/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2021 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #ifdef USE_ZIGBEE_EZSP void EZ_SendZDO(uint16_t shortaddr, uint16_t cmd, const unsigned char *payload, size_t payload_len, bool retry = true); // // Trying to get a uniform LQI measure, we are aligning with the definition of ZNP // I.e. a linear projection from -87dBm to +10dB over 0..255 // for ZNP, lqi is linear from -87 to +10 dBm (https://sunmaysky.blogspot.com/2017/02/conversion-between-rssi-and-lqi-in-z.html) uint8_t ZNP_RSSI2Lqi(int8_t rssi) { if (rssi < -87) { rssi = -87; } if (rssi > 10) { rssi = 10; } return changeUIntScale(rssi + 87, 0, 87+10, 0, 254); } /*********************************************************************************************\ * Parsers for incoming EZSP messages \*********************************************************************************************/ // EZSP: received ASH "RSTACK" frame, indicating that the MCU finished boot void EZ_RSTACK(uint8_t reset_code) { const char *reason_str; switch (reset_code) { case 0x01: reason_str = PSTR("External"); break; case 0x02: reason_str = PSTR("Power-on"); break; case 0x03: reason_str = PSTR("Watchdog"); break; case 0x06: reason_str = PSTR("Assert"); break; case 0x09: reason_str = PSTR("Bootloader"); break; case 0x0B: reason_str = PSTR("Software"); break; case 0x00: default: reason_str = PSTR("Unknown"); break; } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\"EFR32 booted\",\"RestartReason\":\"%s\"" ",\"Code\":%d}}"), ZIGBEE_STATUS_BOOT, reason_str, reset_code); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); } // EZSP: received ASH "ERROR" frame, indicating that the MCU finished boot void EZ_ERROR(uint8_t error_code) { const char *reason_str; switch (error_code) { case 0x51: reason_str = PSTR("ACK timeout"); break; default: reason_str = PSTR("Unknown"); break; } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\"Failed state\",\"Error\":\"%s\"" ",\"Code\":%d}}"), ZIGBEE_STATUS_ABORT, reason_str, error_code); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); } int32_t EZ_ReadAPSUnicastMessage(int32_t res, SBuffer &buf) { // Called when receiving a response from getConfigurationValue // Value is in bytes 2+3 // uint16_t value = buf.get16(2); return res; } /*********************************************************************************************\ * Parsers for incoming EZSP messages \*********************************************************************************************/ // // Handle a "getEui64" incoming message // int32_t EZ_GetEUI64(int32_t res, SBuffer &buf) { localIEEEAddr = buf.get64(2); return res; } // // Handle a "getEui64" incoming message // int32_t EZ_GetNodeId(int32_t res, SBuffer &buf) { localShortAddr = buf.get8(2); return res; } // // Handle a "getNetworkParameters" incoming message // int32_t EZ_NetworkParameters(int32_t res, SBuffer &buf) { uint8_t node_type = buf.get8(3); // ext panid: 4->11 // panid: 12->13 // radioTxPower: 14 // radioChannel: 15 // Local short and long addresses are supposed to be already retrieved // localIEEEAddr = long_adr; // localShortAddr = short_adr; Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"DeviceType\":%d}}"), ZIGBEE_STATUS_EZ_INFO, &localIEEEAddr, localShortAddr, node_type); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); return res; } // // Analyze response to "getKey" and check NWK key // int32_t EZ_CheckKeyNWK(int32_t res, SBuffer &buf) { // uint8_t status = buf.get8(2); // uint16_t bitmask = buf.get16(3); uint8_t key_type = buf.get8(5); uint64_t key_low = buf.get64(6); uint64_t key_high = buf.get64(14); if ( (key_type == EMBER_CURRENT_NETWORK_KEY) && (key_low == ezsp_key_low) && (key_high == ezsp_key_high) ) { return 0; // proceed to next step } else { return -2; // error state } } // // Handle a "incomingRouteErrorHandler" incoming message // int32_t EZ_RouteError(int32_t res, const SBuffer &buf) { uint8_t status = buf.get8(2); uint16_t shortaddr = buf.get16(3); Response_P(PSTR("{\"" D_JSON_ZIGBEE_ROUTE_ERROR "\":{" "\"ShortAddr\":\"0x%04X\",\"" D_JSON_ZIGBEE_STATUS "\":%d,\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"}}"), shortaddr, status, getEmberStatus(status).c_str()); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); return -1; } // // Handle EZSP Energy Scan result // int32_t EZSP_EnergyScanResult(int32_t res, const SBuffer &buf) { uint8_t channel = buf.get8(2); int8_t energy = buf.get8(3); if ((channel >= USE_ZIGBEE_CHANNEL_MIN) && (channel <= USE_ZIGBEE_CHANNEL_MAX)) { zigbee.energy[channel - USE_ZIGBEE_CHANNEL_MIN] = energy; } return -1; } // // Handle EZSP Energy Scan complete // int32_t EZSP_EnergyScanComplete(int32_t res, const SBuffer &buf) { // uint8_t channel = buf.get8(2); uint8_t status = buf.get8(3); if (0 == status) { EnergyScanResults(); } return -1; } // // Dump energu scan results // void EnergyScanResults(void) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_SCAN "\":[")); for (uint32_t i = 0; i < USE_ZIGBEE_CHANNEL_COUNT; i++) { int8_t energy = zigbee.energy[i]; if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"%d\":%d"), i + USE_ZIGBEE_CHANNEL_MIN, energy); // display as log static const int32_t bar_min = -87; static const int32_t bar_max = 10; static const uint32_t bar_count = 60; char bar_str[bar_count + 1]; uint32_t energy_unsigned = energy + 0x80; uint32_t bars = changeUIntScale(energy_unsigned, bar_min + 0x80, bar_max + 0x80, 0, bar_count); for (uint32_t j = 0; j < bars; j++) { bar_str[j] = '#'; } bar_str[bars] = 0; AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Channel %2d: %s"), i + USE_ZIGBEE_CHANNEL_MIN, bar_str); } ResponseAppend_P(PSTR("]}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); } // // Handle a "permitJoining" incoming message // int32_t EZ_PermitJoinRsp(int32_t res, const SBuffer &buf) { uint8_t status = buf.get8(2); if (status) { // only report if there is an error Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{\"Status\":23,\"Message\":\"Pairing mode error 0x%02X\"}}"), status); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); } return -1; } // // Special case: EZSP does not send an event for PermitJoin end, so we generate a synthetic one // void Z_PermitJoinDisable(void) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{\"Status\":20,\"Message\":\"Pairing mode disabled\"}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); } // // Received MessageSentHandler // // We normally ignore the message, but it's a way to sniff group ids for IKEA remote // In case of a multicast message sent to 0xFFFD with non-null group id, we log the group id int32_t EZ_MessageSent(int32_t res, const SBuffer &buf) { uint8_t message_type = buf.get8(2); uint16_t dst_addr = buf.get16(3); uint16_t group_addr = buf.get16(13); if ((EMBER_OUTGOING_MULTICAST == message_type) && (0xFFFD == dst_addr)) { AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Sniffing group 0x%04X"), group_addr); } return -1; // ignore } #endif // USE_ZIGBEE_EZSP /*********************************************************************************************\ * Handle auto-mapping \*********************************************************************************************/ // low-level sending of packet void Z_Send_State_or_Map(uint16_t shortaddr, uint8_t index, uint16_t zdo_cmd) { #ifdef USE_ZIGBEE_ZNP SBuffer buf(10); buf.add8(Z_SREQ | Z_ZDO); // 25 buf.add8(zdo_cmd); // 33 buf.add16(shortaddr); // shortaddr buf.add8(index); // StartIndex = 0 ZigbeeZNPSend(buf.getBuffer(), buf.len()); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP // ZDO message payload (see Zigbee spec 2.4.3.3.4) uint8_t buf[] = { index }; // index = 0 EZ_SendZDO(shortaddr, zdo_cmd, buf, sizeof(buf), false); #endif // USE_ZIGBEE_EZSP } // This callback is registered to send ZbMap(s) to each device one at a time void Z_Map(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { if (BAD_SHORTADDR != shortaddr) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "sending `ZbMap 0x%04X`"), shortaddr); #ifdef USE_ZIGBEE_ZNP Z_Send_State_or_Map(shortaddr, value, ZDO_MGMT_LQI_REQ); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP Z_Send_State_or_Map(shortaddr, value, ZDO_Mgmt_Lqi_req); #endif // USE_ZIGBEE_EZSP } else { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbMap done")); zigbee.mapping_in_progress = false; zigbee.mapping_ready = true; } } /*********************************************************************************************\ * Parsers for incoming EZSP messages \*********************************************************************************************/ // // Handle a "getEui64" incoming message // int32_t Z_EZSPGetEUI64(int32_t res, SBuffer &buf) { localIEEEAddr = buf.get64(2); return res; } // // Handle a "getEui64" incoming message // int32_t Z_EZSPGetNodeId(int32_t res, SBuffer &buf) { localShortAddr = buf.get8(2); return res; } // // Handle a "getNetworkParameters" incoming message // int32_t Z_EZSPNetworkParameters(int32_t res, SBuffer &buf) { uint8_t node_type = buf.get8(3); // ext panid: 4->11 // panid: 12->13 // radioTxPower: 14 // radioChannel: 15 // Local short and long addresses are supposed to be already retrieved // localIEEEAddr = long_adr; // localShortAddr = short_adr; Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"DeviceType\":%d}}"), ZIGBEE_STATUS_EZ_INFO, &localIEEEAddr, localShortAddr, node_type); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); return res; } /*********************************************************************************************\ * Parsers for incoming ZNP messages \*********************************************************************************************/ // // Handle a "Receive Device Info" incoming message // int32_t ZNP_ReceiveDeviceInfo(int32_t res, SBuffer &buf) { // Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991 // IEEE Adr (8 bytes) = 0x00124B001D156362 // Short Addr (2 bytes) = 0x0000 // Device Type (1 byte) = 0x07 (coord?) // Device State (1 byte) = 0x09 (coordinator started) // NumAssocDevices (1 byte) = 0x02 // List of devices: 0x8683, 0x9199 Z_IEEEAddress long_adr = buf.get64(3); Z_ShortAddress short_adr = buf.get16(11); uint8_t device_type = buf.get8(13); uint8_t device_state = buf.get8(14); uint8_t device_associated = buf.get8(15); // keep track of the local IEEE address localIEEEAddr = long_adr; localShortAddr = short_adr; Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"DeviceType\":%d,\"DeviceState\":%d" ",\"NumAssocDevices\":%d"), ZIGBEE_STATUS_CC_INFO, &long_adr, short_adr, device_type, device_state, device_associated); if (device_associated > 0) { // If there are devices registered in CC2530, print the list uint idx = 16; ResponseAppend_P(PSTR(",\"AssocDevicesList\":[")); for (uint32_t i = 0; i < device_associated; i++) { if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx)); idx += 2; } ResponseAppend_P(PSTR("]")); } ResponseJsonEndEnd(); // append '}}' MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); return res; } int32_t ZNP_CheckNVWrite(int32_t res, SBuffer &buf) { // Check the status after NV Init "ZNP Has Configured" // Good response should be 610700 or 610709 (Success or Created) // We only filter the response on 6107 and check the code in this function uint8_t status = buf.get8(2); if ((0x00 == status) || (0x09 == status)) { return 0; // Ok, continue } else { return -2; // Error } } int32_t ZNP_Reboot(int32_t res, SBuffer &buf) { // print information about the reboot of device // 4180.02.02.00.02.06.03 // uint8_t reason = buf.get8(2); // uint8_t transport_rev = buf.get8(3); // uint8_t product_id = buf.get8(4); uint8_t major_rel = buf.get8(5); uint8_t minor_rel = buf.get8(6); // uint8_t hw_rev = buf.get8(7); const char *reason_str; switch (reason) { case 0: reason_str = PSTR("Power-up"); break; case 1: reason_str = PSTR("External"); break; case 2: reason_str = PSTR("Watchdog"); break; default: reason_str = PSTR("Unknown"); break; } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\"CC2530 booted\",\"RestartReason\":\"%s\"" ",\"MajorRel\":%d,\"MinorRel\":%d}}"), ZIGBEE_STATUS_BOOT, reason_str, major_rel, minor_rel); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); if ((0x02 == major_rel) && ((0x06 == minor_rel) || (0x07 == minor_rel))) { return 0; // version 2.6.x and 2.7.x are ok } else { return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort } } #ifdef USE_ZIGBEE_ZNP int32_t ZNP_ReceiveCheckVersion(int32_t res, SBuffer &buf) { // check that the version is supported // typical version for ZNP 1.2 // 61020200-02.06.03.D9143401.0200000000 // TranportRev = 02 // Product = 00 // MajorRel = 2 // MinorRel = 6 // MaintRel = 3 // Revision = 20190425 d (0x013414D9) uint8_t major_rel = buf.get8(4); uint8_t minor_rel = buf.get8(5); uint8_t maint_rel = buf.get8(6); uint32_t revision = buf.get32(7); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"MajorRel\":%d,\"MinorRel\":%d" ",\"MaintRel\":%d,\"Revision\":%d}}"), ZIGBEE_STATUS_CC_VERSION, major_rel, minor_rel, maint_rel, revision); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); if ((0x02 == major_rel) && ((0x06 == minor_rel) || (0x07 == minor_rel))) { return 0; // version 2.6.x and 2.7.x are ok } else { return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort } } #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP int32_t EZ_ReceiveCheckVersion(int32_t res, SBuffer &buf) { uint8_t protocol_version = buf.get8(2); uint8_t stack_type = buf.get8(3); zigbee.ezsp_version = buf.get16(4); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Version\":\"%d.%d.%d.%d\",\"Protocol\":%d" ",\"Stack\":%d}}"), ZIGBEE_STATUS_EZ_VERSION, (zigbee.ezsp_version & 0xF000) >> 12, (zigbee.ezsp_version & 0x0F00) >> 8, (zigbee.ezsp_version & 0x00F0) >> 4, zigbee.ezsp_version & 0x000F, protocol_version, stack_type ); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); if (0x08 == protocol_version) { if ((zigbee.ezsp_version & 0xFF00) == 0x6700) { // If v6.7 there is a bug so we need to change the response ZBW(ZBR_SET_OK2, 0x00, 0x00 /*high*/, 0x00 /*ok*/) } return 0; // protocol v8 is ok } else { return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort } } bool EZ_reset_config = false; // Set or clear reset_config int32_t EZ_Set_ResetConfig(uint8_t value) { EZ_reset_config = value ? true : false; return 0; } // checks if we need to reset the configuration of the device // if reset_config == 0, continue // if reset_config == 1, goto ZIGBEE_LABEL_CONFIGURE_EZSP int32_t EZ_GotoIfResetConfig(uint8_t value) { if (EZ_reset_config) { return ZIGBEE_LABEL_CONFIGURE_EZSP; } else { return 0; } } #endif // USE_ZIGBEE_EZSP // checks the device type (coordinator, router, end-device) // If coordinator continue // If router goto ZIGBEE_LABEL_START_ROUTER // If device goto ZIGBEE_LABEL_START_DEVICE int32_t Z_SwitchDeviceType(int32_t res, SBuffer &buf) { switch (Settings.zb_pan_id) { case 0xFFFF: return ZIGBEE_LABEL_INIT_ROUTER; case 0xFFFE: return ZIGBEE_LABEL_INIT_DEVICE; default: return 0; // continue } } // // Helper function, checks if the incoming buffer matches the 2-bytes prefix, i.e. message type in PMEM // bool Z_ReceiveMatchPrefix(const SBuffer &buf, const uint8_t *match) { if ( (pgm_read_byte(&match[0]) == buf.get8(0)) && (pgm_read_byte(&match[1]) == buf.get8(1)) ) { return true; } else { return false; } } // // Handle Permit Join response // int32_t ZNP_ReceivePermitJoinStatus(int32_t res, const SBuffer &buf) { // we received a PermitJoin status change uint8_t duration = buf.get8(2); uint8_t status_code; const char* message; if (0xFF == duration) { status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_XX; message = PSTR("Enable Pairing mode until next boot"); zigbee.permit_end_time = true; // In ZNP mode, declare permitjoin open } else if (duration > 0) { status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_60; message = PSTR("Enable Pairing mode for %d seconds"); zigbee.permit_end_time = true; // In ZNP mode, declare permitjoin open } else { status_code = ZIGBEE_STATUS_PERMITJOIN_CLOSE; message = PSTR("Disable Pairing mode"); zigbee.permit_end_time = false; // In ZNP mode, declare permitjoin closed } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"Message\":\""), status_code); ResponseAppend_P(message, duration); ResponseAppend_P(PSTR("\"}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE)); return -1; } // // ZNP only // int32_t ZNP_ReceiveNodeDesc(int32_t res, const SBuffer &buf) { // Received ZDO_NODE_DESC_RSP // Z_ShortAddress srcAddr = buf.get16(2); uint8_t status = buf.get8(4); // Z_ShortAddress nwkAddr = buf.get16(5); uint8_t logicalType = buf.get8(7); // uint8_t apsFlags = buf.get8(8); // uint8_t MACCapabilityFlags = buf.get8(9); // uint16_t manufacturerCapabilities = buf.get16(10); // uint8_t maxBufferSize = buf.get8(12); // uint16_t maxInTransferSize = buf.get16(13); // uint16_t serverMask = buf.get16(15); // uint16_t maxOutTransferSize = buf.get16(17); // uint8_t descriptorCapabilities = buf.get8(19); if (0 == status) { uint8_t deviceType = logicalType & 0x7; // 0=coordinator, 1=router, 2=end device const char * deviceTypeStr; switch (deviceType) { case 0: deviceTypeStr = PSTR("Coordinator"); break; case 1: deviceTypeStr = PSTR("Router"); break; case 2: deviceTypeStr = PSTR("Device"); break; default: deviceTypeStr = PSTR("Unknown"); break; } bool complexDescriptorAvailable = (logicalType & 0x08) ? 1 : 0; Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"NodeType\":\"%s\",\"ComplexDesc\":%s}}"), ZIGBEE_STATUS_NODE_DESC, deviceTypeStr, complexDescriptorAvailable ? PSTR("true") : PSTR("false") ); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } return -1; } // // Porcess Receive Active Endpoint // int32_t Z_ReceiveActiveEp(int32_t res, const SBuffer &buf) { // Received ZDO_ACTIVE_EP_RSP #ifdef USE_ZIGBEE_ZNP // Z_ShortAddress srcAddr = buf.get16(2); // uint8_t status = buf.get8(4); Z_ShortAddress nwkAddr = buf.get16(5); uint8_t activeEpCount = buf.get8(7); uint8_t* activeEpList = (uint8_t*) buf.charptr(8); #endif #ifdef USE_ZIGBEE_EZSP // uint8_t status = buf.get8(0); Z_ShortAddress nwkAddr = buf.get16(1); uint8_t activeEpCount = buf.get8(3); uint8_t* activeEpList = (uint8_t*) buf.charptr(4); #endif // device is reachable zigbee_devices.deviceWasReached(nwkAddr); for (uint32_t i = 0; i < activeEpCount; i++) { uint8_t ep = activeEpList[i]; zigbee_devices.getShortAddr(nwkAddr).addEndpoint(ep); if ((i < 4) && (ep < 0x10)) { zigbee_devices.queueTimer(nwkAddr, 0 /* groupaddr */, 1500, ep /* fake cluster as ep */, ep, Z_CAT_EP_DESC, 0 /* value */, &Z_SendSimpleDescReq); } } Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"ActiveEndpoints\":["), ZIGBEE_STATUS_ACTIVE_EP); for (uint32_t i = 0; i < activeEpCount; i++) { if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%02X\""), activeEpList[i]); } ResponseAppend_P(PSTR("]}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); Z_SendDeviceInfoRequest(nwkAddr); // probe for ModelId and ManufId return -1; } // list of clusters that need bindings const uint8_t Z_bindings[] PROGMEM = { Cx0001, Cx0006, Cx0008, Cx0201, Cx0300, Cx0400, Cx0402, Cx0403, Cx0405, Cx0406, Cx0500, }; int32_t Z_ClusterToCxBinding(uint16_t cluster) { uint8_t cx = ClusterToCx(cluster); for (uint32_t i=0; i= 0) { bitSet(cluster_map, found_cx); bitSet(cluster_in_map, found_cx); } } // scan out clusters for (uint32_t i=0; i= 0) { bitSet(cluster_map, found_cx); } } // if IAS device, request the device type if (bitRead(cluster_map, Z_ClusterToCxBinding(0x0500))) { // send a read command to cluster 0x0500, attribute 0x0001 (ZoneType) - to read the type of sensor zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_READ_ATTRIBUTE, 0x0001, &Z_SendSingleAttributeRead); zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_CIE_ATTRIBUTE, 0 /* value */, &Z_WriteCIEAddress); zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_CIE_ENROLL, 1 /* zone */, &Z_SendCIEZoneEnrollResponse); } // enqueue bind requests for (uint32_t i=0; i 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(numInIndex + i*2)); if (buf.get16(numInIndex + i*2) == 0xEF00) { is_tuya_protocol = true; } // tuya protocol } ResponseAppend_P(PSTR("],\"OutClusters\":[")); for (uint32_t i = 0; i < numOutCluster; i++) { if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(numOutIndex + i*2)); } ResponseAppend_P(PSTR("]}}")); MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); XdrvRulesProcess(); } // If tuya protocol, change the model information if (is_tuya_protocol) { Z_Device & device = zigbee_devices.getShortAddr(nwkAddr); device.addEndpoint(endpoint); device.data.get(endpoint).setConfig(ZM_Tuya); zigbee_devices.dirty(); } return -1; } // // Handle IEEEAddr incoming message // // Same works for both ZNP and EZSP int32_t Z_ReceiveIEEEAddr(int32_t res, const SBuffer &buf) { #ifdef USE_ZIGBEE_ZNP uint8_t status = buf.get8(2); Z_IEEEAddress ieeeAddr = buf.get64(3); Z_ShortAddress nwkAddr = buf.get16(11); // uint8_t startIndex = buf.get8(13); // not used // uint8_t numAssocDev = buf.get8(14); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP uint8_t status = buf.get8(0); Z_IEEEAddress ieeeAddr = buf.get64(1); Z_ShortAddress nwkAddr = buf.get16(9); // uint8_t numAssocDev = buf.get8(11); // uint8_t startIndex = buf.get8(12); // not used #endif // USE_ZIGBEE_EZSP if (0 == status) { // SUCCESS zigbee_devices.updateDevice(nwkAddr, ieeeAddr); zigbee_devices.deviceWasReached(nwkAddr); // Ping response const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\"" ",\"" D_JSON_ZIGBEE_IEEE "\":\"0x%_X\""), nwkAddr, &ieeeAddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } ResponseAppend_P(PSTR("}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } return -1; } // // Report any AF_DATA_CONFIRM message // Ex: {"ZbConfirm":{"Endpoint":1,"Status":0,"StatusMessage":"SUCCESS"}} // int32_t ZNP_DataConfirm(int32_t res, const SBuffer &buf) { uint8_t status = buf.get8(2); uint8_t endpoint = buf.get8(3); //uint8_t transId = buf.get8(4); // unused if (status) { // only report errors Response_P(PSTR("{\"" D_JSON_ZIGBEE_CONFIRM "\":{\"" D_CMND_ZIGBEE_ENDPOINT "\":%d" ",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), endpoint, status, getZigbeeStatusMessage(status).c_str()); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } return -1; } // // Handle State Change Indication incoming message // // Reference: // 0x00: Initialized - not started automatically // 0x01: Initialized - not connected to anything // 0x02: Discovering PAN's to join // 0x03: Joining a PAN // 0x04: Rejoining a PAN, only for end devices // 0x05: Joined but not yet authenticated by trust center // 0x06: Started as device after authentication // 0x07: Device joined, authenticated and is a router // 0x08: Starting as ZigBee Coordinator // 0x09: Started as ZigBee Coordinator // 0x0A: Device has lost information about its parent int32_t ZNP_ReceiveStateChange(int32_t res, const SBuffer &buf) { uint8_t state = buf.get8(2); const char * msg = nullptr; switch (state) { case ZDO_DEV_NWK_DISC: // 0x02 msg = PSTR("Scanning Zigbee network"); break; case ZDO_DEV_NWK_JOINING: // 0x03 case ZDO_DEV_NWK_REJOIN: // 0x04 msg = PSTR("Joining a PAN"); break; case ZDO_DEV_END_DEVICE_UNAUTH: // 0x05 msg = PSTR("Joined, not yet authenticated"); break; case ZDO_DEV_END_DEVICE: // 0x06 msg = PSTR("Started as device"); break; case ZDO_DEV_ROUTER: // 0x07 msg = PSTR("Started as router"); break; case ZDO_DEV_ZB_COORD: // 0x09 msg = PSTR("Started as coordinator"); break; case ZDO_DEV_NWK_ORPHAN: // 0x0A msg = PSTR("Device has lost its parent"); break; }; if (msg) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"NewState\":%d,\"Message\":\"%s\"}}"), ZIGBEE_STATUS_SCANNING, state, msg ); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } if ((ZDO_DEV_END_DEVICE == state) || (ZDO_DEV_ROUTER == state) || (ZDO_DEV_ZB_COORD == state)) { return 0; // device sucessfully started } else { return -1; // ignore } } // // Handle Receive End Device Announce incoming message // This message is also received when a previously paired device is powered up // Send back Active Ep Req message // int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const SBuffer &buf) { #ifdef USE_ZIGBEE_ZNP // Z_ShortAddress srcAddr = buf.get16(2); Z_ShortAddress nwkAddr = buf.get16(4); Z_IEEEAddress ieeeAddr = buf.get64(6); uint8_t capabilities = buf.get8(14); #endif #ifdef USE_ZIGBEE_EZSP // uint8_t seq = buf.get8(0); Z_ShortAddress nwkAddr = buf.get16(0); Z_IEEEAddress ieeeAddr = buf.get64(2); uint8_t capabilities = buf.get8(10); #endif // record if we already knew the ieeeAddr for this device // this will influence the decision whether we do auto-binding or not const Z_Device & device_before = zigbee_devices.findShortAddr(nwkAddr); bool ieee_already_known = false; if (device_before.valid() && (device_before.longaddr != 0) && (device_before.longaddr == ieeeAddr)) { ieee_already_known = true; } zigbee_devices.updateDevice(nwkAddr, ieeeAddr); // device is reachable zigbee_devices.deviceWasReached(nwkAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"PowerSource\":%s,\"ReceiveWhenIdle\":%s,\"Security\":%s}}"), ZIGBEE_STATUS_DEVICE_ANNOUNCE, &ieeeAddr, nwkAddr, (capabilities & 0x04) ? PSTR("true") : PSTR("false"), (capabilities & 0x08) ? PSTR("true") : PSTR("false"), (capabilities & 0x40) ? PSTR("true") : PSTR("false") ); // query the state of the bulb (for Alexa) uint32_t wait_ms = 2000; // wait for 2s Z_Query_Bulb(nwkAddr, wait_ms); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); // Continue the discovery process and auto-binding only if the device was unknown or if PermitJoin is ongoing if (!ieee_already_known || zigbee.permit_end_time) { Z_SendActiveEpReq(nwkAddr); } return -1; } // // Handle Receive TC Dev Ind incoming message // 45CA // int32_t ZNP_ReceiveTCDevInd(int32_t res, const SBuffer &buf) { Z_ShortAddress srcAddr = buf.get16(2); Z_IEEEAddress ieeeAddr = buf.get64(4); Z_ShortAddress parentNw = buf.get16(12); zigbee_devices.updateDevice(srcAddr, ieeeAddr); // device is reachable zigbee_devices.deviceWasReached(srcAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"ParentNetwork\":\"0x%04X\"}}"), ZIGBEE_STATUS_DEVICE_INDICATION, &ieeeAddr, srcAddr, parentNw ); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); return -1; } // // Handle Bind Rsp incoming message // int32_t Z_BindRsp(int32_t res, const SBuffer &buf) { #ifdef USE_ZIGBEE_ZNP Z_ShortAddress nwkAddr = buf.get16(2); uint8_t status = buf.get8(4); String msg = getZigbeeStatusMessage(status); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP uint8_t status = buf.get8(0); Z_ShortAddress nwkAddr = buf.get16(buf.len()-2); // last 2 bytes String msg = getZDPStatusMessage(status); #endif // USE_ZIGBEE_EZSP // device is reachable zigbee_devices.deviceWasReached(nwkAddr); const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), status, msg.c_str()); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); return -1; } // // Handle Unbind Rsp incoming message // int32_t Z_UnbindRsp(int32_t res, const SBuffer &buf) { #ifdef USE_ZIGBEE_ZNP Z_ShortAddress nwkAddr = buf.get16(2); uint8_t status = buf.get8(4); String msg = getZigbeeStatusMessage(status); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP uint8_t status = buf.get8(0); Z_ShortAddress nwkAddr = buf.get16(buf.len()-2); // last 2 bytes String msg = getZDPStatusMessage(status); #endif // USE_ZIGBEE_EZSP // device is reachable zigbee_devices.deviceWasReached(nwkAddr); const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_UNBIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" "}}"), status, msg.c_str()); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); return -1; } // // Handle MgMt Bind Rsp incoming message // int32_t Z_MgmtBindRsp(int32_t res, const SBuffer &buf) { return Z_Mgmt_Lqi_Bind_Rsp(res, buf, false); } // Return false, true or null (if unknown) const char * TrueFalseNull(uint32_t value) { if (value == 0) { return PSTR("false"); } else if (value == 1) { return PSTR("true"); } else { return PSTR("null"); } } const char * Z_DeviceRelationship(uint32_t value) { switch (value) { case 0: return PSTR("Parent"); case 1: return PSTR("Child"); case 2: return PSTR("Sibling"); case 4: return PSTR("Previous"); case 3: default: return PSTR("None"); } } const char * Z_DeviceType(uint32_t value) { switch (value) { case 0: return PSTR("Coordinator"); case 1: return PSTR("Router"); case 2: return PSTR("Device"); default: return PSTR("Unknown"); } } // // Combined code for MgmtLqiRsp and MgmtBindRsp // // If the response has a follow-up, send more requests automatically // int32_t Z_Mgmt_Lqi_Bind_Rsp(int32_t res, const SBuffer &buf, boolean lqi) { #ifdef USE_ZIGBEE_ZNP uint16_t shortaddr = buf.get16(2); uint8_t status = buf.get8(4); uint8_t total = buf.get8(5); uint8_t start = buf.get8(6); uint8_t len = buf.get8(7); const size_t prefix_len = 8; #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP uint16_t shortaddr = buf.get16(buf.len()-2); uint8_t status = buf.get8(0); uint8_t total = buf.get8(1); uint8_t start = buf.get8(2); uint8_t len = buf.get8(3); const size_t prefix_len = 4; #endif // USE_ZIGBEE_EZSP // device is reachable zigbee_devices.deviceWasReached(shortaddr); bool non_empty = false; // check whether the response contains relevant information const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr); Response_P(PSTR("{\"%s\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), lqi ? PSTR(D_JSON_ZIGBEE_MAP) : PSTR(D_JSON_ZIGBEE_BIND_STATE), shortaddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" ",\"Total\":%d" ",\"Start\":%d" ",\"%s\":[" ), status, getZigbeeStatusMessage(status).c_str(), total, start + 1, lqi ? PSTR("Map") : PSTR("Bindings")); if (lqi) { uint32_t idx = prefix_len; for (uint32_t i = 0; i < len; i++) { if (idx + 22 > buf.len()) { break; } // size 22 for EZSP //uint64_t extpanid = buf.get16(idx); // unused // uint64_t m_longaddr = buf.get64(idx + 8); uint16_t m_shortaddr = buf.get16(idx + 16); uint8_t m_dev_type = buf.get8(idx + 18); uint8_t m_permitjoin = buf.get8(idx + 19); uint8_t m_depth = buf.get8(idx + 20); uint8_t m_lqi = buf.get8(idx + 21); idx += 22; non_empty = true; if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("{\"Device\":\"0x%04X\","), m_shortaddr); const char * friendlyName = zigbee_devices.getFriendlyName(m_shortaddr); if (friendlyName) { ResponseAppend_P(PSTR("\"Name\":\"%s\","), friendlyName); } ResponseAppend_P(PSTR("\"DeviceType\":\"%s\"," "\"RxOnWhenIdle\":%s," "\"Relationship\":\"%s\"," "\"PermitJoin\":%s," "\"Depth\":%d," "\"LinkQuality\":%d" "}" ), Z_DeviceType(m_dev_type & 0x03), TrueFalseNull((m_dev_type & 0x0C) >> 2), Z_DeviceRelationship((m_dev_type & 0x70) >> 4), TrueFalseNull(m_permitjoin & 0x02), m_depth, m_lqi); // detect any router Z_Device & device = zigbee_devices.findShortAddr(m_shortaddr); if (device.valid()) { if ((m_dev_type & 0x03) == 1) { // it is a router device.setRouter(true); } } // Add information to zigbee mapper // Z_Mapper_Edge::Edge_Type edge_type; // switch ((m_dev_type & 0x70) >> 4) { // case 0: edge_type = Z_Mapper_Edge::Parent; break; // case 1: edge_type = Z_Mapper_Edge::Child; break; // case 2: edge_type = Z_Mapper_Edge::Sibling; break; // default: edge_type = Z_Mapper_Edge::Unknown; break; // } // Z_Mapper_Edge edge(m_shortaddr, shortaddr, m_lqi, edge_type); Z_Mapper_Edge edge(m_shortaddr, shortaddr, m_lqi); zigbee_mapper.addEdge(edge); } ResponseAppend_P(PSTR("]}}")); } else { // Bind uint32_t idx = prefix_len; for (uint32_t i = 0; i < len; i++) { if (idx + 14 > buf.len()) { break; } // overflow, frame size is between 14 and 21 //uint64_t srcaddr = buf.get16(idx); // unused uint8_t srcep = buf.get8(idx + 8); uint16_t cluster = buf.get16(idx + 9); uint8_t addrmode = buf.get8(idx + 11); uint16_t group = 0x0000; uint64_t dstaddr = 0; uint8_t dstep = 0x00; if (Z_Addr_Group == addrmode) { // Group address mode group = buf.get16(idx + 12); idx += 14; } else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode dstaddr = buf.get64(idx + 12); dstep = buf.get8(idx + 20); idx += 21; } else { //AddLog_P(LOG_LEVEL_INFO, PSTR("ZNP_MgmtBindRsp unknwon address mode %d"), addrmode); break; // abort for any other value since we don't know the length of the field } non_empty = true; if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("{\"Cluster\":\"0x%04X\",\"Endpoint\":%d,"), cluster, srcep); if (Z_Addr_Group == addrmode) { // Group address mode ResponseAppend_P(PSTR("\"ToGroup\":%d}"), group); } else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode ResponseAppend_P(PSTR("\"ToDevice\":\"0x%_X\",\"ToEndpoint\":%d}"), &dstaddr, dstep); } } ResponseAppend_P(PSTR("]}}")); } MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_MAP)); // Check if there are more values waiting, if so re-send a new request to get other values // Only send a new request if the current was non-empty. This avoids an infinite loop if the device announces more slots that it actually has. if ((non_empty) && (start + len < total)) { // there are more values to read #ifdef USE_ZIGBEE_ZNP Z_Send_State_or_Map(shortaddr, start + len, lqi ? ZDO_MGMT_LQI_REQ : ZDO_MGMT_BIND_REQ); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP Z_Send_State_or_Map(shortaddr, start + len, lqi ? ZDO_Mgmt_Lqi_req : ZDO_Mgmt_Bind_req); #endif // USE_ZIGBEE_EZSP } return -1; } // // Handle MgMt Bind Rsp incoming message // int32_t Z_MgmtLqiRsp(int32_t res, const SBuffer &buf) { return Z_Mgmt_Lqi_Bind_Rsp(res, buf, true); } #ifdef USE_ZIGBEE_EZSP // // Handle Parent Annonce Rsp incoming message // // rsp: true = ZDO_Parent_annce_rsp, false = ZDO_Parent_annce int32_t EZ_ParentAnnceRsp(int32_t res, const SBuffer &buf, bool rsp) { size_t prefix_len; uint8_t status; uint8_t num_children; uint16_t shortaddr = buf.get16(buf.len()-2); if (rsp) { status = buf.get8(0); num_children = buf.get8(1); prefix_len = 2; } else { status = 0; num_children = buf.get8(0); prefix_len = 1; } // device is reachable zigbee_devices.deviceWasReached(shortaddr); const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_PARENT "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), shortaddr); if (friendlyName) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName); } if (rsp) { ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d" ",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"" ), status, getZigbeeStatusMessage(status).c_str()); } ResponseAppend_P(PSTR(",\"Children\":%d" ",\"ChildInfo\":[" ), num_children); uint32_t idx = prefix_len; for (uint32_t i = 0; i < num_children; i++) { if (idx + 8 > buf.len()) { break; } // overflow, frame size is between 14 and 21 uint64_t child_ieee = buf.get64(idx); idx += 8; if (i > 0) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("\"0x%_X\""), &child_ieee); } ResponseAppend_P(PSTR("]}}")); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_BIND_STATE)); return -1; } #endif // USE_ZIGBEE_EZSP /*********************************************************************************************\ * Send specific ZNP messages \*********************************************************************************************/ // // Send ZDO_IEEE_ADDR_REQ request to get IEEE long address // void Z_SendIEEEAddrReq(uint16_t shortaddr) { #ifdef USE_ZIGBEE_ZNP uint8_t IEEEAddrReq[] = { Z_SREQ | Z_ZDO, ZDO_IEEE_ADDR_REQ, Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 }; ZigbeeZNPSend(IEEEAddrReq, sizeof(IEEEAddrReq)); #endif #ifdef USE_ZIGBEE_EZSP uint8_t IEEEAddrReq[] = { Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 }; EZ_SendZDO(shortaddr, ZDO_IEEE_addr_req, IEEEAddrReq, sizeof(IEEEAddrReq)); #endif } // // Send ACTIVE_EP_REQ to collect active endpoints for this address // void Z_SendActiveEpReq(uint16_t shortaddr) { #ifdef USE_ZIGBEE_ZNP uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) }; ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq)); #endif #ifdef USE_ZIGBEE_EZSP uint8_t ActiveEpReq[] = { Z_B0(shortaddr), Z_B1(shortaddr) }; EZ_SendZDO(shortaddr, ZDO_Active_EP_req, ActiveEpReq, sizeof(ActiveEpReq)); #endif } // // Probe the clusters_out on the first endpoint // // Send ZDO_SIMPLE_DESC_REQ to get full list of supported Clusters for a specific endpoint void Z_SendSimpleDescReq(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { #ifdef USE_ZIGBEE_ZNP uint8_t SimpleDescReq[] = { Z_SREQ | Z_ZDO, ZDO_SIMPLE_DESC_REQ, // 2504 Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr), endpoint }; ZigbeeZNPSend(SimpleDescReq, sizeof(SimpleDescReq)); #endif #ifdef USE_ZIGBEE_EZSP uint8_t SimpleDescReq[] = { Z_B0(shortaddr), Z_B1(shortaddr), endpoint }; EZ_SendZDO(shortaddr, ZDO_SIMPLE_DESC_REQ, SimpleDescReq, sizeof(SimpleDescReq)); #endif } // // Send AF Info Request // Queue requests for the device // 1. Request for 'ModelId' and 'Manufacturer': 0000/0005, 0000/0004 // 2. Auto-bind to coordinator: // Iterate among // void Z_SendDeviceInfoRequest(uint16_t shortaddr) { ZCLMessage zcl(4); // message is 4 bytes zcl.shortaddr = shortaddr; zcl.cluster = 0; zcl.cmd = ZCL_READ_ATTRIBUTES; zcl.clusterSpecific = false; zcl.needResponse = true; zcl.direct = false; // discover route zcl.buf.add16(0x0005); zcl.buf.add16(0x0004); zigbeeZCLSendCmd(zcl); } // // Send single attribute read request in Timer // void Z_SendSingleAttributeRead(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { ZCLMessage zcl(2); // message is 2 bytes zcl.shortaddr = shortaddr; zcl.cluster = cluster; zcl.endpoint = endpoint; zcl.cmd = ZCL_READ_ATTRIBUTES; zcl.clusterSpecific = false; zcl.needResponse = true; zcl.direct = false; // discover route zcl.buf.add16(value); // 04000500 zigbeeZCLSendCmd(zcl); } // // Write CIE address // void Z_WriteCIEAddress(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { ZCLMessage zcl(12); // message is 12 bytes zcl.shortaddr = shortaddr; zcl.cluster = 0x0500; zcl.endpoint = endpoint; zcl.cmd = ZCL_WRITE_ATTRIBUTES; zcl.clusterSpecific = false; zcl.needResponse = true; zcl.direct = false; // discover route zcl.buf.add16(0x0010); // attribute 0x0010 zcl.buf.add8(ZEUI64); zcl.buf.add64(localIEEEAddr); zigbeeZCLSendCmd(zcl); } // // Write CIE address // void Z_SendCIEZoneEnrollResponse(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Sending Enroll Zone %d"), Z_B0(value)); ZCLMessage zcl(2); // message is 2 bytes zcl.shortaddr = shortaddr; zcl.cluster = 0x0500; zcl.endpoint = endpoint; zcl.cmd = 0x00, // Zone Enroll Response zcl.clusterSpecific = true; zcl.needResponse = true; zcl.direct = false; // discover route zcl.buf.add8(0x00); // success zcl.buf.add8(Z_B0(value)); // ZoneID zigbeeZCLSendCmd(zcl); } // // Auto-bind some clusters to the coordinator's endpoint 0x01 // void Z_AutoBind(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { uint64_t srcLongAddr = zigbee_devices.getDeviceLongAddr(shortaddr); AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "auto-bind `ZbBind {\"Device\":\"0x%04X\",\"Endpoint\":%d,\"Cluster\":\"0x%04X\"}`"), shortaddr, endpoint, cluster); #ifdef USE_ZIGBEE_ZNP SBuffer buf(34); buf.add8(Z_SREQ | Z_ZDO); buf.add8(ZDO_BIND_REQ); buf.add16(shortaddr); buf.add64(srcLongAddr); buf.add8(endpoint); buf.add16(cluster); buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT buf.add64(localIEEEAddr); buf.add8(0x01); // toEndpoint ZigbeeZNPSend(buf.getBuffer(), buf.len()); #endif // USE_ZIGBEE_ZNP #ifdef USE_ZIGBEE_EZSP SBuffer buf(24); // ZDO message payload (see Zigbee spec 2.4.3.2.2) buf.add64(srcLongAddr); buf.add8(endpoint); buf.add16(cluster); buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT buf.add64(localIEEEAddr); buf.add8(0x01); // toEndpoint EZ_SendZDO(shortaddr, ZDO_BIND_REQ, buf.buf(), buf.len()); #endif // USE_ZIGBEE_EZSP } // // Auto-bind some clusters to the coordinator's endpoint 0x01 // // the structure below indicates which attributes need to be configured for attribute reporting typedef struct Z_autoAttributeReporting_t { uint16_t cluster; uint16_t attr_id; uint16_t min_interval; // minimum interval in seconds (consecutive reports won't happen before this value) uint16_t max_interval; // maximum interval in seconds (attribut will always be reported after this interval) float report_change; // for non discrete attributes, the value change that triggers a report } Z_autoAttributeReporting_t; // Note the attribute must be registered in the converter list, used to retrieve the type of the attribute const Z_autoAttributeReporting_t Z_autoAttributeReporting[] PROGMEM = { { 0x0001, 0x0020, 60*60, USE_ZIGBEE_MAXTIME_BATT, USE_ZIGBEE_AUTOBIND_BATTVOLTAGE }, // BatteryVoltage { 0x0001, 0x0021, 60*60, USE_ZIGBEE_MAXTIME_BATT, USE_ZIGBEE_AUTOBIND_BATTPERCENT }, // BatteryPercentage { 0x0006, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 0 }, // Power { 0x0201, 0x0000, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // LocalTemperature { 0x0201, 0x0008, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_HEATDEMAND }, // PIHeatingDemand { 0x0201, 0x0012, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // OccupiedHeatingSetpoint { 0x0008, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Dimmer { 0x0300, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Hue { 0x0300, 0x0001, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Sat { 0x0300, 0x0003, 1, USE_ZIGBEE_MAXTIME_LIGHT, 100 }, // X { 0x0300, 0x0004, 1, USE_ZIGBEE_MAXTIME_LIGHT, 100 }, // Y { 0x0300, 0x0007, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // CT { 0x0300, 0x0008, 1, USE_ZIGBEE_MAXTIME_LIGHT, 0 }, // ColorMode { 0x0400, 0x0000, 10, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_ILLUMINANCE }, // Illuminance (5 lux) { 0x0402, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // Temperature (0.2 °C) { 0x0403, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_PRESSURE }, // Pressure (1 hPa) { 0x0405, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_HUMIDITY }, // Humidity (1 %) { 0x0406, 0x0000, 10, USE_ZIGBEE_MAXTIME_SENSOR, 0 }, // Occupancy { 0x0500, 0x0002, 1, USE_ZIGBEE_MAXTIME_SENSOR, 0 }, // ZoneStatus }; // // Called by Device Auto-config // Configures default values for the most common Attribute Rerporting configurations // // Note: must be of type `Z_DeviceTimer` void Z_AutoConfigReportingForCluster(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { // Buffer, max 12 bytes per attribute SBuffer buf(12*6); Response_P(PSTR("ZbSend {\"Device\":\"0x%04X\",\"Config\":{"), shortaddr); boolean comma = false; for (uint32_t i=0; i 0) { AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "auto-bind `%s`"), TasmotaGlobal.mqtt_data); ZCLMessage zcl(buf.len()); // message is 4 bytes zcl.shortaddr = shortaddr; zcl.cluster = cluster; zcl.endpoint = endpoint; zcl.cmd = ZCL_CONFIGURE_REPORTING; zcl.clusterSpecific = false; /* not cluster specific */ zcl.needResponse = false; /* noresponse */ zcl.direct = false; /* discover route */ zcl.buf.addBuffer(buf); zigbeeZCLSendCmd(zcl); } } // // Handle trustCenterJoinHandler // 2400 // #ifdef USE_ZIGBEE_EZSP int32_t EZ_ReceiveTCJoinHandler(int32_t res, const SBuffer &buf) { uint16_t srcAddr = buf.get16(2); uint64_t ieeeAddr = buf.get64(4); uint8_t status = buf.get8(12); uint8_t decision = buf.get8(13); uint16_t parentNw = buf.get16(14); if (EMBER_DEVICE_LEFT != status) { // ignore message if the device is leaving zigbee_devices.updateDevice(srcAddr, ieeeAddr); Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{" "\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\"" ",\"ParentNetwork\":\"0x%04X\"" ",\"JoinStatus\":%d,\"Decision\":%d" "}}"), ZIGBEE_STATUS_DEVICE_INDICATION, &ieeeAddr, srcAddr, parentNw, status, decision ); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } return -1; } #endif // USE_ZIGBEE_EZSP // // Parse incoming ZCL message. // // This code is common to ZNP and EZSP void Z_IncomingMessage(class ZCLFrame &zcl_received) { uint16_t srcaddr = zcl_received.getSrcAddr(); uint16_t groupid = zcl_received.getGroupAddr(); uint16_t clusterid = zcl_received.getClusterId(); uint8_t linkquality = zcl_received.getLinkQuality(); uint8_t srcendpoint = zcl_received.getSrcEndpoint(); linkquality = linkquality != 0xFF ? linkquality : 0xFE; // avoid 0xFF (reserved for unknown) bool defer_attributes = false; // do we defer attributes reporting to coalesce // log the packet details zcl_received.log(); // create the device entry if it does not exist and if it's not the local device Z_Device & device = (srcaddr != localShortAddr) ? zigbee_devices.getShortAddr(srcaddr) : device_unk; if (device.valid()) { device.setLQI(linkquality != 0xFF ? linkquality : 0xFE); // EFR32 has a different scale for LQI device.setLastSeenNow(); zigbee_devices.deviceWasReached(srcaddr); } char shortaddr[8]; snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr); Z_attribute_list attr_list; attr_list.lqi = linkquality; attr_list.src_ep = srcendpoint; if (groupid) { // TODO we miss the group_id == 0 here attr_list.group_id = groupid; } if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_DEFAULT_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseResponse(); // Zigbee general "Default Response", publish ZbResponse message } else { // Build the ZbReceive list if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId() || ZCL_WRITE_ATTRIBUTES == zcl_received.getCmdId())) { zcl_received.parseReportAttributes(attr_list); // Zigbee report attributes from sensors if (clusterid && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) { defer_attributes = true; } // don't defer system Cluster=0 messages or Write Attribute } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseReadAttributesResponse(attr_list); if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES == zcl_received.getCmdId())) { zcl_received.parseReadAttributes(attr_list); // never defer read_attributes, so the auto-responder can send response back on a per cluster basis } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_REPORTING_CONFIGURATION_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseReadConfigAttributes(attr_list); } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_CONFIGURE_REPORTING_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseConfigAttributes(attr_list); } else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_WRITE_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) { zcl_received.parseWriteAttributesResponse(attr_list); } else if (zcl_received.isClusterSpecificCommand()) { zcl_received.parseClusterSpecificCommand(attr_list); } AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZCL_RAW_RECEIVED ": {\"0x%04X\":{%s}}"), srcaddr, attr_list.toString().c_str()); // discard the message if it was sent by us (broadcast or group loopback) if (srcaddr == localShortAddr) { AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "loopback message, ignoring")); return; // abort the rest of message management } zcl_received.generateSyntheticAttributes(attr_list); zcl_received.removeInvalidAttributes(attr_list); zcl_received.computeSyntheticAttributes(attr_list); zcl_received.generateCallBacks(attr_list); // set deferred callbacks, ex: Occupancy Z_postProcessAttributes(srcaddr, zcl_received.getSrcEndpoint(), attr_list); if (defer_attributes) { // Prepare for publish if (zigbee_devices.jsonIsConflict(srcaddr, attr_list)) { // there is conflicting values, force a publish of the previous message now and don't coalesce zigbee_devices.jsonPublishFlush(srcaddr); } zigbee_devices.jsonAppend(srcaddr, attr_list); zigbee_devices.setTimer(srcaddr, 0 /* groupaddr */, USE_ZIGBEE_COALESCE_ATTR_TIMER, clusterid, srcendpoint, Z_CAT_READ_ATTR, 0, &Z_PublishAttributes); } else { // Publish immediately zigbee_devices.jsonPublishNow(srcaddr, attr_list); } } } #ifdef USE_ZIGBEE_EZSP /*********************************************************************************************\ * Send ZDO Message \*********************************************************************************************/ void EZ_SendZDO(uint16_t shortaddr, uint16_t cmd, const unsigned char *payload, size_t payload_len, bool retry) { SBuffer buf(payload_len + 22); uint8_t seq = zigbee_devices.getNextSeqNumber(0x0000); if (shortaddr < 0xFFFC) { // send unicast buf.add16(EZSP_sendUnicast); buf.add8(EMBER_OUTGOING_DIRECT); // 00 buf.add16(shortaddr); // dest addr // ApsFrame buf.add16(0x0000); // ZOD profile buf.add16(cmd); // ZDO cmd in cluster buf.add8(0); // srcEp buf.add8(0); // dstEp if (retry) { buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY | EMBER_APS_OPTION_RETRY); // APS frame } else { buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY); // APS frame } buf.add16(0x0000); // groupId buf.add8(seq); // end of ApsFrame buf.add8(0x01); // tag TODO buf.add8(payload_len + 1); // insert seq number buf.add8(seq); buf.addBuffer(payload, payload_len); } else { // send broadcast buf.add16(EZSP_sendBroadcast); buf.add16(shortaddr); // dest addr // ApsFrame buf.add16(0x0000); // ZOD profile buf.add16(cmd); // ZDO cmd in cluster buf.add8(0); // srcEp buf.add8(0); // dstEp buf.add16(0x00); // APS frame buf.add16(0x0000); // groupId buf.add8(seq); // end of ApsFrame buf.add8(0x1E); // radius buf.add8(0x01); // tag TODO buf.add8(payload_len + 1); // insert seq number buf.add8(seq); buf.addBuffer(payload, payload_len); } ZigbeeEZSPSendCmd(buf.buf(), buf.len()); } /*********************************************************************************************\ * Send specific EZSP messages \*********************************************************************************************/ int32_t EZ_IncomingMessage(int32_t res, const SBuffer &buf) { uint8_t msgtype = buf.get8(2); // see EZSP_EmberIncomingMessageType bool wasbroadcast = (msgtype >= EMBER_INCOMING_MULTICAST) && (msgtype <= EMBER_INCOMING_BROADCAST_LOOPBACK); uint16_t profileid = buf.get16(3); // HA = 0x0104, ZDO = 0x0000 uint16_t clusterid = buf.get16(5); uint8_t srcendpoint = buf.get8(7); uint8_t dstendpoint = buf.get8(8); uint16_t apsoptions = buf.get16(9); // see EZSP_EmberApsOption, usually EMBER_APS_OPTION_ENABLE_ADDRESS_DISCOVERY bool securityuse = (apsoptions & EMBER_APS_OPTION_ENCRYPTION) ? true : false; uint16_t groupid = buf.get16(11); uint8_t seqnumber = buf.get8(13); int8_t linkrssi = buf.get8(15); uint8_t linkquality = ZNP_RSSI2Lqi(linkrssi); // don't take EZSP LQI but calculate our own based on ZNP uint16_t srcaddr = buf.get16(16); // uint8_t bindingindex = buf.get8(18); // not sure we need this one as a coordinator // uint8_t addressindex = buf.get8(19); // not sure how to handle this one // offset 20 is len, and buffer starts at offset 21 if ((0x0000 == profileid) && (0x00 == srcendpoint)) { // ZDO request // Report LQI if (srcaddr != localShortAddr) { Z_Device & device = zigbee_devices.getShortAddr(srcaddr); device.setLQI(linkquality); device.setLastSeenNow(); } // Since ZDO messages start with a sequence number, we skip it // but we add the source address in the last 2 bytes SBuffer zdo_buf(buf.get8(20) - 1 + 2); zdo_buf.addBuffer(buf.buf(22), buf.get8(20) - 1); zdo_buf.add16(srcaddr); switch (clusterid) { case ZDO_Device_annce: return Z_ReceiveEndDeviceAnnonce(res, zdo_buf); case ZDO_Active_EP_rsp: return Z_ReceiveActiveEp(res, zdo_buf); case ZDO_IEEE_addr_rsp: return Z_ReceiveIEEEAddr(res, zdo_buf); case ZDO_Simple_Desc_rsp: return Z_ReceiveSimpleDesc(res, zdo_buf); case ZDO_Bind_rsp: return Z_BindRsp(res, zdo_buf); case ZDO_Unbind_rsp: return Z_UnbindRsp(res, zdo_buf); case ZDO_Mgmt_Lqi_rsp: return Z_MgmtLqiRsp(res, zdo_buf); case ZDO_Mgmt_Bind_rsp: return Z_MgmtBindRsp(res, zdo_buf); case ZDO_Parent_annce: return EZ_ParentAnnceRsp(res, zdo_buf, false); case ZDO_Parent_annce_rsp: return EZ_ParentAnnceRsp(res, zdo_buf, true); default: break; } } else { ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 21, buf.get8(20), clusterid, groupid, srcaddr, srcendpoint, dstendpoint, wasbroadcast, linkquality, securityuse, seqnumber); // Z_IncomingMessage(zcl_received); } return -1; } // // Callback for resetting the NCP, called by the state machine // // value = 0 : drive reset pin and halt MCU // value = 1 : release the reset pin, restart int32_t EZ_Reset_Device(uint8_t value) { /* // we use Led4i to drive the reset pin. Since it is reverted we need to pass 1 to start reset, and 0 to release reset if (PinUsed(GPIO_LED1, ZIGBEE_EZSP_RESET_LED - 1)) { SetLedPowerIdx(ZIGBEE_EZSP_RESET_LED - 1, value ? 0 : 1); */ if (PinUsed(GPIO_ZIGBEE_RST)) { digitalWrite(Pin(GPIO_ZIGBEE_RST), value); } else { // no GPIO so we use software Reset instead if (value) { // send reset only when we are supposed to release reset uint8_t ezsp_reset[1] = { 0xC0 }; // EZSP ASH Reset ZigbeeEZSPSendRaw(ezsp_reset, sizeof(ezsp_reset), true); } } return 0; // continue } /*********************************************************************************************\ * Default resolver \*********************************************************************************************/ int32_t EZ_Recv_Default(int32_t res, const SBuffer &buf) { // Default message handler for new messages if (zigbee.init_phase) { // if still during initialization phase, ignore any unexpected message return -1; // ignore message } else { uint16_t ezsp_command_index = buf.get16(0); switch (ezsp_command_index) { case EZSP_incomingMessageHandler: return EZ_IncomingMessage(res, buf); case EZSP_trustCenterJoinHandler: return EZ_ReceiveTCJoinHandler(res, buf); case EZSP_incomingRouteErrorHandler: return EZ_RouteError(res, buf); case EZSP_permitJoining: return EZ_PermitJoinRsp(res, buf); case EZSP_messageSentHandler: return EZ_MessageSent(res, buf); case EZSP_energyScanResultHandler: return EZSP_EnergyScanResult(res, buf); case EZSP_scanCompleteHandler: return EZSP_EnergyScanComplete(res, buf); } return -1; } } #endif // USE_ZIGBEE_EZSP /*********************************************************************************************\ * Callbacks \*********************************************************************************************/ // Publish the received values once they have been coalesced void Z_PublishAttributes(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { zigbee_devices.jsonPublishFlush(shortaddr); } /*********************************************************************************************\ * Global dispatcher for incoming messages \*********************************************************************************************/ #ifdef USE_ZIGBEE_ZNP // // Callback for resetting the NCP, called by the state machine // // value = 0 : drive reset pin and halt MCU // value = 1 : release the reset pin, restart int32_t ZNP_Reset_Device(uint8_t value) { /* // we use Led4i to drive the reset pin. Since it is reverted we need to pass 1 to start reset, and 0 to release reset if (PinUsed(GPIO_LED1, ZIGBEE_EZSP_RESET_LED - 1)) { SetLedPowerIdx(ZIGBEE_EZSP_RESET_LED - 1, value ? 0 : 1); */ if (PinUsed(GPIO_ZIGBEE_RST)) { digitalWrite(Pin(GPIO_ZIGBEE_RST), value); } else { // no GPIO so we use software Reset instead if (value) { // send reset only when we are supposed to release reset // flush the serial buffer, sending 0xFF 256 times. ZigbeeZNPFlush(); ZigbeeZNPSend(ZBS_RESET, sizeof(ZBS_RESET)); } } return 0; // continue } int32_t ZNP_ReceiveAfIncomingMessage(int32_t res, const SBuffer &buf) { uint16_t groupid = buf.get16(2); uint16_t clusterid = buf.get16(4); uint16_t srcaddr = buf.get16(6); uint8_t srcendpoint = buf.get8(8); uint8_t dstendpoint = buf.get8(9); uint8_t wasbroadcast = buf.get8(10); uint8_t linkquality = buf.get8(11); uint8_t securityuse = buf.get8(12); // uint32_t timestamp = buf.get32(13); uint8_t seqnumber = buf.get8(17); bool defer_attributes = false; // do we defer attributes reporting to coalesce ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid, srcaddr, srcendpoint, dstendpoint, wasbroadcast, linkquality, securityuse, seqnumber); // Z_IncomingMessage(zcl_received); return -1; } #endif // USE_ZIGBEE_ZNP /*********************************************************************************************\ * Global dispatcher for incoming messages \*********************************************************************************************/ #ifdef USE_ZIGBEE_ZNP // Structure for the Dispatcher callbacks table typedef struct Z_Dispatcher { uint8_t match[2]; ZB_RecvMsgFunc func; } Z_Dispatcher; // Dispatcher callbacks table const Z_Dispatcher Z_DispatchTable[] PROGMEM = { { { Z_AREQ | Z_AF, AF_DATA_CONFIRM }, &ZNP_DataConfirm }, // 4480 { { Z_AREQ | Z_AF, AF_INCOMING_MSG }, &ZNP_ReceiveAfIncomingMessage }, // 4481 // { { Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND }, &ZNP_ReceiveStateChange }, // 45C0 { { Z_AREQ | Z_ZDO, ZDO_END_DEVICE_ANNCE_IND }, &Z_ReceiveEndDeviceAnnonce }, // 45C1 { { Z_AREQ | Z_ZDO, ZDO_TC_DEV_IND }, &ZNP_ReceiveTCDevInd }, // 45CA { { Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND }, &ZNP_ReceivePermitJoinStatus }, // 45CB { { Z_AREQ | Z_ZDO, ZDO_NODE_DESC_RSP }, &ZNP_ReceiveNodeDesc }, // 4582 { { Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP }, &Z_ReceiveActiveEp }, // 4585 { { Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP}, &Z_ReceiveSimpleDesc}, // 4584 { { Z_AREQ | Z_ZDO, ZDO_IEEE_ADDR_RSP }, &Z_ReceiveIEEEAddr }, // 4581 { { Z_AREQ | Z_ZDO, ZDO_BIND_RSP }, &Z_BindRsp }, // 45A1 { { Z_AREQ | Z_ZDO, ZDO_UNBIND_RSP }, &Z_UnbindRsp }, // 45A2 { { Z_AREQ | Z_ZDO, ZDO_MGMT_LQI_RSP }, &Z_MgmtLqiRsp }, // 45B1 { { Z_AREQ | Z_ZDO, ZDO_MGMT_BIND_RSP }, &Z_MgmtBindRsp }, // 45B3 }; /*********************************************************************************************\ * Default resolver \*********************************************************************************************/ int32_t ZNP_Recv_Default(int32_t res, const SBuffer &buf) { // Default message handler for new messages if (zigbee.init_phase) { // if still during initialization phase, ignore any unexpected message return -1; // ignore message } else { for (uint32_t i = 0; i < ARRAY_SIZE(Z_DispatchTable); i++) { if (Z_ReceiveMatchPrefix(buf, Z_DispatchTable[i].match)) { (*Z_DispatchTable[i].func)(res, buf); } } return -1; } } #endif // USE_ZIGBEE_ZNP /*********************************************************************************************\ * Functions called by State Machine \*********************************************************************************************/ // // Callback for loading preparing EEPROM, called by the state machine // #ifdef USE_ZIGBEE_EZSP int32_t Z_Prepare_EEPROM(uint8_t value) { ZFS::initOrFormat(); return 0; // continue } #endif // USE_ZIGBEE_EZSP // // Callback for loading Zigbee configuration from Flash, called by the state machine // int32_t Z_Load_Devices(uint8_t value) { // try to hidrate from known devices loadZigbeeDevices(); return 0; // continue } // // Callback for loading Zigbee data from EEPROM, called by the state machine // int32_t Z_Load_Data_EEPROM(uint8_t value) { hydrateDevicesDataFromEEPROM(); return 0; // continue } // // Query the state of a bulb (light) if its type allows it // void Z_Query_Bulb(uint16_t shortaddr, uint32_t &wait_ms) { const uint32_t inter_message_ms = 100; // wait 100ms between messages if (0 <= zigbee_devices.getHueBulbtype(shortaddr)) { uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr); if (endpoint) { // send only if we know the endpoint zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0006, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0008, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0300, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback); wait_ms += inter_message_ms; zigbee_devices.setTimer(shortaddr, 0, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, 0, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable); wait_ms += 1000; // wait 1 second between devices } } } // // Send messages to query the state of each Hue emulated light // int32_t Z_Query_Bulbs(uint8_t value) { if (!Settings.flag5.zb_disable_autoquery) { // Scan all devices and send deferred requests to know the state of bulbs uint32_t wait_ms = 1000; // start with 1.0 s delay for (uint32_t i = 0; i < zigbee_devices.devicesSize(); i++) { const Z_Device &device = zigbee_devices.devicesAt(i); Z_Query_Bulb(device.shortaddr, wait_ms); } } return 0; // continue } // // Zigbee initialization is complete, let the party begin // int32_t Z_State_Ready(uint8_t value) { zigbee.init_phase = false; // initialization phase complete return 0; // continue } // // Auto-responder for Read request from extenal devices. // // Mostly used for routers/end-devices // json: holds the attributes in JSON format void ZCLFrame::autoResponder(const uint16_t *attr_list_ids, size_t attr_len) { Z_attribute_list attr_list; for (uint32_t i=0; i 0xFEFF) ? uxy[i] : 0xFEFF; } if (0x0000 == attr_id) { attr.setUInt(changeUIntScale(hue, 0, 360, 0, 254)); } if (0x0001 == attr_id) { attr.setUInt(changeUIntScale(sat, 0, 255, 0, 254)); } if (0x0003 == attr_id) { attr.setUInt(uxy[0]); } if (0x0004 == attr_id) { attr.setUInt(uxy[1]); } if (0x0007 == attr_id) { attr.setUInt(LightGetColorTemp()); } } break; #endif case 0x000A0000: // Time attr.setUInt((Rtc.utc_time > START_VALID_TIME) ? Rtc.utc_time - 946684800 : Rtc.utc_time); break; case 0x000AFF00: // TimeEpoch - Tasmota specific attr.setUInt(Rtc.utc_time); break; case 0x000A0001: // TimeStatus attr.setUInt((Rtc.utc_time > START_VALID_TIME) ? 0x02 : 0x00); break; case 0x000A0002: // TimeZone attr.setUInt(Settings.toffset[0] * 60); break; case 0x000A0007: // LocalTime // TODO take DST attr.setUInt(Settings.toffset[0] * 60 + ((Rtc.utc_time > START_VALID_TIME) ? Rtc.utc_time - 946684800 : Rtc.utc_time)); break; } if (!attr.isNone()) { Z_parseAttributeKey(attr, _cluster_id); attr_list.addAttribute(_cluster_id, attr_id) = attr; } } SBuffer buf(200); for (const auto & attr : attr_list) { if (!ZbAppendWriteBuf(buf, attr, true)) { // true = need status indicator in Read Attribute Responses return; // error } } if (buf.len() > 0) { // we have a non-empty output // log first AddLog_P(LOG_LEVEL_INFO, PSTR("ZIG: Auto-responder: ZbSend {\"Device\":\"0x%04X\"" ",\"Cluster\":\"0x%04X\"" ",\"Endpoint\":%d" ",\"Response\":%s}" ), _srcaddr, _cluster_id, _srcendpoint, attr_list.toString().c_str()); // send // all good, send the packet ZCLMessage zcl(buf.len()); // message is 4 bytes zcl.shortaddr = _srcaddr; zcl.cluster = _cluster_id; zcl.endpoint = _srcendpoint; zcl.cmd = ZCL_READ_ATTRIBUTES_RESPONSE; zcl.clusterSpecific = false; /* not cluster specific */ zcl.needResponse = false; /* noresponse */ zcl.direct = true; /* direct response */ zcl.setTransac(_transact_seq); zcl.buf.addBuffer(buf); zigbeeZCLSendCmd(zcl); } } #endif // USE_ZIGBEE