x5F, 0x50, 0x3D, 0x79, 0x72, 0x6B, 0x6F, 0x51, 0x7F, 0x7B, 0x20, 0x00 }, { 0xF5, 0x05, 0xB6, 0x97, 0x47, 0xD3, 0xF3, 0x85, 0xF7, 0xD7, 0x02, 0x00 }}; struct Tm1621 { uint8_t buffer[8]; char row[2][12]; uint8_t pin_da; uint8_t pin_cs; uint8_t pin_rd; uint8_t pin_wr; uint8_t state; uint8_t device; bool celsius; bool fahrenheit; bool humidity; bool voltage; bool kwh; bool present; } Tm1621; void TM1621StopSequence(void) { digitalWrite(Tm1621.pin_cs, 1); // Stop command sequence delayMicroseconds(TM1621_PULSE_WIDTH / 2); digitalWrite(Tm1621.pin_da, 1); // Reset data } void TM1621SendCmnd(uint16_t command) { uint16_t full_command = (0x0400 | command) << 5; // 0b100cccccccc00000 digitalWrite(Tm1621.pin_cs, 0); // Start command sequence delayMicroseconds(TM1621_PULSE_WIDTH / 2); for (uint32_t i = 0; i < 12; i++) { digitalWrite(Tm1621.pin_wr, 0); // Start write sequence if (full_command & 0x8000) { digitalWrite(Tm1621.pin_da, 1); // Set data } else { digitalWrite(Tm1621.pin_da, 0); // Set data } delayMicroseconds(TM1621_PULSE_WIDTH); digitalWrite(Tm1621.pin_wr, 1); // Read data delayMicroseconds(TM1621_PULSE_WIDTH); full_command <<= 1; } TM1621StopSequence(); } void TM1621SendAddress(uint16_t address) { uint16_t full_address = (address | 0x0140) << 7; // 0b101aaaaaa0000000 digitalWrite(Tm1621.pin_cs, 0); // Start command sequence delayMicroseconds(TM1621_PULSE_WIDTH / 2); for (uint32_t i = 0; i < 9; i++) { digitalWrite(Tm1621.pin_wr, 0); // Start write sequence if (full_address & 0x8000) { digitalWrite(Tm1621.pin_da, 1); // Set data } else { digitalWrite(Tm1621.pin_da, 0); // Set data } delayMicroseconds(TM1621_PULSE_WIDTH); digitalWrite(Tm1621.pin_wr, 1); // Read data delayMicroseconds(TM1621_PULSE_WIDTH); full_address <<= 1; } } void TM1621SendCommon(uint8_t common) { for (uint32_t i = 0; i < 8; i++) { digitalWrite(Tm1621.pin_wr, 0); // Start write sequence if (common & 1) { digitalWrite(Tm1621.pin_da, 1); // Set data } else { digitalWrite(Tm1621.pin_da, 0); // Set data } delayMicroseconds(TM1621_PULSE_WIDTH); digitalWrite(Tm1621.pin_wr, 1); // Read data delayMicroseconds(TM1621_PULSE_WIDTH); common >>= 1; } } void TM1621SendRows(void) { // Tm1621.row[x] = "text", "----", " " or a number with one decimal like "0.4", "237.5", "123456.7" // "123456.7" will be shown as "9999" being a four digit overflow // AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Row1 '%s', Row2 '%s'"), Tm1621.row[0], Tm1621.row[1]); uint8_t buffer[8] = { 0 }; // TM1621 16-segment 4-bit common buffer char row[4]; for (uint32_t j = 0; j < 2; j++) { // 0.4V => " 04", 0.0A => " ", 1234.5V => "1234" uint32_t len = strlen(Tm1621.row[j]); char *dp = nullptr; // Expect number larger than "123" int row_idx = len -3; // "1234.5" if (len <= 5) { // "----", " ", "0.4", "237.5" dp = strchr(Tm1621.row[j], '.'); row_idx = len -1; } else if (len > 6) { // "12345.6" snprintf_P(Tm1621.row[j], sizeof(Tm1621.row[j]), PSTR("9999")); row_idx = 3; } row[3] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' '; if ((row_idx >= 0) && dp) { row_idx--; } row[2] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' '; row[1] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' '; row[0] = (row_idx >= 0) ? Tm1621.row[j][row_idx--] : ' '; // AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Dump%d %4_H"), j +1, row); char command[10]; char needle[2] = { 0 }; for (uint32_t i = 0; i < 4; i++) { needle[0] = row[i]; int index = GetCommandCode(command, sizeof(command), (const char*)needle, tm1621_kchar); if (-1 == index) { index = 11; } uint32_t bidx = (0 == j) ? i : 7 -i; buffer[bidx] = tm1621_digit_row[j][index]; } if (dp) { if (0 == j) { buffer[2] |= 0x80; // Row 1 decimal point } else { buffer[5] |= 0x08; // Row 2 decimal point } } } if (Tm1621.fahrenheit) { buffer[1] |= 0x80; } if (Tm1621.celsius) { buffer[3] |= 0x80; } if (Tm1621.kwh) { buffer[4] |= 0x08; } if (Tm1621.humidity) { buffer[6] |= 0x08; } if (Tm1621.voltage) { buffer[7] |= 0x08; } // AddLog(LOG_LEVEL_DEBUG, PSTR("TM1: Dump3 %8_H"), buffer); TM1621SendAddress(0x10); // Sonoff only uses the upper 16 Segments for (uint32_t i = 0; i < 8; i++) { TM1621SendCommon(buffer[i]); } TM1621StopSequence(); } void TM1621PreInit(void) { if (!PinUsed(GPIO_TM1621_CS) || !PinUsed(GPIO_TM1621_WR) || !PinUsed(GPIO_TM1621_RD) || !PinUsed(GPIO_TM1621_DAT)) { return; } Tm1621.device = (14 == Pin(GPIO_TM1621_DAT)) ? TM1621_POWR316D : (5 == Pin(GPIO_TM1621_DAT)) ? TM1621_THR316D : TM1621_USER; Tm1621.present = true; Tm1621.pin_da = Pin(GPIO_TM1621_DAT); Tm1621.pin_cs = Pin(GPIO_TM1621_CS); Tm1621.pin_rd = Pin(GPIO_TM1621_RD); Tm1621.pin_wr = Pin(GPIO_TM1621_WR); pinMode(Tm1621.pin_da, OUTPUT); digitalWrite(Tm1621.pin_da, 1); pinMode(Tm1621.pin_cs, OUTPUT); digitalWrite(Tm1621.pin_cs, 1); pinMode(Tm1621.pin_rd, OUTPUT); digitalWrite(Tm1621.pin_rd, 1); pinMode(Tm1621.pin_wr, OUTPUT); digitalWrite(Tm1621.pin_wr, 1); Tm1621.state = 100; AddLog(LOG_LEVEL_INFO, PSTR("DSP: TM1621")); } void TM1621Init(void) { digitalWrite(Tm1621.pin_cs, 0); delayMicroseconds(80); digitalWrite(Tm1621.pin_rd, 0); delayMicroseconds(15); digitalWrite(Tm1621.pin_wr, 0); delayMicroseconds(25); digitalWrite(Tm1621.pin_da, 0); delayMicroseconds(TM1621_PULSE_WIDTH); digitalWrite(Tm1621.pin_da, 1); for (uint32_t command = 0; command < sizeof(tm1621_commands); command++) { TM1621SendCmnd(tm1621_commands[command]); } TM1621SendAddress(0x00); for (uint32_t segment = 0; segment < 16; segment++) { TM1621SendCommon(0); } TM1621StopSequence(); snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("----")); snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("----")); TM1621SendRows(); } void TM1621Show(void) { if (TM1621_POWR316D == Tm1621.device) { static uint32_t display = 0; if (0 == display) { Tm1621.kwh = false; ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &Energy.voltage[0]); ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &Energy.current[0]); Tm1621.voltage = true; display = 1; } else { Tm1621.voltage = false; ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &Energy.total[0]); ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &Energy.active_power[0]); Tm1621.kwh = true; display = 0; } TM1621SendRows(); } if (TM1621_THR316D == Tm1621.device) { Tm1621.celsius = false; Tm1621.fahrenheit = false; Tm1621.humidity = false; snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR(" ")); snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR(" ")); if (!isnan(TasmotaGlobal.temperature_celsius)) { float temperature = ConvertTempToFahrenheit(TasmotaGlobal.temperature_celsius); ext_snprintf_P(Tm1621.row[0], sizeof(Tm1621.row[0]), PSTR("%1_f"), &temperature); if (Settings->flag.temperature_conversion) { // SetOption8 - Switch between Celsius or Fahrenheit Tm1621.fahrenheit = true; } else { Tm1621.celsius = true; } } if (TasmotaGlobal.humidity > 0.0f) { Tm1621.humidity = true; ext_snprintf_P(Tm1621.row[1], sizeof(Tm1621.row[1]), PSTR("%1_f"), &TasmotaGlobal.humidity); } TM1621SendRows(); } } void TM1621EverySecond(void) { Tm1621.state++; if (5 == Tm1621.state) { TM1621Show(); Tm1621.state = 0; } if (102 == Tm1621.state) { TM1621Init(); Tm1621.state = 0; } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv87(uint8_t function) { bool result = false; if (FUNC_INIT == function) { TM1621PreInit(); } else if (Tm1621.present) { switch (function) { case FUNC_EVERY_SECOND: TM1621EverySecond(); break; } } return result; } #endif // USE_DISPLAY_TM1621_SONOFF