/*! * @file Adafruit_SSD1306.cpp * * @mainpage Arduino library for monochrome OLEDs based on SSD1306 drivers. * * @section intro_sec Introduction * * This is documentation for Adafruit's SSD1306 library for monochrome * OLED displays: http://www.adafruit.com/category/63_98 * * These displays use I2C or SPI to communicate. I2C requires 2 pins * (SCL+SDA) and optionally a RESET pin. SPI requires 4 pins (MOSI, SCK, * select, data/command) and optionally a reset pin. Hardware SPI or * 'bitbang' software SPI are both supported. * * Adafruit invests time and resources providing this open source code, * please support Adafruit and open-source hardware by purchasing * products from Adafruit! * * @section dependencies Dependencies * * This library depends on * Adafruit_GFX being present on your system. Please make sure you have * installed the latest version before using this library. * * @section author Author * * Written by Limor Fried/Ladyada for Adafruit Industries, with * contributions from the open source community. * * @section license License * * BSD license, all text above, and the splash screen included below, * must be included in any redistribution. * */ #ifdef __AVR__ #include #elif defined(ESP8266) || defined(ESP32) #include #else #define pgm_read_byte(addr) \ (*(const unsigned char *)(addr)) ///< PROGMEM workaround for non-AVR #endif #if !defined(__ARM_ARCH) && !defined(ENERGIA) && !defined(ESP8266) && !defined(ESP32) && !defined(__arc__) #include #endif #include #include "Adafruit_SSD1306.h" #include "splash.h" // SOME DEFINES AND STATIC VARIABLES USED INTERNALLY ----------------------- #if defined(BUFFER_LENGTH) #define WIRE_MAX BUFFER_LENGTH ///< AVR or similar Wire lib #elif defined(SERIAL_BUFFER_SIZE) #define WIRE_MAX (SERIAL_BUFFER_SIZE-1) ///< Newer Wire uses RingBuffer #else #define WIRE_MAX 32 ///< Use common Arduino core default #endif #define ssd1306_swap(a, b) \ (((a) ^= (b)), ((b) ^= (a)), ((a) ^= (b))) ///< No-temp-var swap operation #if ARDUINO >= 100 #define WIRE_WRITE wire->write ///< Wire write function in recent Arduino lib #else #define WIRE_WRITE wire->send ///< Wire write function in older Arduino lib #endif #ifdef HAVE_PORTREG #define SSD1306_SELECT *csPort &= ~csPinMask; ///< Device select #define SSD1306_DESELECT *csPort |= csPinMask; ///< Device deselect #define SSD1306_MODE_COMMAND *dcPort &= ~dcPinMask; ///< Command mode #define SSD1306_MODE_DATA *dcPort |= dcPinMask; ///< Data mode #else #define SSD1306_SELECT digitalWrite(csPin, LOW); ///< Device select #define SSD1306_DESELECT digitalWrite(csPin, HIGH); ///< Device deselect #define SSD1306_MODE_COMMAND digitalWrite(dcPin, LOW); ///< Command mode #define SSD1306_MODE_DATA digitalWrite(dcPin, HIGH); ///< Data mode #endif #if (ARDUINO >= 157) && !defined(ARDUINO_STM32_FEATHER) #define SETWIRECLOCK wire->setClock(wireClk) ///< Set before I2C transfer #define RESWIRECLOCK wire->setClock(restoreClk) ///< Restore after I2C xfer #else // setClock() is not present in older Arduino Wire lib (or WICED) #define SETWIRECLOCK ///< Dummy stand-in define #define RESWIRECLOCK ///< keeps compiler happy #endif #if defined(SPI_HAS_TRANSACTION) #define SPI_TRANSACTION_START spi->beginTransaction(spiSettings) ///< Pre-SPI #define SPI_TRANSACTION_END spi->endTransaction() ///< Post-SPI #else // SPI transactions likewise not present in older Arduino SPI lib #define SPI_TRANSACTION_START ///< Dummy stand-in define #define SPI_TRANSACTION_END ///< keeps compiler happy #endif // The definition of 'transaction' is broadened a bit in the context of // this library -- referring not just to SPI transactions (if supported // in the version of the SPI library being used), but also chip select // (if SPI is being used, whether hardware or soft), and also to the // beginning and end of I2C transfers (the Wire clock may be sped up before // issuing data to the display, then restored to the default rate afterward // so other I2C device types still work). All of these are encapsulated // in the TRANSACTION_* macros. // Check first if Wire, then hardware SPI, then soft SPI: #define TRANSACTION_START \ if(wire) { \ SETWIRECLOCK; \ } else { \ if(spi) { \ SPI_TRANSACTION_START; \ } \ SSD1306_SELECT; \ } ///< Wire, SPI or bitbang transfer setup #define TRANSACTION_END \ if(wire) { \ RESWIRECLOCK; \ } else { \ SSD1306_DESELECT; \ if(spi) { \ SPI_TRANSACTION_END; \ } \ } ///< Wire, SPI or bitbang transfer end // CONSTRUCTORS, DESTRUCTOR ------------------------------------------------ /*! @brief Constructor for I2C-interfaced SSD1306 displays. @param w Display width in pixels @param h Display height in pixels @param twi Pointer to an existing TwoWire instance (e.g. &Wire, the microcontroller's primary I2C bus). @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @param clkDuring Speed (in Hz) for Wire transmissions in SSD1306 library calls. Defaults to 400000 (400 KHz), a known 'safe' value for most microcontrollers, and meets the SSD1306 datasheet spec. Some systems can operate I2C faster (800 KHz for ESP32, 1 MHz for many other 32-bit MCUs), and some (perhaps not all) SSD1306's can work with this -- so it's optionally be specified here and is not a default behavior. (Ignored if using pre-1.5.7 Arduino software, which operates I2C at a fixed 100 KHz.) @param clkAfter Speed (in Hz) for Wire transmissions following SSD1306 library calls. Defaults to 100000 (100 KHz), the default Arduino Wire speed. This is done rather than leaving it at the 'during' speed because other devices on the I2C bus might not be compatible with the faster rate. (Ignored if using pre-1.5.7 Arduino software, which operates I2C at a fixed 100 KHz.) @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(uint8_t w, uint8_t h, TwoWire *twi, int8_t rst_pin, uint32_t clkDuring, uint32_t clkAfter) : Renderer(w, h), spi(NULL), wire(twi ? twi : &Wire), xbuffer(NULL), mosiPin(-1), clkPin(-1), dcPin(-1), csPin(-1), rstPin(rst_pin), wireClk(clkDuring), restoreClk(clkAfter) { } /*! @brief Constructor for SPI SSD1306 displays, using software (bitbang) SPI. @param w Display width in pixels @param h Display height in pixels @param mosi_pin MOSI (master out, slave in) pin (using Arduino pin numbering). This transfers serial data from microcontroller to display. @param sclk_pin SCLK (serial clock) pin (using Arduino pin numbering). This clocks each bit from MOSI. @param dc_pin Data/command pin (using Arduino pin numbering), selects whether display is receiving commands (low) or data (high). @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @param cs_pin Chip-select pin (using Arduino pin numbering) for sharing the bus with other devices. Active low. @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(uint8_t w, uint8_t h, int8_t mosi_pin, int8_t sclk_pin, int8_t dc_pin, int8_t rst_pin, int8_t cs_pin) : Renderer(w, h), spi(NULL), wire(NULL), xbuffer(NULL), mosiPin(mosi_pin), clkPin(sclk_pin), dcPin(dc_pin), csPin(cs_pin), rstPin(rst_pin) { } /*! @brief Constructor for SPI SSD1306 displays, using native hardware SPI. @param w Display width in pixels @param h Display height in pixels @param spi Pointer to an existing SPIClass instance (e.g. &SPI, the microcontroller's primary SPI bus). @param dc_pin Data/command pin (using Arduino pin numbering), selects whether display is receiving commands (low) or data (high). @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @param cs_pin Chip-select pin (using Arduino pin numbering) for sharing the bus with other devices. Active low. @param bitrate SPI clock rate for transfers to this display. Default if unspecified is 8000000UL (8 MHz). @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(uint8_t w, uint8_t h, SPIClass *spi, int8_t dc_pin, int8_t rst_pin, int8_t cs_pin, uint32_t bitrate) : Renderer(w, h), spi(spi ? spi : &SPI), wire(NULL), xbuffer(NULL), mosiPin(-1), clkPin(-1), dcPin(dc_pin), csPin(cs_pin), rstPin(rst_pin) { #ifdef SPI_HAS_TRANSACTION spiSettings = SPISettings(bitrate, MSBFIRST, SPI_MODE0); #endif } /*! @brief DEPRECATED constructor for SPI SSD1306 displays, using software (bitbang) SPI. Provided for older code to maintain compatibility with the current library. Screen size is determined by enabling one of the SSD1306_* size defines in Adafruit_SSD1306.h. New code should NOT use this. @param mosi_pin MOSI (master out, slave in) pin (using Arduino pin numbering). This transfers serial data from microcontroller to display. @param sclk_pin SCLK (serial clock) pin (using Arduino pin numbering). This clocks each bit from MOSI. @param dc_pin Data/command pin (using Arduino pin numbering), selects whether display is receiving commands (low) or data (high). @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @param cs_pin Chip-select pin (using Arduino pin numbering) for sharing the bus with other devices. Active low. @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(int8_t mosi_pin, int8_t sclk_pin, int8_t dc_pin, int8_t rst_pin, int8_t cs_pin) : Renderer(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT), spi(NULL), wire(NULL), xbuffer(NULL), mosiPin(mosi_pin), clkPin(sclk_pin), dcPin(dc_pin), csPin(cs_pin), rstPin(rst_pin) { } /*! @brief DEPRECATED constructor for SPI SSD1306 displays, using native hardware SPI. Provided for older code to maintain compatibility with the current library. Screen size is determined by enabling one of the SSD1306_* size defines in Adafruit_SSD1306.h. New code should NOT use this. Only the primary SPI bus is supported, and bitrate is fixed at 8 MHz. @param dc_pin Data/command pin (using Arduino pin numbering), selects whether display is receiving commands (low) or data (high). @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @param cs_pin Chip-select pin (using Arduino pin numbering) for sharing the bus with other devices. Active low. @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(int8_t dc_pin, int8_t rst_pin, int8_t cs_pin) : Renderer(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT), spi(&SPI), wire(NULL), xbuffer(NULL), mosiPin(-1), clkPin(-1), dcPin(dc_pin), csPin(cs_pin), rstPin(rst_pin) { #ifdef SPI_HAS_TRANSACTION spiSettings = SPISettings(8000000, MSBFIRST, SPI_MODE0); #endif } /*! @brief DEPRECATED constructor for I2C SSD1306 displays. Provided for older code to maintain compatibility with the current library. Screen size is determined by enabling one of the SSD1306_* size defines in Adafruit_SSD1306.h. New code should NOT use this. Only the primary I2C bus is supported. @param rst_pin Reset pin (using Arduino pin numbering), or -1 if not used (some displays might be wired to share the microcontroller's reset pin). @return Adafruit_SSD1306 object. @note Call the object's begin() function before use -- buffer allocation is performed there! */ Adafruit_SSD1306::Adafruit_SSD1306(int8_t rst_pin) : Renderer(SSD1306_LCDWIDTH, SSD1306_LCDHEIGHT), spi(NULL), wire(&Wire), xbuffer(NULL), mosiPin(-1), clkPin(-1), dcPin(-1), csPin(-1), rstPin(rst_pin) { } /*! @brief Destructor for Adafruit_SSD1306 object. */ Adafruit_SSD1306::~Adafruit_SSD1306(void) { if (framebuffer) { free (framebuffer); framebuffer = NULL; } } // LOW-LEVEL UTILS --------------------------------------------------------- // Issue single byte out SPI, either soft or hardware as appropriate. // SPI transaction/selection must be performed in calling function. inline void Adafruit_SSD1306::SPIwrite(uint8_t d) { if(spi) { (void)spi->transfer(d); } else { for(uint8_t bit = 0x80; bit; bit >>= 1) { #ifdef HAVE_PORTREG if(d & bit) *mosiPort |= mosiPinMask; else *mosiPort &= ~mosiPinMask; *clkPort |= clkPinMask; // Clock high *clkPort &= ~clkPinMask; // Clock low #else digitalWrite(mosiPin, d & bit); digitalWrite(clkPin , HIGH); digitalWrite(clkPin , LOW); #endif } } } // Issue single command to SSD1306, using I2C or hard/soft SPI as needed. // Because command calls are often grouped, SPI transaction and selection // must be started/ended in calling function for efficiency. // This is a private function, not exposed (see ssd1306_command() instead). void Adafruit_SSD1306::ssd1306_command1(uint8_t c) { if(wire) { // I2C wire->beginTransmission(i2caddr); WIRE_WRITE((uint8_t)0x00); // Co = 0, D/C = 0 WIRE_WRITE(c); wire->endTransmission(); } else { // SPI (hw or soft) -- transaction started in calling function SSD1306_MODE_COMMAND SPIwrite(c); } } // Issue list of commands to SSD1306, same rules as above re: transactions. // This is a private function, not exposed. void Adafruit_SSD1306::ssd1306_commandList(const uint8_t *c, uint8_t n) { if(wire) { // I2C wire->beginTransmission(i2caddr); WIRE_WRITE((uint8_t)0x00); // Co = 0, D/C = 0 uint8_t bytesOut = 1; while(n--) { if(bytesOut >= WIRE_MAX) { wire->endTransmission(); wire->beginTransmission(i2caddr); WIRE_WRITE((uint8_t)0x00); // Co = 0, D/C = 0 bytesOut = 1; } WIRE_WRITE(pgm_read_byte(c++)); bytesOut++; } wire->endTransmission(); } else { // SPI -- transaction started in calling function SSD1306_MODE_COMMAND while(n--) SPIwrite(pgm_read_byte(c++)); } } // A public version of ssd1306_command1(), for existing user code that // might rely on that function. This encapsulates the command transfer // in a transaction start/end, similar to old library's handling of it. /*! @brief Issue a single low-level command directly to the SSD1306 display, bypassing the library. @param c Command to issue (0x00 to 0xFF, see datasheet). @return None (void). */ void Adafruit_SSD1306::ssd1306_command(uint8_t c) { TRANSACTION_START ssd1306_command1(c); TRANSACTION_END } // ALLOCATE & INIT DISPLAY ------------------------------------------------- /*! @brief Allocate RAM for image buffer, initialize peripherals and pins. @param vcs VCC selection. Pass SSD1306_SWITCHCAPVCC to generate the display voltage (step up) from the 3.3V source, or SSD1306_EXTERNALVCC otherwise. Most situations with Adafruit SSD1306 breakouts will want SSD1306_SWITCHCAPVCC. @param addr I2C address of corresponding SSD1306 display (or pass 0 to use default of 0x3C for 128x32 display, 0x3D for all others). SPI displays (hardware or software) do not use addresses, but this argument is still required (pass 0 or any value really, it will simply be ignored). Default if unspecified is 0. @param reset If true, and if the reset pin passed to the constructor is valid, a hard reset will be performed before initializing the display. If using multiple SSD1306 displays on the same bus, and if they all share the same reset pin, you should only pass true on the first display being initialized, false on all others, else the already-initialized displays would be reset. Default if unspecified is true. @param periphBegin If true, and if a hardware peripheral is being used (I2C or SPI, but not software SPI), call that peripheral's begin() function, else (false) it has already been done in one's sketch code. Cases where false might be used include multiple displays or other devices sharing a common bus, or situations on some platforms where a nonstandard begin() function is available (e.g. a TwoWire interface on non-default pins, as can be done on the ESP8266 and perhaps others). @return true on successful allocation/init, false otherwise. Well-behaved code should check the return value before proceeding. @note MUST call this function before any drawing or updates! */ boolean Adafruit_SSD1306::begin(uint8_t vcs, uint8_t addr, boolean reset, boolean periphBegin) { framebuffer = (uint8_t *)malloc(WIDTH * ((HEIGHT + 7) / 8)); if (!framebuffer) return false; clearDisplay(); /* if(HEIGHT > 32) { drawBitmap((WIDTH - splash1_width) / 2, (HEIGHT - splash1_height) / 2, splash1_data, splash1_width, splash1_height, 1); } else { drawBitmap((WIDTH - splash2_width) / 2, (HEIGHT - splash2_height) / 2, splash2_data, splash2_width, splash2_height, 1); } */ vccstate = vcs; // Setup pin directions if(wire) { // Using I2C // If I2C address is unspecified, use default // (0x3C for 32-pixel-tall displays, 0x3D for all others). i2caddr = addr ? addr : ((HEIGHT == 32) ? 0x3C : 0x3D); // TwoWire begin() function might be already performed by the calling // function if it has unusual circumstances (e.g. TWI variants that // can accept different SDA/SCL pins, or if two SSD1306 instances // with different addresses -- only a single begin() is needed). if(periphBegin) wire->begin(); } else { // Using one of the SPI modes, either soft or hardware pinMode(dcPin, OUTPUT); // Set data/command pin as output pinMode(csPin, OUTPUT); // Same for chip select #ifdef HAVE_PORTREG dcPort = (PortReg *)portOutputRegister(digitalPinToPort(dcPin)); dcPinMask = digitalPinToBitMask(dcPin); csPort = (PortReg *)portOutputRegister(digitalPinToPort(csPin)); csPinMask = digitalPinToBitMask(csPin); #endif SSD1306_DESELECT if(spi) { // Hardware SPI // SPI peripheral begin same as wire check above. if(periphBegin) spi->begin(); } else { // Soft SPI pinMode(mosiPin, OUTPUT); // MOSI and SCLK outputs pinMode(clkPin , OUTPUT); #ifdef HAVE_PORTREG mosiPort = (PortReg *)portOutputRegister(digitalPinToPort(mosiPin)); mosiPinMask = digitalPinToBitMask(mosiPin); clkPort = (PortReg *)portOutputRegister(digitalPinToPort(clkPin)); clkPinMask = digitalPinToBitMask(clkPin); *clkPort &= ~clkPinMask; // Clock low #else digitalWrite(clkPin, LOW); // Clock low #endif } } // Reset SSD1306 if requested and reset pin specified in constructor if(reset && (rstPin >= 0)) { pinMode( rstPin, OUTPUT); digitalWrite(rstPin, HIGH); delay(1); // VDD goes high at start, pause for 1 ms digitalWrite(rstPin, LOW); // Bring reset low delay(10); // Wait 10 ms digitalWrite(rstPin, HIGH); // Bring out of reset } TRANSACTION_START // Init sequence static const uint8_t PROGMEM init1[] = { SSD1306_DISPLAYOFF, // 0xAE SSD1306_SETDISPLAYCLOCKDIV, // 0xD5 0x80, // the suggested ratio 0x80 SSD1306_SETMULTIPLEX }; // 0xA8 ssd1306_commandList(init1, sizeof(init1)); ssd1306_command1(HEIGHT - 1); static const uint8_t PROGMEM init2[] = { SSD1306_SETDISPLAYOFFSET, // 0xD3 0x0, // no offset SSD1306_SETSTARTLINE | 0x0, // line #0 SSD1306_CHARGEPUMP }; // 0x8D ssd1306_commandList(init2, sizeof(init2)); ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x10 : 0x14); static const uint8_t PROGMEM init3[] = { SSD1306_MEMORYMODE, // 0x20 0x00, // 0x0 act like ks0108 SSD1306_SEGREMAP | 0x1, SSD1306_COMSCANDEC }; ssd1306_commandList(init3, sizeof(init3)); if((WIDTH == 128) && (HEIGHT == 32)) { static const uint8_t PROGMEM init4a[] = { SSD1306_SETCOMPINS, // 0xDA 0x02, SSD1306_SETCONTRAST, // 0x81 0x8F }; ssd1306_commandList(init4a, sizeof(init4a)); } else if((WIDTH == 128) && (HEIGHT == 64)) { static const uint8_t PROGMEM init4b[] = { SSD1306_SETCOMPINS, // 0xDA 0x12, SSD1306_SETCONTRAST }; // 0x81 ssd1306_commandList(init4b, sizeof(init4b)); ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x9F : 0xCF); } else if((WIDTH == 96) && (HEIGHT == 16)) { static const uint8_t PROGMEM init4c[] = { SSD1306_SETCOMPINS, // 0xDA 0x2, // ada x12 SSD1306_SETCONTRAST }; // 0x81 ssd1306_commandList(init4c, sizeof(init4c)); ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x10 : 0xAF); } else if((WIDTH == 64) && (HEIGHT == 48)) { static const uint8_t PROGMEM init4d[] = { SSD1306_SETCOMPINS, // 0xDA 0x12, SSD1306_SETCONTRAST }; // 0x81 ssd1306_commandList(init4d, sizeof(init4d)); ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x9F : 0xCF); } else if((WIDTH == 72) && (HEIGHT == 40)) { static const uint8_t PROGMEM init4d[] = { SSD1306_SETCOMPINS, // 0xDA 0x12, SSD1306_SETCONTRAST }; // 0x81 ssd1306_commandList(init4d, sizeof(init4d)); ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x9F : 0xCF); } else { // Other screen varieties -- TBD } ssd1306_command1(SSD1306_SETPRECHARGE); // 0xd9 ssd1306_command1((vccstate == SSD1306_EXTERNALVCC) ? 0x22 : 0xF1); static const uint8_t PROGMEM init5[] = { SSD1306_SETVCOMDETECT, // 0xDB 0x40, SSD1306_DISPLAYALLON_RESUME, // 0xA4 SSD1306_NORMALDISPLAY, // 0xA6 SSD1306_DEACTIVATE_SCROLL, SSD1306_DISPLAYON }; // Main screen turn on ssd1306_commandList(init5, sizeof(init5)); TRANSACTION_END return true; // Success } void Adafruit_SSD1306::DisplayInit(int8_t p,int8_t size,int8_t rot,int8_t font) { // ignore update mode //if (p==DISPLAY_INIT_MODE) { setRotation(rot); invertDisplay(false); setTextWrap(false); // Allow text to run off edges cp437(true); setTextFont(font); setTextSize(size); setTextColor(WHITE,BLACK); setCursor(0,0); fillScreen(BLACK); Updateframe(); disp_bpp = -1; //} } #if 0 // DRAWING FUNCTIONS ------------------------------------------------------- /*! @brief Set/clear/invert a single pixel. This is also invoked by the Adafruit_GFX library in generating many higher-level graphics primitives. @param x Column of display -- 0 at left to (screen width - 1) at right. @param y Row of display -- 0 at top to (screen height -1) at bottom. @param color Pixel color, one of: BLACK, WHITE or INVERT. @return None (void). @note Changes buffer contents only, no immediate effect on display. Follow up with a call to display(), or with other graphics commands as needed by one's own application. */ void Adafruit_SSD1306::drawPixel(int16_t x, int16_t y, uint16_t color) { if (!framebuffer) return; if((x >= 0) && (x < width()) && (y >= 0) && (y < height())) { // Pixel is in-bounds. Rotate coordinates if needed. switch(getRotation()) { case 1: ssd1306_swap(x, y); x = WIDTH - x - 1; break; case 2: x = WIDTH - x - 1; y = HEIGHT - y - 1; break; case 3: ssd1306_swap(x, y); y = HEIGHT - y - 1; break; } switch(color) { case WHITE: framebuffer[x + (y/8)*WIDTH] |= (1 << (y&7)); break; case BLACK: framebuffer[x + (y/8)*WIDTH] &= ~(1 << (y&7)); break; case INVERSE: framebuffer[x + (y/8)*WIDTH] ^= (1 << (y&7)); break; } } } /*! @brief Clear contents of display buffer (set all pixels to off). @return None (void). @note Changes buffer contents only, no immediate effect on display. Follow up with a call to display(), or with other graphics commands as needed by one's own application. */ void Adafruit_SSD1306::clearDisplay(void) { if (!framebuffer) return; memset(framebuffer, 0, WIDTH * ((HEIGHT + 7) / 8)); } /*! @brief Draw a horizontal line. This is also invoked by the Adafruit_GFX library in generating many higher-level graphics primitives. @param x Leftmost column -- 0 at left to (screen width - 1) at right. @param y Row of display -- 0 at top to (screen height -1) at bottom. @param w Width of line, in pixels. @param color Line color, one of: BLACK, WHITE or INVERT. @return None (void). @note Changes buffer contents only, no immediate effect on display. Follow up with a call to display(), or with other graphics commands as needed by one's own application. */ void Adafruit_SSD1306::drawFastHLine( int16_t x, int16_t y, int16_t w, uint16_t color) { boolean bSwap = false; switch(rotation) { case 1: // 90 degree rotation, swap x & y for rotation, then invert x bSwap = true; ssd1306_swap(x, y); x = WIDTH - x - 1; break; case 2: // 180 degree rotation, invert x and y, then shift y around for height. x = WIDTH - x - 1; y = HEIGHT - y - 1; x -= (w-1); break; case 3: // 270 degree rotation, swap x & y for rotation, // then invert y and adjust y for w (not to become h) bSwap = true; ssd1306_swap(x, y); y = HEIGHT - y - 1; y -= (w-1); break; } if(bSwap) drawFastVLineInternal(x, y, w, color); else drawFastHLineInternal(x, y, w, color); } /*! @brief Draw a vertical line. This is also invoked by the Adafruit_GFX library in generating many higher-level graphics primitives. @param x Column of display -- 0 at left to (screen width -1) at right. @param y Topmost row -- 0 at top to (screen height - 1) at bottom. @param h Height of line, in pixels. @param color Line color, one of: BLACK, WHITE or INVERT. @return None (void). @note Changes buffer contents only, no immediate effect on display. Follow up with a call to display(), or with other graphics commands as needed by one's own application. */ void Adafruit_SSD1306::drawFastVLine( int16_t x, int16_t y, int16_t h, uint16_t color) { boolean bSwap = false; switch(rotation) { case 1: // 90 degree rotation, swap x & y for rotation, // then invert x and adjust x for h (now to become w) bSwap = true; ssd1306_swap(x, y); x = WIDTH - x - 1; x -= (h-1); break; case 2: // 180 degree rotation, invert x and y, then shift y around for height. x = WIDTH - x - 1; y = HEIGHT - y - 1; y -= (h-1); break; case 3: // 270 degree rotation, swap x & y for rotation, then invert y bSwap = true; ssd1306_swap(x, y); y = HEIGHT - y - 1; break; } if(bSwap) drawFastHLineInternal(x, y, h, color); else drawFastVLineInternal(x, y, h, color); } #endif void Adafruit_SSD1306::drawFastHLineInternal ( int16_t x, int16_t y, int16_t w, uint16_t color) { if (!framebuffer) return; if((y >= 0) && (y < HEIGHT)) { // Y coord in bounds? if(x < 0) { // Clip left w += x; x = 0; } if((x + w) > WIDTH) { // Clip right w = (WIDTH - x); } if(w > 0) { // Proceed only if width is positive uint8_t *pBuf = &framebuffer[(y / 8) * WIDTH + x], mask = 1 << (y & 7); switch(color) { case WHITE: while(w--) { *pBuf++ |= mask; }; break; case BLACK: mask = ~mask; while(w--) { *pBuf++ &= mask; }; break; case INVERSE: while(w--) { *pBuf++ ^= mask; }; break; } } } } void Adafruit_SSD1306::drawFastVLineInternal( int16_t x, int16_t __y, int16_t __h, uint16_t color) { if (!framebuffer) return; if((x >= 0) && (x < WIDTH)) { // X coord in bounds? if(__y < 0) { // Clip top __h += __y; __y = 0; } if((__y + __h) > HEIGHT) { // Clip bottom __h = (HEIGHT - __y); } if(__h > 0) { // Proceed only if height is now positive // this display doesn't need ints for coordinates, // use local byte registers for faster juggling uint8_t y = __y, h = __h; uint8_t *pBuf = &framebuffer[(y / 8) * WIDTH + x]; // do the first partial byte, if necessary - this requires some masking uint8_t mod = (y & 7); if(mod) { // mask off the high n bits we want to set mod = 8 - mod; // note - lookup table results in a nearly 10% performance // improvement in fill* functions // uint8_t mask = ~(0xFF >> mod); static const uint8_t PROGMEM premask[8] = { 0x00, 0x80, 0xC0, 0xE0, 0xF0, 0xF8, 0xFC, 0xFE }; uint8_t mask = pgm_read_byte(&premask[mod]); // adjust the mask if we're not going to reach the end of this byte if(h < mod) mask &= (0XFF >> (mod - h)); switch(color) { case WHITE: *pBuf |= mask; break; case BLACK: *pBuf &= ~mask; break; case INVERSE: *pBuf ^= mask; break; } pBuf += WIDTH; } if(h >= mod) { // More to go? h -= mod; // Write solid bytes while we can - effectively 8 rows at a time if(h >= 8) { if(color == INVERSE) { // separate copy of the code so we don't impact performance of // black/white write version with an extra comparison per loop do { *pBuf ^= 0xFF; // Invert byte pBuf += WIDTH; // Advance pointer 8 rows h -= 8; // Subtract 8 rows from height } while(h >= 8); } else { // store a local value to work with uint8_t val = (color != BLACK) ? 255 : 0; do { *pBuf = val; // Set byte pBuf += WIDTH; // Advance pointer 8 rows h -= 8; // Subtract 8 rows from height } while(h >= 8); } } if(h) { // Do the final partial byte, if necessary mod = h & 7; // this time we want to mask the low bits of the byte, // vs the high bits we did above // uint8_t mask = (1 << mod) - 1; // note - lookup table results in a nearly 10% performance // improvement in fill* functions static const uint8_t PROGMEM postmask[8] = { 0x00, 0x01, 0x03, 0x07, 0x0F, 0x1F, 0x3F, 0x7F }; uint8_t mask = pgm_read_byte(&postmask[mod]); switch(color) { case WHITE: *pBuf |= mask; break; case BLACK: *pBuf &= ~mask; break; case INVERSE: *pBuf ^= mask; break; } } } } // endif positive height } // endif x in bounds } /*! @brief Return color of a single pixel in display buffer. @param x Column of display -- 0 at left to (screen width - 1) at right. @param y Row of display -- 0 at top to (screen height -1) at bottom. @return true if pixel is set (usually WHITE, unless display invert mode is enabled), false if clear (BLACK). @note Reads from buffer contents; may not reflect current contents of screen if display() has not been called. */ boolean Adafruit_SSD1306::getPixel(int16_t x, int16_t y) { if (!framebuffer) return 0; if((x >= 0) && (x < width()) && (y >= 0) && (y < height())) { // Pixel is in-bounds. Rotate coordinates if needed. switch(getRotation()) { case 1: ssd1306_swap(x, y); x = WIDTH - x - 1; break; case 2: x = WIDTH - x - 1; y = HEIGHT - y - 1; break; case 3: ssd1306_swap(x, y); y = HEIGHT - y - 1; break; } return (framebuffer[x + (y / 8) * WIDTH] & (1 << (y & 7))); } return false; // Pixel out of bounds } /*! @brief Get base address of display buffer for direct reading or writing. @return Pointer to an unsigned 8-bit array, column-major, columns padded to full byte boundary if needed. */ uint8_t *Adafruit_SSD1306::getBuffer(void) { return framebuffer; } // REFRESH DISPLAY --------------------------------------------------------- /*! @brief Push data currently in RAM to SSD1306 display. @return None (void). @note Drawing operations are not visible until this function is called. Call after each graphics command, or after a whole set of graphics commands, as best needed by one's own application. */ void Adafruit_SSD1306::display(void) { if (!framebuffer) return; int16_t col_start = 0; int16_t col_end = WIDTH - 1; if ((64 == WIDTH) && (48 == HEIGHT)) { // for 64x48, we need to shift by 32 in both directions col_start += 32; col_end += 32; } else if ((72 == WIDTH) && (40 == HEIGHT)) { // for 72x40, we need to shift by 27 in both directions col_start += 27; col_end += 27; } TRANSACTION_START static const uint8_t PROGMEM dlist1[] = { SSD1306_PAGEADDR, 0, // Page start address 0xFF, // Page end (not really, but works here) SSD1306_COLUMNADDR }; ssd1306_commandList(dlist1, sizeof(dlist1)); ssd1306_command1(col_start); // Column start address ssd1306_command1(col_end); // Column end address #if defined(ESP8266) // ESP8266 needs a periodic yield() call to avoid watchdog reset. // With the limited size of SSD1306 displays, and the fast bitrate // being used (1 MHz or more), I think one yield() immediately before // a screen write and one immediately after should cover it. But if // not, if this becomes a problem, yields() might be added in the // 32-byte transfer condition below. yield(); #endif uint16_t count = WIDTH * ((HEIGHT + 7) / 8); uint8_t *ptr = framebuffer; if(wire) { // I2C wire->beginTransmission(i2caddr); WIRE_WRITE((uint8_t)0x40); uint8_t bytesOut = 1; while(count--) { if(bytesOut >= WIRE_MAX) { wire->endTransmission(); wire->beginTransmission(i2caddr); WIRE_WRITE((uint8_t)0x40); bytesOut = 1; } WIRE_WRITE(*ptr++); bytesOut++; } wire->endTransmission(); } else { // SPI SSD1306_MODE_DATA while(count--) SPIwrite(*ptr++); } TRANSACTION_END #if defined(ESP8266) yield(); #endif } // SCROLLING FUNCTIONS ----------------------------------------------------- /*! @brief Activate a right-handed scroll for all or part of the display. @param start First row. @param stop Last row. @return None (void). */ // To scroll the whole display, run: display.startscrollright(0x00, 0x0F) void Adafruit_SSD1306::startscrollright(uint8_t start, uint8_t stop) { TRANSACTION_START static const uint8_t PROGMEM scrollList1a[] = { SSD1306_RIGHT_HORIZONTAL_SCROLL, 0X00 }; ssd1306_commandList(scrollList1a, sizeof(scrollList1a)); ssd1306_command1(start); ssd1306_command1(0X00); ssd1306_command1(stop); static const uint8_t PROGMEM scrollList1b[] = { 0X00, 0XFF, SSD1306_ACTIVATE_SCROLL }; ssd1306_commandList(scrollList1b, sizeof(scrollList1b)); TRANSACTION_END } /*! @brief Activate a left-handed scroll for all or part of the display. @param start First row. @param stop Last row. @return None (void). */ // To scroll the whole display, run: display.startscrollleft(0x00, 0x0F) void Adafruit_SSD1306::startscrollleft(uint8_t start, uint8_t stop) { TRANSACTION_START static const uint8_t PROGMEM scrollList2a[] = { SSD1306_LEFT_HORIZONTAL_SCROLL, 0X00 }; ssd1306_commandList(scrollList2a, sizeof(scrollList2a)); ssd1306_command1(start); ssd1306_command1(0X00); ssd1306_command1(stop); static const uint8_t PROGMEM scrollList2b[] = { 0X00, 0XFF, SSD1306_ACTIVATE_SCROLL }; ssd1306_commandList(scrollList2b, sizeof(scrollList2b)); TRANSACTION_END } /*! @brief Activate a diagonal scroll for all or part of the display. @param start First row. @param stop Last row. @return None (void). */ // display.startscrolldiagright(0x00, 0x0F) void Adafruit_SSD1306::startscrolldiagright(uint8_t start, uint8_t stop) { TRANSACTION_START static const uint8_t PROGMEM scrollList3a[] = { SSD1306_SET_VERTICAL_SCROLL_AREA, 0X00 }; ssd1306_commandList(scrollList3a, sizeof(scrollList3a)); ssd1306_command1(HEIGHT); static const uint8_t PROGMEM scrollList3b[] = { SSD1306_VERTICAL_AND_RIGHT_HORIZONTAL_SCROLL, 0X00 }; ssd1306_commandList(scrollList3b, sizeof(scrollList3b)); ssd1306_command1(start); ssd1306_command1(0X00); ssd1306_command1(stop); static const uint8_t PROGMEM scrollList3c[] = { 0X01, SSD1306_ACTIVATE_SCROLL }; ssd1306_commandList(scrollList3c, sizeof(scrollList3c)); TRANSACTION_END } /*! @brief Activate alternate diagonal scroll for all or part of the display. @param start First row. @param stop Last row. @return None (void). */ // To scroll the whole display, run: display.startscrolldiagleft(0x00, 0x0F) void Adafruit_SSD1306::startscrolldiagleft(uint8_t start, uint8_t stop) { TRANSACTION_START static const uint8_t PROGMEM scrollList4a[] = { SSD1306_SET_VERTICAL_SCROLL_AREA, 0X00 }; ssd1306_commandList(scrollList4a, sizeof(scrollList4a)); ssd1306_command1(HEIGHT); static const uint8_t PROGMEM scrollList4b[] = { SSD1306_VERTICAL_AND_LEFT_HORIZONTAL_SCROLL, 0X00 }; ssd1306_commandList(scrollList4b, sizeof(scrollList4b)); ssd1306_command1(start); ssd1306_command1(0X00); ssd1306_command1(stop); static const uint8_t PROGMEM scrollList4c[] = { 0X01, SSD1306_ACTIVATE_SCROLL }; ssd1306_commandList(scrollList4c, sizeof(scrollList4c)); TRANSACTION_END } /*! @brief Cease a previously-begun scrolling action. @return None (void). */ void Adafruit_SSD1306::stopscroll(void) { TRANSACTION_START ssd1306_command1(SSD1306_DEACTIVATE_SCROLL); TRANSACTION_END } // OTHER HARDWARE SETTINGS ------------------------------------------------- /*! @brief Enable or disable display invert mode (white-on-black vs black-on-white). @param i If true, switch to invert mode (black-on-white), else normal mode (white-on-black). @return None (void). @note This has an immediate effect on the display, no need to call the display() function -- buffer contents are not changed, rather a different pixel mode of the display hardware is used. When enabled, drawing BLACK (value 0) pixels will actually draw white, WHITE (value 1) will draw black. */ void Adafruit_SSD1306::invertDisplay(boolean i) { TRANSACTION_START ssd1306_command1(i ? SSD1306_INVERTDISPLAY : SSD1306_NORMALDISPLAY); TRANSACTION_END } /*! @brief Dim the display. @param dim true to enable lower brightness mode, false for full brightness. @return None (void). @note This has an immediate effect on the display, no need to call the display() function -- buffer contents are not changed. */ void Adafruit_SSD1306::dim(boolean dim) { uint8_t contrast; if(dim) { contrast = 0; // Dimmed display } else { contrast = (vccstate == SSD1306_EXTERNALVCC) ? 0x9F : 0xCF; } // the range of contrast to too small to be really useful // it is useful to dim the display TRANSACTION_START ssd1306_command1(SSD1306_SETCONTRAST); ssd1306_command1(contrast); TRANSACTION_END } void Adafruit_SSD1306::DisplayOnff(int8_t on) { TRANSACTION_START if(on) { ssd1306_command1(SSD1306_DISPLAYON); } else { ssd1306_command1(SSD1306_DISPLAYOFF); } TRANSACTION_END } void Adafruit_SSD1306::Updateframe(void) { display(); }