/** * @copyright (C) 2017 Melexis N.V. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. * */ #include #include #include void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640); int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640); int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2); float GetMedian(float *values, int n); int IsPixelBad(uint16_t pixel,paramsMLX90640 *params); int ValidateFrameData(uint16_t *frameData); int ValidateAuxData(uint16_t *auxData); int MLX90640_I2CRead(uint8_t addr, uint32_t reg, uint16_t len, uint16_t *reg_data); int MLX90640_I2CWrite(uint8_t _deviceAddress, unsigned int writeAddress, uint16_t data); // I2C #define I2C_BUFFER_LENGTH 128 int MLX90640_I2CRead(uint8_t addr, uint32_t reg, uint16_t len, uint16_t *reg_data){ int bytesRemaining = len * 2; int dataSpot = 0; //Start at beginning of array while (bytesRemaining > 0) { Wire.beginTransmission(addr); Wire.write(reg >> 8); //MSB Wire.write(reg & 0xFF); //LSB if (Wire.endTransmission(false) != 0) //Do not release bus { return (0); //Sensor did not ACK } int numberOfBytesToRead = bytesRemaining; if (numberOfBytesToRead > I2C_BUFFER_LENGTH) numberOfBytesToRead = I2C_BUFFER_LENGTH; Wire.requestFrom((int)addr, numberOfBytesToRead); if (Wire.available()) { for (uint32_t x = 0 ; x < numberOfBytesToRead / 2; x++) { reg_data[dataSpot] = Wire.read() << 8; //MSB reg_data[dataSpot] |= Wire.read(); //LSB dataSpot++; } } bytesRemaining -= numberOfBytesToRead; reg += numberOfBytesToRead / 2; } return (0); //Success } int MLX90640_I2CWrite(uint8_t _deviceAddress, unsigned int writeAddress, uint16_t data) { Wire.beginTransmission((uint8_t)_deviceAddress); Wire.write(writeAddress >> 8); //MSB Wire.write(writeAddress & 0xFF); //LSB Wire.write(data >> 8); //MSB Wire.write(data & 0xFF); //LSB if (Wire.endTransmission() != 0) { //Sensor did not ACK return (-1); } uint16_t dataCheck; MLX90640_I2CRead(_deviceAddress, writeAddress, 1, &dataCheck); if (dataCheck != data) { return -2; } return (0); //Success } int MLX90640_DumpEE(uint8_t slaveAddr, uint16_t *eeData) { return MLX90640_I2CRead(slaveAddr, 0x2400, 832, eeData); } int MLX90640_SynchFrame(uint8_t slaveAddr) { uint16_t dataReady = 0; uint16_t statusRegister; int error = 1; error = MLX90640_I2CWrite(slaveAddr, 0x8000, 0x0030); if(error == -1) { return error; } while(dataReady == 0) { error = MLX90640_I2CRead(slaveAddr, 0x8000, 1, &statusRegister); if(error != 0) { return error; } dataReady = statusRegister & 0x0008; } return 0; } // int MLX90640_TriggerMeasurement(uint8_t slaveAddr) // ATM not used in Tasmota // { // int error = 1; // uint16_t ctrlReg; // error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &ctrlReg); // if ( error != 0) // { // return error; // } // ctrlReg |= 0x8000; // error = MLX90640_I2CWrite(slaveAddr, 0x800D, ctrlReg); // if ( error != 0) // { // return error; // } // // error = MLX90640_I2CGeneralReset(); // // if ( error != 0) // // { // // return error; // // } // error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &ctrlReg); // if ( error != 0) // { // return error; // } // if ((ctrlReg & 0x8000) != 0) // { // return -9; // } // return 0; // } int MLX90640_GetFrameData(uint8_t slaveAddr, uint16_t *frameData) { uint16_t dataReady = 0; uint16_t controlRegister1; uint16_t statusRegister; int error = 1; uint16_t data[64]; uint8_t cnt = 0; while(dataReady == 0) { error = MLX90640_I2CRead(slaveAddr, 0x8000, 1, &statusRegister); if(error != 0) { return error; } dataReady = statusRegister & 0x0008; } error = MLX90640_I2CWrite(slaveAddr, 0x8000, 0x0030); if(error == -1) { return error; } error = MLX90640_I2CRead(slaveAddr, 0x0400, 768, frameData); if(error != 0) { return error; } error = MLX90640_I2CRead(slaveAddr, 0x0700, 64, data); if(error != 0) { return error; } error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); frameData[832] = controlRegister1; frameData[833] = statusRegister & 0x0001; if(error != 0) { return error; } error = ValidateAuxData(data); if(error == 0) { for(cnt=0; cnt<64; cnt++) { frameData[cnt+768] = data[cnt]; } } error = ValidateFrameData(frameData); if (error != 0) { return error; } return frameData[833]; } int ValidateFrameData(uint16_t *frameData) { uint8_t line = 0; for(int i=0; i<768; i+=32) { if((frameData[i] == 0x7FFF) && (line%2 == frameData[833])) return -8; line = line + 1; } return 0; } int ValidateAuxData(uint16_t *auxData) { if(auxData[0] == 0x7FFF) return -8; for(int i=8; i<19; i++) { if(auxData[i] == 0x7FFF) return -8; } for(int i=20; i<23; i++) { if(auxData[i] == 0x7FFF) return -8; } for(int i=24; i<33; i++) { if(auxData[i] == 0x7FFF) return -8; } for(int i=40; i<51; i++) { if(auxData[i] == 0x7FFF) return -8; } for(int i=52; i<55; i++) { if(auxData[i] == 0x7FFF) return -8; } for(int i=56; i<64; i++) { if(auxData[i] == 0x7FFF) return -8; } return 0; } int MLX90640_ExtractParameters(uint16_t *eeData, paramsMLX90640 *mlx90640, int _chunk) // Tasmota { int error = 0; switch(_chunk){ case 0: ExtractVDDParameters(eeData, mlx90640); ExtractPTATParameters(eeData, mlx90640); ExtractGainParameters(eeData, mlx90640); ExtractTgcParameters(eeData, mlx90640); ExtractResolutionParameters(eeData, mlx90640); ExtractKsTaParameters(eeData, mlx90640); ExtractKsToParameters(eeData, mlx90640); break; case 1: ExtractCPParameters(eeData, mlx90640); ExtractAlphaParameters(eeData, mlx90640); break; case 2: ExtractOffsetParameters(eeData, mlx90640); break; case 3: ExtractKtaPixelParameters(eeData, mlx90640); break; case 4: ExtractKvPixelParameters(eeData, mlx90640); break; case 5: ExtractCILCParameters(eeData, mlx90640); error = ExtractDeviatingPixels(eeData, mlx90640); break; } return error; } //------------------------------------------------------------------------------ int MLX90640_SetResolution(uint8_t slaveAddr, uint8_t resolution) { uint16_t controlRegister1; int value; int error; value = (resolution & 0x03) << 10; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error == 0) { value = (controlRegister1 & 0xF3FF) | value; error = MLX90640_I2CWrite(slaveAddr, 0x800D, value); } return error; } //------------------------------------------------------------------------------ int MLX90640_GetCurResolution(uint8_t slaveAddr) { uint16_t controlRegister1; int resolutionRAM; int error; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error != 0) { return error; } resolutionRAM = (controlRegister1 & 0x0C00) >> 10; return resolutionRAM; } //------------------------------------------------------------------------------ int MLX90640_SetRefreshRate(uint8_t slaveAddr, uint8_t refreshRate) { uint16_t controlRegister1; int value; int error; value = (refreshRate & 0x07)<<7; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error == 0) { value = (controlRegister1 & 0xFC7F) | value; error = MLX90640_I2CWrite(slaveAddr, 0x800D, value); } return error; } //------------------------------------------------------------------------------ int MLX90640_GetRefreshRate(uint8_t slaveAddr) { uint16_t controlRegister1; int refreshRate; int error; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error != 0) { return error; } refreshRate = (controlRegister1 & 0x0380) >> 7; return refreshRate; } //------------------------------------------------------------------------------ int MLX90640_SetInterleavedMode(uint8_t slaveAddr) { uint16_t controlRegister1; int value; int error; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error == 0) { value = (controlRegister1 & 0xEFFF); error = MLX90640_I2CWrite(slaveAddr, 0x800D, value); } return error; } //------------------------------------------------------------------------------ int MLX90640_SetChessMode(uint8_t slaveAddr) { uint16_t controlRegister1; int value; int error; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error == 0) { value = (controlRegister1 | 0x1000); error = MLX90640_I2CWrite(slaveAddr, 0x800D, value); } return error; } //------------------------------------------------------------------------------ int MLX90640_GetCurMode(uint8_t slaveAddr) { uint16_t controlRegister1; int modeRAM; int error; error = MLX90640_I2CRead(slaveAddr, 0x800D, 1, &controlRegister1); if(error != 0) { return error; } modeRAM = (controlRegister1 & 0x1000) >> 12; return modeRAM; } //------------------------------------------------------------------------------ void MLX90640_CalculateTo(uint16_t *frameData, const paramsMLX90640 *params, float emissivity, float tr, float *result, uint8_t _part) { float vdd; float ta; float ta4; float tr4; float taTr; float gain; float irDataCP[2]; float irData; float alphaCompensated; uint8_t mode; int8_t ilPattern; int8_t chessPattern; int8_t pattern; int8_t conversionPattern; float Sx; float To; float alphaCorrR[4]; int8_t range; uint16_t subPage; float ktaScale; float kvScale; float alphaScale; float kta; float kv; subPage = frameData[833]; vdd = MLX90640_GetVdd(frameData, params); ta = MLX90640_GetTa(frameData, params); ta4 = (ta + 273.15); ta4 = ta4 * ta4; ta4 = ta4 * ta4; tr4 = (tr + 273.15); tr4 = tr4 * tr4; tr4 = tr4 * tr4; taTr = tr4 - (tr4-ta4)/emissivity; ktaScale = pow(2,(double)params->ktaScale); kvScale = pow(2,(double)params->kvScale); alphaScale = pow(2,(double)params->alphaScale); alphaCorrR[0] = 1 / (1 + params->ksTo[0] * 40); alphaCorrR[1] = 1 ; alphaCorrR[2] = (1 + params->ksTo[1] * params->ct[2]); alphaCorrR[3] = alphaCorrR[2] * (1 + params->ksTo[2] * (params->ct[3] - params->ct[2])); //------------------------- Gain calculation ----------------------------------- gain = frameData[778]; if(gain > 32767) { gain = gain - 65536; } gain = params->gainEE / gain; //------------------------- To calculation ------------------------------------- mode = (frameData[832] & 0x1000) >> 5; irDataCP[0] = frameData[776]; irDataCP[1] = frameData[808]; for( int i = 0; i < 2; i++) { if(irDataCP[i] > 32767) { irDataCP[i] = irDataCP[i] - 65536; } irDataCP[i] = irDataCP[i] * gain; } irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); if( mode == params->calibrationModeEE) { irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); } else { irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); } uint32_t _offset = _part*(768/2); for( int pixelNumber = _offset; pixelNumber < (_offset+(768/2)); pixelNumber++) { ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2; chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2); conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern); if(mode == 0) { pattern = ilPattern; } else { pattern = chessPattern; } if(pattern == frameData[833]) { irData = frameData[pixelNumber]; if(irData > 32767) { irData = irData - 65536; } irData = irData * gain; kta = params->kta[pixelNumber]/ktaScale; kv = params->kv[pixelNumber]/kvScale; irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3)); if(mode != params->calibrationModeEE) { irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern; } irData = irData - params->tgc * irDataCP[subPage]; irData = irData / emissivity; alphaCompensated = SCALEALPHA*alphaScale/params->alpha[pixelNumber]; alphaCompensated = alphaCompensated*(1 + params->KsTa * (ta - 25)); Sx = alphaCompensated * alphaCompensated * alphaCompensated * (irData + alphaCompensated * taTr); Sx = sqrt(sqrt(Sx)) * params->ksTo[1]; To = sqrt(sqrt(irData/(alphaCompensated * (1 - params->ksTo[1] * 273.15) + Sx) + taTr)) - 273.15; if(To < params->ct[1]) { range = 0; } else if(To < params->ct[2]) { range = 1; } else if(To < params->ct[3]) { range = 2; } else { range = 3; } To = sqrt(sqrt(irData / (alphaCompensated * alphaCorrR[range] * (1 + params->ksTo[range] * (To - params->ct[range]))) + taTr)) - 273.15; result[pixelNumber] = To; } } } //------------------------------------------------------------------------------ // void MLX90640_GetImage(uint16_t *frameData, const paramsMLX90640 *params, float *result) // { // float vdd; // float ta; // float gain; // float irDataCP[2]; // float irData; // float alphaCompensated; // uint8_t mode; // int8_t ilPattern; // int8_t chessPattern; // int8_t pattern; // int8_t conversionPattern; // float image; // uint16_t subPage; // float ktaScale; // float kvScale; // float kta; // float kv; // subPage = frameData[833]; // vdd = MLX90640_GetVdd(frameData, params); // ta = MLX90640_GetTa(frameData, params); // ktaScale = pow(2,(double)params->ktaScale); // kvScale = pow(2,(double)params->kvScale); // //------------------------- Gain calculation ----------------------------------- // gain = frameData[778]; // if(gain > 32767) // { // gain = gain - 65536; // } // gain = params->gainEE / gain; // //------------------------- Image calculation ------------------------------------- // mode = (frameData[832] & 0x1000) >> 5; // irDataCP[0] = frameData[776]; // irDataCP[1] = frameData[808]; // for( int i = 0; i < 2; i++) // { // if(irDataCP[i] > 32767) // { // irDataCP[i] = irDataCP[i] - 65536; // } // irDataCP[i] = irDataCP[i] * gain; // } // irDataCP[0] = irDataCP[0] - params->cpOffset[0] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); // if( mode == params->calibrationModeEE) // { // irDataCP[1] = irDataCP[1] - params->cpOffset[1] * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); // } // else // { // irDataCP[1] = irDataCP[1] - (params->cpOffset[1] + params->ilChessC[0]) * (1 + params->cpKta * (ta - 25)) * (1 + params->cpKv * (vdd - 3.3)); // } // for( int pixelNumber = 0; pixelNumber < 768; pixelNumber++) // { // ilPattern = pixelNumber / 32 - (pixelNumber / 64) * 2; // chessPattern = ilPattern ^ (pixelNumber - (pixelNumber/2)*2); // conversionPattern = ((pixelNumber + 2) / 4 - (pixelNumber + 3) / 4 + (pixelNumber + 1) / 4 - pixelNumber / 4) * (1 - 2 * ilPattern); // if(mode == 0) // { // pattern = ilPattern; // } // else // { // pattern = chessPattern; // } // if(pattern == frameData[833]) // { // irData = frameData[pixelNumber]; // if(irData > 32767) // { // irData = irData - 65536; // } // irData = irData * gain; // kta = params->kta[pixelNumber]/ktaScale; // kv = params->kv[pixelNumber]/kvScale; // irData = irData - params->offset[pixelNumber]*(1 + kta*(ta - 25))*(1 + kv*(vdd - 3.3)); // if(mode != params->calibrationModeEE) // { // irData = irData + params->ilChessC[2] * (2 * ilPattern - 1) - params->ilChessC[1] * conversionPattern; // } // irData = irData - params->tgc * irDataCP[subPage]; // alphaCompensated = params->alpha[pixelNumber]; // image = irData*alphaCompensated; // result[pixelNumber] = image; // } // } // } //------------------------------------------------------------------------------ float MLX90640_GetVdd(uint16_t *frameData, const paramsMLX90640 *params) { float vdd; float resolutionCorrection; int resolutionRAM; vdd = frameData[810]; if(vdd > 32767) { vdd = vdd - 65536; } resolutionRAM = (frameData[832] & 0x0C00) >> 10; resolutionCorrection = pow(2, (double)params->resolutionEE) / pow(2, (double)resolutionRAM); vdd = (resolutionCorrection * vdd - params->vdd25) / params->kVdd + 3.3; return vdd; } //------------------------------------------------------------------------------ float MLX90640_GetTa(uint16_t *frameData, const paramsMLX90640 *params) { float ptat; float ptatArt; float vdd; float ta; vdd = MLX90640_GetVdd(frameData, params); ptat = frameData[800]; if(ptat > 32767) { ptat = ptat - 65536; } ptatArt = frameData[768]; if(ptatArt > 32767) { ptatArt = ptatArt - 65536; } ptatArt = (ptat / (ptat * params->alphaPTAT + ptatArt)) * pow(2, (double)18); ta = (ptatArt / (1 + params->KvPTAT * (vdd - 3.3)) - params->vPTAT25); ta = ta / params->KtPTAT + 25; return ta; } //------------------------------------------------------------------------------ int MLX90640_GetSubPageNumber(uint16_t *frameData) { return frameData[833]; } //------------------------------------------------------------------------------ void MLX90640_BadPixelsCorrection(uint16_t *pixels, float *to, int mode, paramsMLX90640 *params) { float ap[4]; uint8_t pix; uint8_t line; uint8_t column; pix = 0; while(pixels[pix] != 0xFFFF) { line = pixels[pix]>>5; column = pixels[pix] - (line<<5); if(mode == 1) { if(line == 0) { if(column == 0) { to[pixels[pix]] = to[33]; } else if(column == 31) { to[pixels[pix]] = to[62]; } else { to[pixels[pix]] = (to[pixels[pix]+31] + to[pixels[pix]+33])/2.0; } } else if(line == 23) { if(column == 0) { to[pixels[pix]] = to[705]; } else if(column == 31) { to[pixels[pix]] = to[734]; } else { to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]-31])/2.0; } } else if(column == 0) { to[pixels[pix]] = (to[pixels[pix]-31] + to[pixels[pix]+33])/2.0; } else if(column == 31) { to[pixels[pix]] = (to[pixels[pix]-33] + to[pixels[pix]+31])/2.0; } else { ap[0] = to[pixels[pix]-33]; ap[1] = to[pixels[pix]-31]; ap[2] = to[pixels[pix]+31]; ap[3] = to[pixels[pix]+33]; to[pixels[pix]] = GetMedian(ap,4); } } else { if(column == 0) { to[pixels[pix]] = to[pixels[pix]+1]; } else if(column == 1 || column == 30) { to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0; } else if(column == 31) { to[pixels[pix]] = to[pixels[pix]-1]; } else { if(IsPixelBad(pixels[pix]-2,params) == 0 && IsPixelBad(pixels[pix]+2,params) == 0) { ap[0] = to[pixels[pix]+1] - to[pixels[pix]+2]; ap[1] = to[pixels[pix]-1] - to[pixels[pix]-2]; if(fabs(ap[0]) > fabs(ap[1])) { to[pixels[pix]] = to[pixels[pix]-1] + ap[1]; } else { to[pixels[pix]] = to[pixels[pix]+1] + ap[0]; } } else { to[pixels[pix]] = (to[pixels[pix]-1]+to[pixels[pix]+1])/2.0; } } } pix = pix + 1; } } //------------------------------------------------------------------------------ void ExtractVDDParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int16_t kVdd; int16_t vdd25; kVdd = eeData[51]; kVdd = (eeData[51] & 0xFF00) >> 8; if(kVdd > 127) { kVdd = kVdd - 256; } kVdd = 32 * kVdd; vdd25 = eeData[51] & 0x00FF; vdd25 = ((vdd25 - 256) << 5) - 8192; mlx90640->kVdd = kVdd; mlx90640->vdd25 = vdd25; } //------------------------------------------------------------------------------ void ExtractPTATParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { float KvPTAT; float KtPTAT; int16_t vPTAT25; float alphaPTAT; KvPTAT = (eeData[50] & 0xFC00) >> 10; if(KvPTAT > 31) { KvPTAT = KvPTAT - 64; } KvPTAT = KvPTAT/4096; KtPTAT = eeData[50] & 0x03FF; if(KtPTAT > 511) { KtPTAT = KtPTAT - 1024; } KtPTAT = KtPTAT/8; vPTAT25 = eeData[49]; alphaPTAT = (eeData[16] & 0xF000) / pow(2, (double)14) + 8.0f; mlx90640->KvPTAT = KvPTAT; mlx90640->KtPTAT = KtPTAT; mlx90640->vPTAT25 = vPTAT25; mlx90640->alphaPTAT = alphaPTAT; } //------------------------------------------------------------------------------ void ExtractGainParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int16_t gainEE; gainEE = eeData[48]; if(gainEE > 32767) { gainEE = gainEE -65536; } mlx90640->gainEE = gainEE; } //------------------------------------------------------------------------------ void ExtractTgcParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { float tgc; tgc = eeData[60] & 0x00FF; if(tgc > 127) { tgc = tgc - 256; } tgc = tgc / 32.0f; mlx90640->tgc = tgc; } //------------------------------------------------------------------------------ void ExtractResolutionParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { uint8_t resolutionEE; resolutionEE = (eeData[56] & 0x3000) >> 12; mlx90640->resolutionEE = resolutionEE; } //------------------------------------------------------------------------------ void ExtractKsTaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { float KsTa; KsTa = (eeData[60] & 0xFF00) >> 8; if(KsTa > 127) { KsTa = KsTa -256; } KsTa = KsTa / 8192.0f; mlx90640->KsTa = KsTa; } //------------------------------------------------------------------------------ void ExtractKsToParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int KsToScale; int8_t step; step = ((eeData[63] & 0x3000) >> 12) * 10; mlx90640->ct[0] = -40; mlx90640->ct[1] = 0; mlx90640->ct[2] = (eeData[63] & 0x00F0) >> 4; mlx90640->ct[3] = (eeData[63] & 0x0F00) >> 8; mlx90640->ct[2] = mlx90640->ct[2]*step; mlx90640->ct[3] = mlx90640->ct[2] + mlx90640->ct[3]*step; mlx90640->ct[4] = 400; KsToScale = (eeData[63] & 0x000F) + 8; KsToScale = 1 << KsToScale; mlx90640->ksTo[0] = eeData[61] & 0x00FF; mlx90640->ksTo[1] = (eeData[61] & 0xFF00) >> 8; mlx90640->ksTo[2] = eeData[62] & 0x00FF; mlx90640->ksTo[3] = (eeData[62] & 0xFF00) >> 8; for(int i = 0; i < 4; i++) { if(mlx90640->ksTo[i] > 127) { mlx90640->ksTo[i] = mlx90640->ksTo[i] - 256; } mlx90640->ksTo[i] = mlx90640->ksTo[i] / KsToScale; } mlx90640->ksTo[4] = -0.0002; } //------------------------------------------------------------------------------ void ExtractAlphaParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int accRow[24]; int accColumn[32]; int p = 0; int alphaRef; uint8_t alphaScale; uint8_t accRowScale; uint8_t accColumnScale; uint8_t accRemScale; float alphaTemp[768]; float temp; accRemScale = eeData[32] & 0x000F; accColumnScale = (eeData[32] & 0x00F0) >> 4; accRowScale = (eeData[32] & 0x0F00) >> 8; alphaScale = ((eeData[32] & 0xF000) >> 12) + 30; alphaRef = eeData[33]; for(int i = 0; i < 6; i++) { p = i * 4; accRow[p + 0] = (eeData[34 + i] & 0x000F); accRow[p + 1] = (eeData[34 + i] & 0x00F0) >> 4; accRow[p + 2] = (eeData[34 + i] & 0x0F00) >> 8; accRow[p + 3] = (eeData[34 + i] & 0xF000) >> 12; } for(int i = 0; i < 24; i++) { if (accRow[i] > 7) { accRow[i] = accRow[i] - 16; } } for(int i = 0; i < 8; i++) { p = i * 4; accColumn[p + 0] = (eeData[40 + i] & 0x000F); accColumn[p + 1] = (eeData[40 + i] & 0x00F0) >> 4; accColumn[p + 2] = (eeData[40 + i] & 0x0F00) >> 8; accColumn[p + 3] = (eeData[40 + i] & 0xF000) >> 12; } for(int i = 0; i < 32; i ++) { if (accColumn[i] > 7) { accColumn[i] = accColumn[i] - 16; } } for(int i = 0; i < 24; i++) { for(int j = 0; j < 32; j ++) { p = 32 * i +j; alphaTemp[p] = (eeData[64 + p] & 0x03F0) >> 4; if (alphaTemp[p] > 31) { alphaTemp[p] = alphaTemp[p] - 64; } alphaTemp[p] = alphaTemp[p]*(1 << accRemScale); alphaTemp[p] = (alphaRef + (accRow[i] << accRowScale) + (accColumn[j] << accColumnScale) + alphaTemp[p]); alphaTemp[p] = alphaTemp[p] / pow(2,(double)alphaScale); alphaTemp[p] = alphaTemp[p] - mlx90640->tgc * (mlx90640->cpAlpha[0] + mlx90640->cpAlpha[1])/2; alphaTemp[p] = SCALEALPHA/alphaTemp[p]; } } temp = alphaTemp[0]; for(int i = 1; i < 768; i++) { if (alphaTemp[i] > temp) { temp = alphaTemp[i]; } } alphaScale = 0; while(temp < 32767.4) { temp = temp*2; alphaScale = alphaScale + 1; } for(int i = 0; i < 768; i++) { temp = alphaTemp[i] * pow(2,(double)alphaScale); mlx90640->alpha[i] = (temp + 0.5); } mlx90640->alphaScale = alphaScale; } //------------------------------------------------------------------------------ void ExtractOffsetParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int occRow[24]; int occColumn[32]; int p = 0; int16_t offsetRef; uint8_t occRowScale; uint8_t occColumnScale; uint8_t occRemScale; occRemScale = (eeData[16] & 0x000F); occColumnScale = (eeData[16] & 0x00F0) >> 4; occRowScale = (eeData[16] & 0x0F00) >> 8; offsetRef = eeData[17]; if (offsetRef > 32767) { offsetRef = offsetRef - 65536; } for(int i = 0; i < 6; i++) { p = i * 4; occRow[p + 0] = (eeData[18 + i] & 0x000F); occRow[p + 1] = (eeData[18 + i] & 0x00F0) >> 4; occRow[p + 2] = (eeData[18 + i] & 0x0F00) >> 8; occRow[p + 3] = (eeData[18 + i] & 0xF000) >> 12; } for(int i = 0; i < 24; i++) { if (occRow[i] > 7) { occRow[i] = occRow[i] - 16; } } for(int i = 0; i < 8; i++) { p = i * 4; occColumn[p + 0] = (eeData[24 + i] & 0x000F); occColumn[p + 1] = (eeData[24 + i] & 0x00F0) >> 4; occColumn[p + 2] = (eeData[24 + i] & 0x0F00) >> 8; occColumn[p + 3] = (eeData[24 + i] & 0xF000) >> 12; } for(int i = 0; i < 32; i ++) { if (occColumn[i] > 7) { occColumn[i] = occColumn[i] - 16; } } for(int i = 0; i < 24; i++) { for(int j = 0; j < 32; j ++) { p = 32 * i +j; mlx90640->offset[p] = (eeData[64 + p] & 0xFC00) >> 10; if (mlx90640->offset[p] > 31) { mlx90640->offset[p] = mlx90640->offset[p] - 64; } mlx90640->offset[p] = mlx90640->offset[p]*(1 << occRemScale); mlx90640->offset[p] = (offsetRef + (occRow[i] << occRowScale) + (occColumn[j] << occColumnScale) + mlx90640->offset[p]); } } } //------------------------------------------------------------------------------ void ExtractKtaPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int p = 0; int8_t KtaRC[4]; int8_t KtaRoCo; int8_t KtaRoCe; int8_t KtaReCo; int8_t KtaReCe; uint8_t ktaScale1; uint8_t ktaScale2; uint8_t split; float ktaTemp[768]; float temp; KtaRoCo = (eeData[54] & 0xFF00) >> 8; if (KtaRoCo > 127) { KtaRoCo = KtaRoCo - 256; } KtaRC[0] = KtaRoCo; KtaReCo = (eeData[54] & 0x00FF); if (KtaReCo > 127) { KtaReCo = KtaReCo - 256; } KtaRC[2] = KtaReCo; KtaRoCe = (eeData[55] & 0xFF00) >> 8; if (KtaRoCe > 127) { KtaRoCe = KtaRoCe - 256; } KtaRC[1] = KtaRoCe; KtaReCe = (eeData[55] & 0x00FF); if (KtaReCe > 127) { KtaReCe = KtaReCe - 256; } KtaRC[3] = KtaReCe; ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8; ktaScale2 = (eeData[56] & 0x000F); for(int i = 0; i < 24; i++) { for(int j = 0; j < 32; j ++) { p = 32 * i +j; split = 2*(p/32 - (p/64)*2) + p%2; ktaTemp[p] = (eeData[64 + p] & 0x000E) >> 1; if (ktaTemp[p] > 3) { ktaTemp[p] = ktaTemp[p] - 8; } ktaTemp[p] = ktaTemp[p] * (1 << ktaScale2); ktaTemp[p] = KtaRC[split] + ktaTemp[p]; ktaTemp[p] = ktaTemp[p] / pow(2,(double)ktaScale1); //ktaTemp[p] = ktaTemp[p] * mlx90640->offset[p]; } } temp = fabs(ktaTemp[0]); for(int i = 1; i < 768; i++) { if (fabs(ktaTemp[i]) > temp) { temp = fabs(ktaTemp[i]); } } ktaScale1 = 0; while(temp < 63.4) { temp = temp*2; ktaScale1 = ktaScale1 + 1; } for(int i = 0; i < 768; i++) { temp = ktaTemp[i] * pow(2,(double)ktaScale1); if (temp < 0) { mlx90640->kta[i] = (temp - 0.5); } else { mlx90640->kta[i] = (temp + 0.5); } } mlx90640->ktaScale = ktaScale1; } //------------------------------------------------------------------------------ void ExtractKvPixelParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { int p = 0; int8_t KvT[4]; int8_t KvRoCo; int8_t KvRoCe; int8_t KvReCo; int8_t KvReCe; uint8_t kvScale; uint8_t split; float kvTemp[768]; float temp; KvRoCo = (eeData[52] & 0xF000) >> 12; if (KvRoCo > 7) { KvRoCo = KvRoCo - 16; } KvT[0] = KvRoCo; KvReCo = (eeData[52] & 0x0F00) >> 8; if (KvReCo > 7) { KvReCo = KvReCo - 16; } KvT[2] = KvReCo; KvRoCe = (eeData[52] & 0x00F0) >> 4; if (KvRoCe > 7) { KvRoCe = KvRoCe - 16; } KvT[1] = KvRoCe; KvReCe = (eeData[52] & 0x000F); if (KvReCe > 7) { KvReCe = KvReCe - 16; } KvT[3] = KvReCe; kvScale = (eeData[56] & 0x0F00) >> 8; for(int i = 0; i < 24; i++) { for(int j = 0; j < 32; j ++) { p = 32 * i +j; split = 2*(p/32 - (p/64)*2) + p%2; kvTemp[p] = KvT[split]; kvTemp[p] = kvTemp[p] / pow(2,(double)kvScale); //kvTemp[p] = kvTemp[p] * mlx90640->offset[p]; } } temp = fabs(kvTemp[0]); for(int i = 1; i < 768; i++) { if (fabs(kvTemp[i]) > temp) { temp = fabs(kvTemp[i]); } } kvScale = 0; while(temp < 63.4) { temp = temp*2; kvScale = kvScale + 1; } for(int i = 0; i < 768; i++) { temp = kvTemp[i] * pow(2,(double)kvScale); if (temp < 0) { mlx90640->kv[i] = (temp - 0.5); } else { mlx90640->kv[i] = (temp + 0.5); } } mlx90640->kvScale = kvScale; } //------------------------------------------------------------------------------ void ExtractCPParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { float alphaSP[2]; int16_t offsetSP[2]; float cpKv; float cpKta; uint8_t alphaScale; uint8_t ktaScale1; uint8_t kvScale; alphaScale = ((eeData[32] & 0xF000) >> 12) + 27; offsetSP[0] = (eeData[58] & 0x03FF); if (offsetSP[0] > 511) { offsetSP[0] = offsetSP[0] - 1024; } offsetSP[1] = (eeData[58] & 0xFC00) >> 10; if (offsetSP[1] > 31) { offsetSP[1] = offsetSP[1] - 64; } offsetSP[1] = offsetSP[1] + offsetSP[0]; alphaSP[0] = (eeData[57] & 0x03FF); if (alphaSP[0] > 511) { alphaSP[0] = alphaSP[0] - 1024; } alphaSP[0] = alphaSP[0] / pow(2,(double)alphaScale); alphaSP[1] = (eeData[57] & 0xFC00) >> 10; if (alphaSP[1] > 31) { alphaSP[1] = alphaSP[1] - 64; } alphaSP[1] = (1 + alphaSP[1]/128) * alphaSP[0]; cpKta = (eeData[59] & 0x00FF); if (cpKta > 127) { cpKta = cpKta - 256; } ktaScale1 = ((eeData[56] & 0x00F0) >> 4) + 8; mlx90640->cpKta = cpKta / pow(2,(double)ktaScale1); cpKv = (eeData[59] & 0xFF00) >> 8; if (cpKv > 127) { cpKv = cpKv - 256; } kvScale = (eeData[56] & 0x0F00) >> 8; mlx90640->cpKv = cpKv / pow(2,(double)kvScale); mlx90640->cpAlpha[0] = alphaSP[0]; mlx90640->cpAlpha[1] = alphaSP[1]; mlx90640->cpOffset[0] = offsetSP[0]; mlx90640->cpOffset[1] = offsetSP[1]; } //------------------------------------------------------------------------------ void ExtractCILCParameters(uint16_t *eeData, paramsMLX90640 *mlx90640) { float ilChessC[3]; uint8_t calibrationModeEE; calibrationModeEE = (eeData[10] & 0x0800) >> 4; calibrationModeEE = calibrationModeEE ^ 0x80; ilChessC[0] = (eeData[53] & 0x003F); if (ilChessC[0] > 31) { ilChessC[0] = ilChessC[0] - 64; } ilChessC[0] = ilChessC[0] / 16.0f; ilChessC[1] = (eeData[53] & 0x07C0) >> 6; if (ilChessC[1] > 15) { ilChessC[1] = ilChessC[1] - 32; } ilChessC[1] = ilChessC[1] / 2.0f; ilChessC[2] = (eeData[53] & 0xF800) >> 11; if (ilChessC[2] > 15) { ilChessC[2] = ilChessC[2] - 32; } ilChessC[2] = ilChessC[2] / 8.0f; mlx90640->calibrationModeEE = calibrationModeEE; mlx90640->ilChessC[0] = ilChessC[0]; mlx90640->ilChessC[1] = ilChessC[1]; mlx90640->ilChessC[2] = ilChessC[2]; } //------------------------------------------------------------------------------ int ExtractDeviatingPixels(uint16_t *eeData, paramsMLX90640 *mlx90640) { uint16_t pixCnt = 0; uint16_t brokenPixCnt = 0; uint16_t outlierPixCnt = 0; int warn = 0; int i; for(pixCnt = 0; pixCnt<5; pixCnt++) { mlx90640->brokenPixels[pixCnt] = 0xFFFF; mlx90640->outlierPixels[pixCnt] = 0xFFFF; } pixCnt = 0; while (pixCnt < 768 && brokenPixCnt < 5 && outlierPixCnt < 5) { if(eeData[pixCnt+64] == 0) { mlx90640->brokenPixels[brokenPixCnt] = pixCnt; brokenPixCnt = brokenPixCnt + 1; } else if((eeData[pixCnt+64] & 0x0001) != 0) { mlx90640->outlierPixels[outlierPixCnt] = pixCnt; outlierPixCnt = outlierPixCnt + 1; } pixCnt = pixCnt + 1; } if(brokenPixCnt > 4) { warn = -3; } else if(outlierPixCnt > 4) { warn = -4; } else if((brokenPixCnt + outlierPixCnt) > 4) { warn = -5; } else { for(pixCnt=0; pixCntbrokenPixels[pixCnt],mlx90640->brokenPixels[i]); if(warn != 0) { return warn; } } } for(pixCnt=0; pixCntoutlierPixels[pixCnt],mlx90640->outlierPixels[i]); if(warn != 0) { return warn; } } } for(pixCnt=0; pixCntbrokenPixels[pixCnt],mlx90640->outlierPixels[i]); if(warn != 0) { return warn; } } } } return warn; } //------------------------------------------------------------------------------ int CheckAdjacentPixels(uint16_t pix1, uint16_t pix2) { int pixPosDif; pixPosDif = pix1 - pix2; if(pixPosDif > -34 && pixPosDif < -30) { return -6; } if(pixPosDif > -2 && pixPosDif < 2) { return -6; } if(pixPosDif > 30 && pixPosDif < 34) { return -6; } return 0; } //------------------------------------------------------------------------------ float GetMedian(float *values, int n) { float temp; for(int i=0; ioutlierPixels[i] || pixel == params->brokenPixels[i]) { return 1; } } return 0; } //------------------------------------------------------------------------------