/* tasmota.ino - Tasmota firmware for iTead Sonoff, Wemos and NodeMCU hardware Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*==================================================== Prerequisites: - Change libraries/PubSubClient/src/PubSubClient.h #define MQTT_MAX_PACKET_SIZE 1200 Arduino IDE 1.8.12 and up parameters - Select IDE Tools - Board: "Generic ESP8266 Module" - Select IDE Tools - Flash Mode: "DOUT (compatible)" - Select IDE Tools - Flash Size: "1M (FS:none OTA:~502KB)" - Select IDE Tools - LwIP Variant: "v2 Higher Bandwidth (no feature)" - Select IDE Tools - VTables: "Flash" - Select IDE Tools - Espressif FW: "nonos-sdk-2.2.1+100 (190703)" ====================================================*/ // Location specific includes #include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_3_0) #include "tasmota_compat.h" #include "tasmota_version.h" // Tasmota version information #include "tasmota.h" // Enumeration used in my_user_config.h #include "my_user_config.h" // Fixed user configurable options #ifdef USE_MQTT_TLS #include // We need to include before "tasmota_globals.h" to take precedence over the BearSSL version in Arduino #endif // USE_MQTT_TLS #include "tasmota_globals.h" // Function prototypes and global configuration #include "i18n.h" // Language support configured by my_user_config.h #include "tasmota_template.h" // Hardware configuration #ifdef ARDUINO_ESP8266_RELEASE_2_4_0 #include "lwip/init.h" #if LWIP_VERSION_MAJOR != 1 #error Please use stable lwIP v1.4 #endif #endif // Libraries #include // Ota #include // Ota #include // Webserver, Updater #include // WemoHue, IRremote, Domoticz #ifdef USE_ARDUINO_OTA #include // Arduino OTA #ifndef USE_DISCOVERY #define USE_DISCOVERY #endif #endif // USE_ARDUINO_OTA #ifdef USE_DISCOVERY #include // MQTT, Webserver, Arduino OTA #endif // USE_DISCOVERY #ifdef USE_I2C #include // I2C support library #endif // USE_I2C #ifdef USE_SPI #include // SPI support, TFT #endif // USE_SPI // Structs #include "settings.h" /*********************************************************************************************\ * Global variables \*********************************************************************************************/ WiFiUDP PortUdp; // UDP Syslog and Alexa unsigned long feature_drv1; // Compiled driver feature map unsigned long feature_drv2; // Compiled driver feature map unsigned long feature_sns1; // Compiled sensor feature map unsigned long feature_sns2; // Compiled sensor feature map unsigned long feature5; // Compiled feature map unsigned long feature6; // Compiled feature map unsigned long serial_polling_window = 0; // Serial polling window unsigned long state_second = 0; // State second timer unsigned long state_50msecond = 0; // State 50msecond timer unsigned long state_100msecond = 0; // State 100msecond timer unsigned long state_250msecond = 0; // State 250msecond timer unsigned long pulse_timer[MAX_PULSETIMERS] = { 0 }; // Power off timer unsigned long blink_timer = 0; // Power cycle timer unsigned long backlog_delay = 0; // Command backlog delay power_t power = 0; // Current copy of Settings.power power_t last_power = 0; // Last power set state power_t blink_power; // Blink power state power_t blink_mask = 0; // Blink relay active mask power_t blink_powersave; // Blink start power save state power_t latching_power = 0; // Power state at latching start power_t rel_inverted = 0; // Relay inverted flag (1 = (0 = On, 1 = Off)) int serial_in_byte_counter = 0; // Index in receive buffer int ota_state_flag = 0; // OTA state flag int ota_result = 0; // OTA result int restart_flag = 0; // Tasmota restart flag int wifi_state_flag = WIFI_RESTART; // Wifi state flag int blinks = 201; // Number of LED blinks uint32_t uptime = 0; // Counting every second until 4294967295 = 130 year uint32_t loop_load_avg = 0; // Indicative loop load average uint32_t global_update = 0; // Timestamp of last global temperature and humidity update uint32_t web_log_index = 1; // Index in Web log buffer (should never be 0) float global_temperature = 9999; // Provide a global temperature to be used by some sensors float global_humidity = 0; // Provide a global humidity to be used by some sensors float global_pressure = 0; // Provide a global pressure to be used by some sensors uint16_t tele_period = 9999; // Tele period timer uint16_t blink_counter = 0; // Number of blink cycles uint16_t seriallog_timer = 0; // Timer to disable Seriallog uint16_t syslog_timer = 0; // Timer to re-enable syslog_level #ifdef ESP32 #ifdef FINAL_ESP32 uint16_t gpio_pin[MAX_GPIO_PIN] = { 0 }; // GPIO functions indexed by pin number #endif // FINAL_ESP32 #endif // ESP32 int16_t save_data_counter; // Counter and flag for config save to Flash RulesBitfield rules_flag; // Rule state flags (16 bits) uint8_t mqtt_cmnd_blocked = 0; // Ignore flag for publish command uint8_t mqtt_cmnd_blocked_reset = 0; // Count down to reset if needed uint8_t state_250mS = 0; // State 250msecond per second flag uint8_t latching_relay_pulse = 0; // Latching relay pulse timer uint8_t ssleep; // Current copy of Settings.sleep uint8_t blinkspeed = 1; // LED blink rate #ifdef ESP8266 #ifdef LEGACY_GPIO_ARRAY uint8_t pin_gpio[GPIO_MAX]; // Pin numbers indexed by GPIO function #else // No LEGACY_GPIO_ARRAY uint8_t gpio_pin[MAX_GPIO_PIN] = { 0 }; // GPIO functions indexed by pin number #endif // LEGACY_GPIO_ARRAY #else // ESP32 #ifndef FINAL_ESP32 #ifdef LEGACY_GPIO_ARRAY uint8_t pin_gpio[GPIO_MAX]; // Pin numbers indexed by GPIO function #else // No LEGACY_GPIO_ARRAY uint8_t gpio_pin[MAX_GPIO_PIN] = { 0 }; // GPIO functions indexed by pin number #endif // LEGACY_GPIO_ARRAY #endif // No FINAL_ESP32 #endif // ESP8266 - ESP32 uint8_t active_device = 1; // Active device in ExecuteCommandPower uint8_t leds_present = 0; // Max number of LED supported uint8_t led_inverted = 0; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_power = 0; // LED power state uint8_t ledlnk_inverted = 0; // Link LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t pwm_inverted = 0; // PWM inverted flag (1 = inverted) uint8_t energy_flg = 0; // Energy monitor configured uint8_t light_flg = 0; // Light module configured uint8_t light_type = 0; // Light types uint8_t serial_in_byte; // Received byte uint8_t ota_retry_counter = OTA_ATTEMPTS; // OTA retry counter uint8_t devices_present = 0; // Max number of devices supported uint8_t seriallog_level; // Current copy of Settings.seriallog_level uint8_t syslog_level; // Current copy of Settings.syslog_level uint8_t my_module_type; // Current copy of Settings.module or user template type uint8_t my_adc0; // Active copy of Module ADC0 uint8_t last_source = 0; // Last command source uint8_t shutters_present = 0; // Number of actual define shutters uint8_t prepped_loglevel = 0; // Delayed log level message //uint8_t mdns_delayed_start = 0; // mDNS delayed start bool serial_local = false; // Handle serial locally; bool fallback_topic_flag = false; // Use Topic or FallbackTopic bool backlog_mutex = false; // Command backlog pending bool interlock_mutex = false; // Interlock power command pending bool stop_flash_rotate = false; // Allow flash configuration rotation bool blinkstate = false; // LED state //bool latest_uptime_flag = true; // Signal latest uptime bool pwm_present = false; // Any PWM channel configured with SetOption15 0 bool i2c_flg = false; // I2C configured bool spi_flg = false; // SPI configured bool soft_spi_flg = false; // Software SPI configured bool ntp_force_sync = false; // Force NTP sync bool is_8285 = false; // Hardware device ESP8266EX (0) or ESP8285 (1) bool skip_light_fade; // Temporarily skip light fading myio my_module; // Active copy of Module GPIOs (17 x 8 bits) gpio_flag my_module_flag; // Active copy of Template GPIO flags StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits) char my_version[33]; // Composed version string char my_image[33]; // Code image and/or commit char my_hostname[33]; // Composed Wifi hostname char mqtt_client[TOPSZ]; // Composed MQTT Clientname char mqtt_topic[TOPSZ]; // Composed MQTT topic char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer char mqtt_data[MESSZ]; // MQTT publish buffer and web page ajax buffer char log_data[LOGSZ]; // Logging char web_log[WEB_LOG_SIZE] = {'\0'}; // Web log buffer #ifdef SUPPORT_IF_STATEMENT #include LinkedList backlog; // Command backlog implemented with LinkedList #define BACKLOG_EMPTY (backlog.size() == 0) #else uint8_t backlog_index = 0; // Command backlog index uint8_t backlog_pointer = 0; // Command backlog pointer String backlog[MAX_BACKLOG]; // Command backlog buffer #define BACKLOG_EMPTY (backlog_pointer == backlog_index) #endif /*********************************************************************************************\ * Main \*********************************************************************************************/ void setup(void) { #ifdef ESP32 #ifdef DISABLE_ESP32_BROWNOUT DisableBrownout(); // Workaround possible weak LDO resulting in brownout detection during Wifi connection #endif #endif global_state.data = 3; // Init global state (wifi_down, mqtt_down) to solve possible network issues RtcRebootLoad(); if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; } RtcReboot.fast_reboot_count++; RtcRebootSave(); Serial.begin(APP_BAUDRATE); seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded snprintf_P(my_version, sizeof(my_version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0 if (VERSION & 0xff) { // Development or patched version 6.3.0.10 snprintf_P(my_version, sizeof(my_version), PSTR("%s.%d"), my_version, VERSION & 0xff); } // Thehackbox inserts "release" or "commit number" before compiling using sed -i -e 's/PSTR("(%s)")/PSTR("(85cff52-%s)")/g' tasmota.ino snprintf_P(my_image, sizeof(my_image), PSTR("(%s)"), CODE_IMAGE_STR); // Results in (85cff52-tasmota) or (release-tasmota) SettingsLoad(); SettingsDelta(); OsWatchInit(); GetFeatures(); if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well UpdateQuickPowerCycle(true); XdrvCall(FUNC_SETTINGS_OVERRIDE); } // mdns_delayed_start = Settings.param[P_MDNS_DELAYED_START]; seriallog_level = Settings.seriallog_level; seriallog_timer = SERIALLOG_TIMER; syslog_level = Settings.syslog_level; stop_flash_rotate = Settings.flag.stop_flash_rotate; // SetOption12 - Switch between dynamic or fixed slot flash save location save_data_counter = Settings.save_data; ssleep = Settings.sleep; #ifndef USE_EMULATION Settings.flag2.emulation = 0; #else #ifndef USE_EMULATION_WEMO if (EMUL_WEMO == Settings.flag2.emulation) { Settings.flag2.emulation = 0; } #endif #ifndef USE_EMULATION_HUE if (EMUL_HUE == Settings.flag2.emulation) { Settings.flag2.emulation = 0; } #endif #endif // USE_EMULATION if (Settings.param[P_BOOT_LOOP_OFFSET]) { // SetOption36 // Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts) if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET]) { // Restart twice Settings.flag3.user_esp8285_enable = 0; // SetOption51 - Enable ESP8285 user GPIO's - Disable ESP8285 Generic GPIOs interfering with flash SPI if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times for (uint32_t i = 0; i < MAX_RULE_SETS; i++) { if (bitRead(Settings.rule_stop, i)) { bitWrite(Settings.rule_enabled, i, 0); // Disable rules causing boot loop } } } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times Settings.rule_enabled = 0; // Disable all rules } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times for (uint32_t i = 0; i < ARRAY_SIZE(Settings.my_gp.io); i++) { Settings.my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors } Settings.my_adc0 = ADC0_NONE; // Reset user defined ADC0 disabling sensors } if (RtcReboot.fast_reboot_count > Settings.param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times #ifdef ESP8266 Settings.module = SONOFF_BASIC; // Reset module to Sonoff Basic // Settings.last_module = SONOFF_BASIC; #endif // ESP8266 #ifdef ESP32 Settings.module = WEMOS; // Reset module to Wemos #endif // ESP32 } AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count); } } Format(mqtt_client, SettingsText(SET_MQTT_CLIENT), sizeof(mqtt_client)); Format(mqtt_topic, SettingsText(SET_MQTT_TOPIC), sizeof(mqtt_topic)); if (strstr(SettingsText(SET_HOSTNAME), "%") != nullptr) { SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME); snprintf_P(my_hostname, sizeof(my_hostname)-1, SettingsText(SET_HOSTNAME), mqtt_topic, ESP_getChipId() & 0x1FFF); } else { snprintf_P(my_hostname, sizeof(my_hostname)-1, SettingsText(SET_HOSTNAME)); } GetEspHardwareType(); GpioInit(); // SetSerialBaudrate(Settings.baudrate * 300); // Allow reset of serial interface if current baudrate is different from requested baudrate WifiConnect(); SetPowerOnState(); AddLog_P2(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s %s " D_VERSION " %s%s-" ARDUINO_CORE_RELEASE), PROJECT, SettingsText(SET_FRIENDLYNAME1), my_version, my_image); #ifdef FIRMWARE_MINIMAL AddLog_P2(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION)); #endif // FIRMWARE_MINIMAL memcpy_P(log_data, VERSION_MARKER, 1); // Dummy for compiler saving VERSION_MARKER RtcInit(); #ifdef USE_ARDUINO_OTA ArduinoOTAInit(); #endif // USE_ARDUINO_OTA XdrvCall(FUNC_INIT); XsnsCall(FUNC_INIT); } void BacklogLoop(void) { if (TimeReached(backlog_delay)) { if (!BACKLOG_EMPTY && !backlog_mutex) { #ifdef SUPPORT_IF_STATEMENT backlog_mutex = true; String cmd = backlog.shift(); backlog_mutex = false; ExecuteCommand((char*)cmd.c_str(), SRC_BACKLOG); #else backlog_mutex = true; ExecuteCommand((char*)backlog[backlog_pointer].c_str(), SRC_BACKLOG); backlog_pointer++; if (backlog_pointer >= MAX_BACKLOG) { backlog_pointer = 0; } backlog_mutex = false; #endif } } } void loop(void) { uint32_t my_sleep = millis(); XdrvCall(FUNC_LOOP); XsnsCall(FUNC_LOOP); OsWatchLoop(); ButtonLoop(); SwitchLoop(); #ifdef ROTARY_V1 RotaryLoop(); #endif #ifdef USE_DEVICE_GROUPS DeviceGroupsLoop(); #endif // USE_DEVICE_GROUPS BacklogLoop(); if (TimeReached(state_50msecond)) { SetNextTimeInterval(state_50msecond, 50); XdrvCall(FUNC_EVERY_50_MSECOND); XsnsCall(FUNC_EVERY_50_MSECOND); } if (TimeReached(state_100msecond)) { SetNextTimeInterval(state_100msecond, 100); Every100mSeconds(); XdrvCall(FUNC_EVERY_100_MSECOND); XsnsCall(FUNC_EVERY_100_MSECOND); } if (TimeReached(state_250msecond)) { SetNextTimeInterval(state_250msecond, 250); Every250mSeconds(); XdrvCall(FUNC_EVERY_250_MSECOND); XsnsCall(FUNC_EVERY_250_MSECOND); } if (TimeReached(state_second)) { SetNextTimeInterval(state_second, 1000); PerformEverySecond(); XdrvCall(FUNC_EVERY_SECOND); XsnsCall(FUNC_EVERY_SECOND); } if (!serial_local) { SerialInput(); } #ifdef USE_ARDUINO_OTA ArduinoOtaLoop(); #endif // USE_ARDUINO_OTA uint32_t my_activity = millis() - my_sleep; if (Settings.flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep // yield(); // yield == delay(0), delay contains yield, auto yield in loop delay(ssleep); // https://github.com/esp8266/Arduino/issues/2021 } else { if (my_activity < (uint32_t)ssleep) { delay((uint32_t)ssleep - my_activity); // Provide time for background tasks like wifi } else { if (global_state.wifi_down) { delay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/3 of my_activity period } } } if (!my_activity) { my_activity++; } // We cannot divide by 0 uint32_t loop_delay = ssleep; if (!loop_delay) { loop_delay++; } // We cannot divide by 0 uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second uint32_t this_cycle_ratio = 100 * my_activity / loop_delay; loop_load_avg = loop_load_avg - (loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one }