/* xsns_02_analog.ino - ESP8266 ADC support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifndef USE_ADC_VCC /*********************************************************************************************\ * ADC support \*********************************************************************************************/ #define XSNS_02 2 #define TO_CELSIUS(x) ((x) - 273.15) #define TO_KELVIN(x) ((x) + 273.15) // Parameters for equation #define ANALOG_V33 3.3 // ESP8266 Analog voltage #define ANALOG_T0 TO_KELVIN(25.0) // 25 degrees Celcius in Kelvin (= 298.15) // Shelly 2.5 NTC Thermistor // 3V3 --- ANALOG_NTC_BRIDGE_RESISTANCE ---v--- NTC --- Gnd // | // ADC0 #define ANALOG_NTC_BRIDGE_RESISTANCE 32000 // NTC Voltage bridge resistor #define ANALOG_NTC_RESISTANCE 10000 // NTC Resistance #define ANALOG_NTC_B_COEFFICIENT 3350 // NTC Beta Coefficient // LDR parameters // 3V3 --- LDR ---v--- ANALOG_LDR_BRIDGE_RESISTANCE --- Gnd // | // ADC0 #define ANALOG_LDR_BRIDGE_RESISTANCE 10000 // LDR Voltage bridge resistor #define ANALOG_LDR_LUX_CALC_SCALAR 12518931 // Experimental #define ANALOG_LDR_LUX_CALC_EXPONENT -1.4050 // Experimental // CT Based Apparrent Power Measurement Parameters // 3V3 --- R1 ----v--- R1 --- Gnd // | // CT+ CT- // | // ADC0 // Default settings for a 20A/1V Current Transformer. // Analog peak to peak range is measured and converted to RMS current using ANALOG_CT_MULTIPLIER #define ANALOG_CT_FLAGS 0 // (uint32_t) reserved for possible future use #define ANALOG_CT_MULTIPLIER 2146 // (uint32_t) Multiplier*100000 to convert raw ADC peak to peak range 0..1023 to RMS current in Amps. Value of 100000 corresponds to 1 #define ANALOG_CT_VOLTAGE 2300 // (int) Convert current in Amps to apparrent power in Watts using voltage in Volts*10. Value of 2200 corresponds to 220V #define CT_FLAG_ENERGY_RESET (1 << 0) // Reset energy total struct { float temperature = 0; float current = 0; float energy = 0; uint32_t previous_millis = 0; uint16_t last_value = 0; } Adc; void AdcInit(void) { if ((Settings.adc_param_type != my_adc0) || (Settings.adc_param1 > 1000000) || (Settings.adc_param1 < 100)) { if (ADC0_TEMP == my_adc0) { // Default Shelly 2.5 and 1PM parameters Settings.adc_param_type = ADC0_TEMP; Settings.adc_param1 = ANALOG_NTC_BRIDGE_RESISTANCE; Settings.adc_param2 = ANALOG_NTC_RESISTANCE; Settings.adc_param3 = ANALOG_NTC_B_COEFFICIENT * 10000; } else if (ADC0_LIGHT == my_adc0) { Settings.adc_param_type = ADC0_LIGHT; Settings.adc_param1 = ANALOG_LDR_BRIDGE_RESISTANCE; Settings.adc_param2 = ANALOG_LDR_LUX_CALC_SCALAR; Settings.adc_param3 = ANALOG_LDR_LUX_CALC_EXPONENT * 10000; } else if (ADC0_MOIST == my_adc0) { Settings.adc_param_type = ADC0_MOIST; Settings.adc_param1 = 0; Settings.adc_param2 = 1023; Settings.adc_param3 = 0; } else if (ADC0_CT_POWER == my_adc0) { Settings.adc_param_type = ADC0_CT_POWER; Settings.adc_param1 = ANALOG_CT_FLAGS; //(uint32_t) 0 Settings.adc_param2 = ANALOG_CT_MULTIPLIER; //(uint32_t) 100000 Settings.adc_param3 = ANALOG_CT_VOLTAGE; //(int) 10 } } } uint16_t AdcRead(uint8_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint8_t samples = 1 << factor; uint16_t analog = 0; for (uint32_t i = 0; i < samples; i++) { analog += analogRead(A0); delay(1); } analog >>= factor; return analog; } #ifdef USE_RULES void AdcEvery250ms(void) { if (ADC0_INPUT == my_adc0) { uint16_t new_value = AdcRead(5); if ((new_value < Adc.last_value -10) || (new_value > Adc.last_value +10)) { Adc.last_value = new_value; uint16_t value = Adc.last_value / 10; Response_P(PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value); XdrvRulesProcess(); } } } #endif // USE_RULES uint16_t AdcGetLux(void) { int adc = AdcRead(2); // Source: https://www.allaboutcircuits.com/projects/design-a-luxmeter-using-a-light-dependent-resistor/ double resistorVoltage = ((double)adc / 1023) * ANALOG_V33; double ldrVoltage = ANALOG_V33 - resistorVoltage; double ldrResistance = ldrVoltage / resistorVoltage * (double)Settings.adc_param1; double ldrLux = (double)Settings.adc_param2 * FastPrecisePow(ldrResistance, (double)Settings.adc_param3 / 10000); return (uint16_t)ldrLux; } uint16_t AdcGetMoist(void) { // formula for calibration: value, fromLow, fromHigh, toHigh, toLow // Example: 632, 0, 1023, 100, 0 // int( ( ( ( - ) / ( - ) ) * ( - ) ) + ) // double amoist = ((Settings.adc_param2 - (double)adc) / (Settings.adc_param2 - Settings.adc_param1) * 100; // int((((1023 - ) / ( 1023 - 0 )) * ( 100 - 0 )) + 0 ) int adc = AdcRead(2); double amoist = ((double)Settings.adc_param2 - (double)adc) / ((double)Settings.adc_param2 - (double)Settings.adc_param1) * 100; //double amoist = ((1023 - (double)adc) / 1023) * 100; return (uint16_t)amoist; } void AdcGetCurrentPower(uint8_t factor) { // factor 1 = 2 samples // factor 2 = 4 samples // factor 3 = 8 samples // factor 4 = 16 samples // factor 5 = 32 samples uint8_t samples = 1 << factor; uint16_t analog = 0; uint16_t analog_min = 1023; uint16_t analog_max = 0; for (uint32_t i = 0; i < samples; i++) { analog = analogRead(A0); if (analog < analog_min) { analog_min = analog; } if (analog > analog_max) { analog_max = analog; } delay(1); } Adc.current = (float)(analog_max-analog_min) * ((float)(Settings.adc_param2) / 100000); float power = Adc.current * (float)(Settings.adc_param3) / 10; uint32_t current_millis = millis(); Adc.energy = Adc.energy + ((power * (current_millis - Adc.previous_millis)) / 3600000000); Adc.previous_millis = current_millis; } void AdcEverySecond(void) { if (ADC0_TEMP == my_adc0) { int adc = AdcRead(2); // Steinhart-Hart equation for thermistor as temperature sensor double Rt = (adc * Settings.adc_param1) / (1024.0 * ANALOG_V33 - (double)adc); double BC = (double)Settings.adc_param3 / 10000; double T = BC / (BC / ANALOG_T0 + TaylorLog(Rt / (double)Settings.adc_param2)); Adc.temperature = ConvertTemp(TO_CELSIUS(T)); } else if (ADC0_CT_POWER == my_adc0) { AdcGetCurrentPower(5); } } void AdcShow(bool json) { if (ADC0_INPUT == my_adc0) { uint16_t analog = AdcRead(5); if (json) { ResponseAppend_P(PSTR(",\"ANALOG\":{\"A0\":%d}"), analog); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ANALOG, "", 0, analog); #endif // USE_WEBSERVER } } else if (ADC0_TEMP == my_adc0) { char temperature[33]; dtostrfd(Adc.temperature, Settings.flag2.temperature_resolution, temperature); if (json) { ResponseAppend_P(JSON_SNS_TEMP, "ANALOG", temperature); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_TEMP, temperature); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (0 == tele_period) { KnxSensor(KNX_TEMPERATURE, Adc.temperature); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_TEMP, "", temperature, TempUnit()); #endif // USE_WEBSERVER } } else if (ADC0_LIGHT == my_adc0) { uint16_t adc_light = AdcGetLux(); if (json) { ResponseAppend_P(JSON_SNS_ILLUMINANCE, "ANALOG", adc_light); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_ILLUMINANCE, adc_light); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_ILLUMINANCE, "", adc_light); #endif // USE_WEBSERVER } } else if (ADC0_MOIST == my_adc0) { uint16_t adc_moist = AdcGetMoist(); if (json) { ResponseAppend_P(JSON_SNS_MOISTURE, "ANALOG", adc_moist); #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_MOISTURE, "", adc_moist); #endif // USE_WEBSERVER } } else if (ADC0_CT_POWER == my_adc0) { AdcGetCurrentPower(5); float voltage = (float)(Settings.adc_param3) / 10; char voltage_chr[FLOATSZ]; dtostrfd(voltage, Settings.flag2.voltage_resolution, voltage_chr); char current_chr[FLOATSZ]; dtostrfd(Adc.current, Settings.flag2.current_resolution, current_chr); char power_chr[FLOATSZ]; dtostrfd(voltage * Adc.current, Settings.flag2.wattage_resolution, power_chr); char energy_chr[FLOATSZ]; dtostrfd(Adc.energy, Settings.flag2.energy_resolution, energy_chr); if (json) { ResponseAppend_P(PSTR(",\"ANALOG\":{\"" D_JSON_ENERGY "\":%s,\"" D_JSON_POWERUSAGE "\":%s,\"" D_JSON_VOLTAGE "\":%s,\"" D_JSON_CURRENT "\":%s}"), energy_chr, power_chr, voltage_chr, current_chr); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzSensor(DZ_POWER_ENERGY, power_chr); DomoticzSensor(DZ_VOLTAGE, voltage_chr); DomoticzSensor(DZ_CURRENT, current_chr); } #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_VOLTAGE, voltage_chr); WSContentSend_PD(HTTP_SNS_CURRENT, current_chr); WSContentSend_PD(HTTP_SNS_POWER, power_chr); WSContentSend_PD(HTTP_SNS_ENERGY_TOTAL, energy_chr); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ const char kAdcCommands[] PROGMEM = "|" // No prefix D_CMND_ADC "|" D_CMND_ADCS "|" D_CMND_ADCPARAM; void (* const AdcCommand[])(void) PROGMEM = { &CmndAdc, &CmndAdcs, &CmndAdcParam }; void CmndAdc(void) { if (ValidAdc() && (XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < ADC0_END)) { Settings.my_adc0 = XdrvMailbox.payload; restart_flag = 2; } char stemp1[TOPSZ]; Response_P(PSTR("{\"" D_CMND_ADC "0\":{\"%d\":\"%s\"}}"), Settings.my_adc0, GetTextIndexed(stemp1, sizeof(stemp1), Settings.my_adc0, kAdc0Names)); } void CmndAdcs(void) { Response_P(PSTR("{\"" D_CMND_ADCS "\":{")); bool jsflg = false; char stemp1[TOPSZ]; for (uint32_t i = 0; i < ADC0_END; i++) { if (jsflg) { ResponseAppend_P(PSTR(",")); } jsflg = true; ResponseAppend_P(PSTR("\"%d\":\"%s\""), i, GetTextIndexed(stemp1, sizeof(stemp1), i, kAdc0Names)); } ResponseJsonEndEnd(); } void CmndAdcParam(void) { if (XdrvMailbox.data_len) { if ((ADC0_TEMP == XdrvMailbox.payload) || (ADC0_LIGHT == XdrvMailbox.payload) || (ADC0_MOIST == XdrvMailbox.payload) || (ADC0_CT_POWER == XdrvMailbox.payload)) { if (strstr(XdrvMailbox.data, ",") != nullptr) { // Process parameter entry char sub_string[XdrvMailbox.data_len +1]; // AdcParam 2, 32000, 10000, 3350 // AdcParam 3, 10000, 12518931, -1.405 Settings.adc_param_type = XdrvMailbox.payload; Settings.adc_param1 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 2), nullptr, 10); Settings.adc_param2 = strtol(subStr(sub_string, XdrvMailbox.data, ",", 3), nullptr, 10); if (!ADC0_MOIST == XdrvMailbox.payload) { Settings.adc_param3 = (int)(CharToFloat(subStr(sub_string, XdrvMailbox.data, ",", 4)) * 10000); } if (ADC0_CT_POWER == XdrvMailbox.payload) { if ((Settings.adc_param1 & CT_FLAG_ENERGY_RESET) > 0) { Adc.energy = 0; Settings.adc_param1 ^= CT_FLAG_ENERGY_RESET; // Cancel energy reset flag } } } else { // Set default values based on current adc type // AdcParam 2 // AdcParam 3 // AdcParam 6 // AdcParam 7 Settings.adc_param_type = 0; AdcInit(); } } } // AdcParam Response_P(PSTR("{\"" D_CMND_ADCPARAM "\":[%d,%d,%d"), Settings.adc_param_type, Settings.adc_param1, Settings.adc_param2); if (ADC0_MOIST != my_adc0) { int value = Settings.adc_param3; uint8_t precision; for (precision = 4; precision > 0; precision--) { if (value % 10) { break; } value /= 10; } char param3[33]; dtostrfd(((double)Settings.adc_param3)/10000, precision, param3); ResponseAppend_P(PSTR(",%s"), param3); } ResponseAppend_P(PSTR("]}")); } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns02(uint8_t function) { bool result = false; switch (function) { case FUNC_COMMAND: result = DecodeCommand(kAdcCommands, AdcCommand); break; default: if ((ADC0_INPUT == my_adc0) || (ADC0_TEMP == my_adc0) || (ADC0_LIGHT == my_adc0) || (ADC0_MOIST == my_adc0) || (ADC0_CT_POWER == my_adc0)) { switch (function) { #ifdef USE_RULES case FUNC_EVERY_250_MSECOND: AdcEvery250ms(); break; #endif // USE_RULES case FUNC_EVERY_SECOND: AdcEverySecond(); break; case FUNC_INIT: AdcInit(); break; case FUNC_JSON_APPEND: AdcShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: AdcShow(0); break; #endif // USE_WEBSERVER } } } return result; } #endif // USE_ADC_VCC