/* xdrv_04_light.ino - PWM, WS2812 and sonoff led support for Tasmota Copyright (C) 2020 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_LIGHT /*********************************************************************************************\ * PWM, WS2812, Sonoff B1, AiLight, Sonoff Led and BN-SZ01, H801, MagicHome and Arilux * * light_type Module Color ColorTemp Modules * ---------- --------- ----- --------- ---------------------------- * 0 - no (Sonoff Basic) * 1 PWM1 W no (Sonoff BN-SZ) * 2 PWM2 CW yes (Sonoff Led) * 3 PWM3 RGB no (H801, MagicHome and Arilux LC01) * 4 PWM4 RGBW no (H801, MagicHome and Arilux) * 5 PWM5 RGBCW yes (H801, Arilux LC11) * 9 reserved no * 10 reserved yes * 11 +WS2812 RGB no (One WS2812 RGB or RGBW ledstrip) * 12 AiLight RGBW no * 13 Sonoff B1 RGBCW yes * * light_scheme WS2812 3+ Colors 1+2 Colors Effect * ------------ ------ --------- ---------- ----------------- * 0 yes yes yes Color On/Off * 1 yes yes yes Wakeup light * 2 yes yes no Color cycle RGB * 3 yes yes no Color cycle RBG * 4 yes yes no Random RGB colors * 5 yes no no Clock * 6 yes no no Incandescent * 7 yes no no RGB * 8 yes no no Christmas * 9 yes no no Hanukkah * 10 yes no no Kwanzaa * 11 yes no no Rainbow * 12 yes no no Fire * \*********************************************************************************************/ /*********************************************************************************************\ * * Light management has been refactored to provide a cleaner class-based interface. * Also, now all values are stored as integer, no more floats that could generate * rounding errors. * * Two singletons are now used to control the state of the light. * - light_state (LightStateClass) stores the color / white temperature and * brightness. Use this object to READ only. * - light_controller (LightControllerClass) is used to change light state * and adjust all Settings and levels accordingly. * Always use this object to change light status. * * As there have been lots of changes in light control, here is a summary out * the whole flow from setting colors to drving the PMW pins. * * 1. To change colors, always use 'light_controller' object. * 'light_state' is only to be used to read current state. * .a For color bulbs, set color via changeRGB() or changeHS() for Hue/Sat. * Set the overall brightness changeBri(0..255) or changeDimmer(0..100%) * RGB and Hue/Sat are always kept in sync. Internally, RGB are stored at * full range (max brightness) so that when you reduce brightness and * raise it back again, colors don't change due to rounding errors. * .b For white bulbs with Cold/Warm colortone, use changeCW() or changeCT() * to change color-tone. Set overall brightness separately. * Color-tone temperature can range from 153 (Cold) to 500 (Warm). * SetOption82 can expand the rendering from 200-380 due to Alexa reduced range. * CW channels are stored at full brightness to avoid rounding errors. * .c Alternatively, you can set all 5 channels at once with changeChannels(), * in this case it will also set the corresponding brightness. * * 2.a After any change, the Settings object is updated so that changes * survive a reboot and can be stored in flash - in saveSettings() * .b Actual channel values are computed from RGB or CT combined with brightness. * Range is still 0..255 (8 bits) - in getActualRGBCW() * .c The 5 internal channels RGBWC are mapped to the actual channels supported * by the light_type: in calcLevels() * 1 channel - 0:Brightness * 2 channels - 0:Coldwhite 1:Warmwhite * 3 channels - 0:Red 1:Green 2:Blue * 4 chennels - 0:Red 1:Green 2:Blue 3:White * 5 chennels - 0:Red 1:Green 2:Blue 3:ColdWhite 4:Warmwhite * * 3. In LightAnimate(), final PWM values are computed at next tick. * .a If color did not change since last tick - ignore. * .b Extend resolution from 8 bits to 10 bits, which makes a significant * difference when applying gamma correction at low brightness. * .c Apply Gamma Correction if LedTable==1 (by default). * Gamma Correction uses an adaptative resolution table from 11 to 8 bits. * .d For Warm/Cold-white channels, Gamma correction is calculated in combined mode. * Ie. total white brightness (C+W) is used for Gamma correction and gives * the overall light power required. Then this light power is split among * Wamr/Cold channels. * .e Gamma correction is still applied to 8 bits channels for compatibility * with other non-PMW modules. * .f Apply color balance correction from rgbwwTable[]. * Note: correction is done after Gamma correction, it is meant * to adjust leds with different power * .g If rgbwwTable[4] is zero, blend RGB with White and adjust the level of * White channel according to rgbwwTable[3] * .h Scale ranges from 10 bits to 0..PWMRange (by default 1023) so no change * by default. * .i Apply port remapping from Option37 * .j Invert PWM value if port is of type PMWxi instead of PMWx * .k Apply PWM value with analogWrite() - if pin is configured * \*********************************************************************************************/ #define XDRV_04 4 // #define DEBUG_LIGHT enum LightSchemes { LS_POWER, LS_WAKEUP, LS_CYCLEUP, LS_CYCLEDN, LS_RANDOM, LS_MAX }; const uint8_t LIGHT_COLOR_SIZE = 25; // Char array scolor size const char kLightCommands[] PROGMEM = "|" // No prefix D_CMND_COLOR "|" D_CMND_COLORTEMPERATURE "|" D_CMND_DIMMER "|" D_CMND_DIMMER_RANGE "|" D_CMND_LEDTABLE "|" D_CMND_FADE "|" D_CMND_RGBWWTABLE "|" D_CMND_SCHEME "|" D_CMND_SPEED "|" D_CMND_WAKEUP "|" D_CMND_WAKEUPDURATION "|" D_CMND_WHITE "|" D_CMND_CHANNEL "|" D_CMND_HSBCOLOR #ifdef USE_LIGHT_PALETTE "|" D_CMND_PALETTE #endif // USE_LIGHT_PALETTE #ifdef USE_DGR_LIGHT_SEQUENCE "|" D_CMND_SEQUENCE_OFFSET #endif // USE_DGR_LIGHT_SEQUENCE "|UNDOCA" ; void (* const LightCommand[])(void) PROGMEM = { &CmndColor, &CmndColorTemperature, &CmndDimmer, &CmndDimmerRange, &CmndLedTable, &CmndFade, &CmndRgbwwTable, &CmndScheme, &CmndSpeed, &CmndWakeup, &CmndWakeupDuration, &CmndWhite, &CmndChannel, &CmndHsbColor, #ifdef USE_LIGHT_PALETTE &CmndPalette, #endif // USE_LIGHT_PALETTE #ifdef USE_DGR_LIGHT_SEQUENCE &CmndSequenceOffset, #endif // USE_DGR_LIGHT_SEQUENCE &CmndUndocA }; // Light color mode, either RGB alone, or white-CT alone, or both only available if ct_rgb_linked is false enum LightColorModes { LCM_RGB = 1, LCM_CT = 2, LCM_BOTH = 3 }; struct LRgbColor { uint8_t R, G, B; }; const uint8_t MAX_FIXED_COLOR = 12; const LRgbColor kFixedColor[MAX_FIXED_COLOR] PROGMEM = { 255,0,0, 0,255,0, 0,0,255, 228,32,0, 0,228,32, 0,32,228, 188,64,0, 0,160,96, 160,32,240, 255,255,0, 255,0,170, 255,255,255 }; struct LWColor { uint8_t W; }; const uint8_t MAX_FIXED_WHITE = 4; const LWColor kFixedWhite[MAX_FIXED_WHITE] PROGMEM = { 0, 255, 128, 32 }; struct LCwColor { uint8_t C, W; }; const uint8_t MAX_FIXED_COLD_WARM = 4; const LCwColor kFixedColdWarm[MAX_FIXED_COLD_WARM] PROGMEM = { 0,0, 255,0, 0,255, 128,128 }; // CT min and max const uint16_t CT_MIN = 153; // 6500K const uint16_t CT_MAX = 500; // 2000K // Ranges used for Alexa const uint16_t CT_MIN_ALEXA = 200; // also 5000K const uint16_t CT_MAX_ALEXA = 380; // also 2600K // New version of Gamma correction compute // Instead of a table, we do a multi-linear approximation, which is close enough // At low levels, the slope is a bit higher than actual gamma, to make changes smoother // Internal resolution is 10 bits. typedef struct gamma_table_t { uint16_t to_src; uint16_t to_gamma; } gamma_table_t; const gamma_table_t gamma_table[] = { // don't put in PROGMEM for performance reasons { 1, 1 }, { 4, 1 }, { 209, 13 }, { 312, 41 }, { 457, 106 }, { 626, 261 }, { 762, 450 }, { 895, 703 }, { 1023, 1023 }, { 0xFFFF, 0xFFFF } // fail-safe if out of range }; // simplified Gamma table for Fade, cheating a little at low brightness const gamma_table_t gamma_table_fast[] = { { 384, 192 }, { 768, 576 }, { 1023, 1023 }, { 0xFFFF, 0xFFFF } // fail-safe if out of range }; // For reference, below are the computed gamma tables, via ledGamma() // for 8 bits output: // 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, // 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, // 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 6, 6, 6, // 6, 7, 7, 7, 7, 8, 8, 8, 9, 9, 9, 9, 10, 10, 10, 11, // 11, 12, 12, 12, 13, 13, 14, 14, 15, 15, 16, 16, 17, 17, 17, 18, // 18, 19, 19, 20, 20, 21, 21, 21, 22, 22, 23, 23, 24, 24, 25, 25, // 25, 26, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 36, 37, 38, // 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 50, 51, 52, 53, // 54, 55, 56, 57, 58, 59, 60, 61, 61, 62, 63, 64, 65, 67, 68, 69, // 71, 72, 73, 75, 76, 78, 79, 80, 82, 83, 85, 86, 87, 89, 90, 91, // 93, 94, 95, 97, 98,100,101,102,104,105,107,108,109,111,112,114, // 116,118,120,122,124,125,127,129,131,133,135,137,139,141,143,144, // 146,148,150,152,154,156,158,160,162,164,166,168,170,171,173,175, // 178,180,183,185,188,190,193,195,198,200,203,205,208,210,213,215, // 218,220,223,225,228,230,233,235,238,240,243,245,248,250,253,255 // // and for 10 bits output: // 0, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, // 5, 5, 5, 5, 5, 6, 6, 6, 6, 7, 7, 7, 7, 8, 8, 8, // 8, 8, 9, 9, 9, 9, 10, 10, 10, 10, 11, 11, 11, 11, 12, 12, // 12, 12, 13, 13, 13, 14, 15, 16, 17, 18, 20, 21, 22, 23, 24, 25, // 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 40, 41, 43, // 45, 47, 49, 50, 52, 54, 56, 58, 59, 61, 63, 65, 67, 68, 70, 72, // 74, 76, 77, 79, 81, 83, 84, 86, 88, 90, 92, 93, 95, 97, 99, 101, // 102, 104, 106, 110, 113, 117, 121, 124, 128, 132, 135, 139, 143, 146, 150, 154, // 158, 162, 166, 169, 173, 177, 180, 184, 188, 191, 195, 199, 202, 206, 210, 213, // 217, 221, 224, 228, 232, 235, 239, 243, 246, 250, 254, 257, 261, 267, 272, 278, // 283, 289, 294, 300, 305, 311, 317, 322, 328, 333, 339, 344, 350, 356, 361, 367, // 372, 378, 383, 389, 394, 400, 406, 411, 417, 422, 428, 433, 439, 444, 450, 458, // 465, 473, 480, 488, 496, 503, 511, 518, 526, 534, 541, 549, 557, 564, 572, 579, // 587, 595, 602, 610, 617, 627, 635, 642, 650, 657, 665, 673, 680, 688, 695, 703, // 713, 723, 733, 743, 753, 763, 773, 783, 793, 803, 813, 823, 833, 843, 853, 863, // 873, 883, 893, 903, 913, 923, 933, 943, 953, 963, 973, 983, 993,1003,1013,1023 // // Output for Dimmer 0..100 values // 0, 1, 2, 3, 3, 4, 4, 5, 5, 6, 7, 7, 8, 8, 9, // 10, 10, 11, 12, 12, 13, 15, 17, 21, 23, 26, 28, 31, 34, 37, // 40, 43, 49, 52, 58, 61, 67, 70, 76, 79, 84, 90, 93, 99,102, // 110,117,128,135,146,158,166,177,184,195,202,213,221,232,239, // 250,261,272,289,300,317,328,344,356,372,389,400,417,428,444, // 458,480,496,518,534,557,579,595,617,635,657,673,695,713,743, // 773,793,823,843,873,893,923,943,973,993,1023 struct LIGHT { uint32_t strip_timer_counter = 0; // Bars and Gradient power_t power = 0; // Power for each channel if SetOption68, or boolean if single light uint16_t wakeup_counter = 0; uint8_t entry_color[LST_MAX]; uint8_t current_color[LST_MAX]; uint8_t new_color[LST_MAX]; uint8_t last_color[LST_MAX]; uint8_t color_remap[LST_MAX]; uint8_t wheel = 0; uint8_t random = 0; uint8_t subtype = 0; // LST_ subtype uint8_t device = 0; uint8_t old_power = 1; uint8_t wakeup_active = 0; uint8_t wakeup_dimmer = 0; uint8_t fixed_color_index = 1; uint8_t pwm_offset = 0; // Offset in color buffer uint8_t max_scheme = LS_MAX -1; bool update = true; bool pwm_multi_channels = false; // SetOption68, treat each PWM channel as an independant dimmer bool fade_initialized = false; // dont't fade at startup bool fade_running = false; #ifdef USE_DEVICE_GROUPS uint8_t last_scheme = 0; bool devgrp_no_channels_out = false; // don't share channels with device group (e.g. if scheme set by other device) #ifdef USE_DGR_LIGHT_SEQUENCE uint8_t sequence_offset = 0; // number of channel changes this light is behind the master uint8_t * channels_fifo; #endif // USE_DGR_LIGHT_SEQUENCE #endif // USE_DEVICE_GROUPS #ifdef USE_LIGHT_PALETTE uint8_t palette_count = 0; // palette entry count uint8_t * palette; // dynamically allocated palette color array #endif // USE_LIGHT_PALETTE uint16_t fade_start_10[LST_MAX] = {0,0,0,0,0}; uint16_t fade_cur_10[LST_MAX]; uint16_t fade_end_10[LST_MAX]; // 10 bits resolution target channel values uint16_t fade_duration = 0; // duration of fade in milliseconds uint32_t fade_start = 0; // fade start time in milliseconds, compared to millis() uint16_t pwm_min = 0; // minimum value for PWM, from DimmerRange, 0..1023 uint16_t pwm_max = 1023; // maxumum value for PWM, from DimmerRange, 0..1023 } Light; power_t LightPower(void) { return Light.power; // Make external } // IRAM variant for rotary #ifndef ARDUINO_ESP8266_RELEASE_2_3_0 // Fix core 2.5.x ISR not in IRAM Exception power_t LightPowerIRAM(void) ICACHE_RAM_ATTR; #endif // ARDUINO_ESP8266_RELEASE_2_3_0 power_t LightPowerIRAM(void) { return Light.power; // Make external } uint8_t LightDevice(void) { return Light.device; // Make external } static uint32_t min3(uint32_t a, uint32_t b, uint32_t c) { return (a < b && a < c) ? a : (b < c) ? b : c; } // // LightStateClass // This class is an abstraction of the current light state. // It allows for b/w, full colors, or white colortone // // This class has 2 independant slots // 1/ Brightness 0.255, dimmer controls both RGB and WC (warm-cold) // 1/ RGB and Hue/Sat - always kept in sync and stored at full brightness, // i.e. R G or B are 255 // briRGB specifies the brightness for the RGB slot. // If Brightness is 0, it is equivalent to Off (for compatibility) // Dimmer is Brightness converted to range 0..100 // 2/ White with colortone - or CW (Cold / Warm) // ct is 153..500 temperature (153=cold, 500=warm) // briCT specifies the brightness for white channel // // Dimmer (0.100) is automatically derived from brightness // // INVARIANTS: // 1. RGB components are always stored at full brightness and modulated with briRGB // ((R == 255) || (G == 255) || (B == 255)) // 2. RGB and Hue/Sat are always kept in sync whether you use setRGB() or setHS() // 3. Warm/Cold white channels are always stored at full brightness // ((WW == 255) || (WC == 255)) // 4. WC/WW and CT are always kept in sync. // Note: if you use setCT() then WC+WW == 255 (both channels are linked) // but if you use setCW() both channels can be set independantly // 5. If RGB or CT channels are deactivated, then corresponding brightness is zero // if (colot_tone == LCM_RGB) then briCT = 0 // if (color_tone == LCM_CT) then briRGB = 0 // if (colot_tone == LCM_BOTH) then briRGB and briCT can have any values // // Note: If you want the actual RGB, you need to multiply with Bri, or use getActualRGBCW() // Note: all values are stored as unsigned integer, no floats. // Note: you can query vaules from this singleton. But to change values, // use the LightController - changing this object will have no effect on actual light. // class LightStateClass { private: uint16_t _hue = 0; // 0..359 uint8_t _sat = 255; // 0..255 uint8_t _briRGB = 255; // 0..255 // dimmer is same as _bri but with a range of 0%-100% uint8_t _r = 255; // 0..255 uint8_t _g = 255; // 0..255 uint8_t _b = 255; // 0..255 uint8_t _subtype = 0; // local copy of Light.subtype, if we need multiple lights uint16_t _ct = CT_MIN; // 153..500, default to 153 (cold white) uint8_t _wc = 255; // white cold channel uint8_t _ww = 0; // white warm channel uint8_t _briCT = 255; uint8_t _color_mode = LCM_RGB; // RGB by default // the CT range below represents the rendered range, // This is due to Alexa whose CT range is 199..383 // Hence setting Min=200 and Max=380 makes Alexa use the full range // Please note that you can still set CT to 153..500, but any // value below _ct_min_range or above _ct_max_range not change the CT uint16_t _ct_min_range = CT_MIN; // the minimum CT rendered range uint16_t _ct_max_range = CT_MAX; // the maximum CT rendered range public: LightStateClass() { //AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::Constructor RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _bri); } void setSubType(uint8_t sub_type) { _subtype = sub_type; // set sub_type at initialization, shoudln't be changed afterwards } // This function is a bit hairy, it will try to match the rerquired // colormode with the features of the device: // LST_NONE: LCM_RGB // LST_SINGLE: LCM_RGB // LST_COLDWARM: LCM_CT // LST_RGB: LCM_RGB // LST_RGBW: LCM_RGB, LCM_CT or LCM_BOTH // LST_RGBCW: LCM_RGB, LCM_CT or LCM_BOTH uint8_t setColorMode(uint8_t cm) { uint8_t prev_cm = _color_mode; if (cm < LCM_RGB) { cm = LCM_RGB; } if (cm > LCM_BOTH) { cm = LCM_BOTH; } uint8_t maxbri = (_briRGB >= _briCT) ? _briRGB : _briCT; switch (_subtype) { case LST_COLDWARM: _color_mode = LCM_CT; break; case LST_NONE: case LST_SINGLE: case LST_RGB: default: _color_mode = LCM_RGB; break; case LST_RGBW: case LST_RGBCW: _color_mode = cm; break; } if (LCM_RGB == _color_mode) { _briCT = 0; if (0 == _briRGB) { _briRGB = maxbri; } } if (LCM_CT == _color_mode) { _briRGB = 0; if (0 == _briCT) { _briCT = maxbri; } } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setColorMode prev_cm (%d) req_cm (%d) new_cm (%d)", prev_cm, cm, _color_mode); #endif return prev_cm; } inline uint8_t getColorMode() { return _color_mode; } void addRGBMode() { setColorMode(_color_mode | LCM_RGB); } void addCTMode() { setColorMode(_color_mode | LCM_CT); } // Get RGB color, always at full brightness (ie. one of the components is 255) void getRGB(uint8_t *r, uint8_t *g, uint8_t *b) { if (r) { *r = _r; } if (g) { *g = _g; } if (b) { *b = _b; } } // get full brightness values for warm and cold channels. // either w=c=0 (off) or w+c >= 255 void getCW(uint8_t *rc, uint8_t *rw) { if (rc) { *rc = _wc; } if (rw) { *rw = _ww; } } // Get the actual values for each channel, ie multiply with brightness void getActualRGBCW(uint8_t *r, uint8_t *g, uint8_t *b, uint8_t *c, uint8_t *w) { bool rgb_channels_on = _color_mode & LCM_RGB; bool ct_channels_on = _color_mode & LCM_CT; if (r) { *r = rgb_channels_on ? changeUIntScale(_r, 0, 255, 0, _briRGB) : 0; } if (g) { *g = rgb_channels_on ? changeUIntScale(_g, 0, 255, 0, _briRGB) : 0; } if (b) { *b = rgb_channels_on ? changeUIntScale(_b, 0, 255, 0, _briRGB) : 0; } if (c) { *c = ct_channels_on ? changeUIntScale(_wc, 0, 255, 0, _briCT) : 0; } if (w) { *w = ct_channels_on ? changeUIntScale(_ww, 0, 255, 0, _briCT) : 0; } } uint8_t getChannels(uint8_t *channels) { getActualRGBCW(&channels[0], &channels[1], &channels[2], &channels[3], &channels[4]); } void getChannelsRaw(uint8_t *channels) { channels[0] = _r; channels[1] = _g; channels[2] = _b; channels[3] = _wc; channels[4] = _ww; } void getHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) { if (hue) { *hue = _hue; } if (sat) { *sat = _sat; } if (bri) { *bri = _briRGB; } } // getBri() is guaranteed to give the same result as setBri() - no rounding errors. uint8_t getBri(void) { // return the max of _briCT and _briRGB return (_briRGB >= _briCT) ? _briRGB : _briCT; } // get the white Brightness inline uint8_t getBriCT() { return _briCT; } static inline uint8_t DimmerToBri(uint8_t dimmer) { return changeUIntScale(dimmer, 0, 100, 0, 255); // 0..255 } static uint8_t BriToDimmer(uint8_t bri) { uint8_t dimmer = changeUIntScale(bri, 0, 255, 0, 100); // if brightness is non zero, force dimmer to be non-zero too if ((dimmer == 0) && (bri > 0)) { dimmer = 1; } return dimmer; } uint8_t getDimmer(uint32_t mode = 0) { uint8_t bri; switch (mode) { case 1: bri = getBriRGB(); break; case 2: bri = getBriCT(); break; default: bri = getBri(); break; } return BriToDimmer(bri); } inline uint16_t getCT() const { return _ct; // 153..500, or CT_MIN..CT_MAX } // get the CT value within the range into a 10 bits 0..1023 value uint16_t getCT10bits() const { return changeUIntScale(_ct, _ct_min_range, _ct_max_range, 0, 1023); } inline void setCTRange(uint16_t ct_min_range, uint16_t ct_max_range) { _ct_min_range = ct_min_range; _ct_max_range = ct_max_range; } inline void getCTRange(uint16_t *ct_min_range, uint16_t *ct_max_range) const { if (ct_min_range) { *ct_min_range = _ct_min_range; } if (ct_max_range) { *ct_max_range = _ct_max_range; } } // get current color in XY format void getXY(float *x, float *y) { RgbToXy(_r, _g, _b, x, y); } // setters -- do not use directly, use the light_controller instead // sets both master Bri and whiteBri void setBri(uint8_t bri) { setBriRGB(_color_mode & LCM_RGB ? bri : 0); setBriCT(_color_mode & LCM_CT ? bri : 0); #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setBri RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif #ifdef USE_PWM_DIMMER if (PWM_DIMMER == my_module_type) PWMDimmerSetBrightnessLeds(0); #endif // USE_PWM_DIMMER } // changes the RGB brightness alone uint8_t setBriRGB(uint8_t bri_rgb) { uint8_t prev_bri = _briRGB; _briRGB = bri_rgb; if (bri_rgb > 0) { addRGBMode(); } return prev_bri; } // changes the white brightness alone uint8_t setBriCT(uint8_t bri_ct) { uint8_t prev_bri = _briCT; _briCT = bri_ct; if (bri_ct > 0) { addCTMode(); } return prev_bri; } inline uint8_t getBriRGB() { return _briRGB; } void setDimmer(uint8_t dimmer) { setBri(DimmerToBri(dimmer)); } void setCT(uint16_t ct) { if (0 == ct) { // disable ct mode setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal } else { ct = (ct < CT_MIN ? CT_MIN : (ct > CT_MAX ? CT_MAX : ct)); _ww = changeUIntScale(ct, _ct_min_range, _ct_max_range, 0, 255); _wc = 255 - _ww; _ct = ct; addCTMode(); } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCT RGB raw (%d %d %d) HS (%d %d) briRGB (%d) briCT (%d) CT (%d)", _r, _g, _b, _hue, _sat, _briRGB, _briCT, _ct); #endif } // Manually set Cold/Warm channels. // There are two modes: // 1. (free_range == false, default) // In this mode there is only one virtual white channel with color temperature // As a side effect, WC+WW = 255. It means also that the sum of light power // from white LEDs is always equal to briCT. It is not possible here // to set both white LEDs at full power, hence protecting power supplies // from overlaoding. // 2. (free_range == true) // In this mode, values of WC and WW are free -- both channels can be set // at full power. // In this mode, we always scale both channels so that one at least is 255. // // We automatically adjust briCT to have the right values of channels void setCW(uint8_t c, uint8_t w, bool free_range = false) { uint16_t max = (w > c) ? w : c; // 0..255 uint16_t sum = c + w; if (sum <= 257) { free_range = false; } // if we don't allow free range or if sum is below 255 (with tolerance of 2) if (0 == max) { _briCT = 0; // brightness set to null setColorMode(LCM_RGB); // try deactivating CT mode, setColorMode() will check which is legal } else { if (!free_range) { // we need to normalize to sum = 255 _ww = changeUIntScale(w, 0, sum, 0, 255); _wc = 255 - _ww; } else { // we normalize to max = 255 _ww = changeUIntScale(w, 0, max, 0, 255); _wc = changeUIntScale(c, 0, max, 0, 255); } _ct = changeUIntScale(w, 0, sum, _ct_min_range, _ct_max_range); addCTMode(); // activate CT mode if needed if (_color_mode & LCM_CT) { _briCT = free_range ? max : (sum > 255 ? 255 : sum); } } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setCW CW (%d %d) CT (%d) briCT (%d)", c, w, _ct, _briCT); #endif } // sets RGB and returns the Brightness. Bri is updated unless keep_bri is true uint8_t setRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) { uint16_t hue; uint8_t sat; #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB input (%d %d %d)", r, g, b); #endif uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255 if (0 == max) { r = g = b = 255; setColorMode(LCM_CT); // try deactivating RGB, setColorMode() will check if this is legal } else { if (255 > max) { // we need to normalize rgb r = changeUIntScale(r, 0, max, 0, 255); g = changeUIntScale(g, 0, max, 0, 255); b = changeUIntScale(b, 0, max, 0, 255); } addRGBMode(); } if (!keep_bri) { _briRGB = (_color_mode & LCM_RGB) ? max : 0; } RgbToHsb(r, g, b, &hue, &sat, nullptr); _r = r; _g = g; _b = b; _hue = hue; _sat = sat; #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setRGB RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif return max; } void setHS(uint16_t hue, uint8_t sat) { uint8_t r, g, b; HsToRgb(hue, sat, &r, &g, &b); _r = r; _g = g; _b = b; _hue = hue; _sat = sat; addRGBMode(); #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS HS (%d %d) rgb (%d %d %d)", hue, sat, r, g, b); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setHS RGB raw (%d %d %d) HS (%d %d) bri (%d)", _r, _g, _b, _hue, _sat, _briRGB); #endif } // set all 5 channels at once, don't modify the values in ANY way // Channels are: R G B CW WW void setChannelsRaw(uint8_t *channels) { _r = channels[0]; _g = channels[1]; _b = channels[2]; _wc = channels[3]; _ww = channels[4]; } // set all 5 channels at once. // Channels are: R G B CW WW // Brightness is automatically recalculated to adjust channels to the desired values void setChannels(uint8_t *channels) { setRGB(channels[0], channels[1], channels[2]); setCW(channels[3], channels[4], true); // free range for WC and WW #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels (%d %d %d %d %d)", channels[0], channels[1], channels[2], channels[3], channels[4]); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels CT (%d) briRGB (%d) briCT (%d)", _ct, _briRGB, _briCT); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightStateClass::setChannels Actuals (%d %d %d %d %d)", _r, _g, _b, _wc, _ww); #endif } // new version of RGB to HSB with only integer calculation static void RgbToHsb(uint8_t r, uint8_t g, uint8_t b, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri); static void HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b); static void RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y); static void XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb); }; /*********************************************************************************************\ * LightStateClass implementation \*********************************************************************************************/ // new version with only integer computing // brightness is not needed, it is controlled via Dimmer void LightStateClass::RgbToHsb(uint8_t ir, uint8_t ig, uint8_t ib, uint16_t *r_hue, uint8_t *r_sat, uint8_t *r_bri) { uint32_t r = ir; uint32_t g = ig; uint32_t b = ib; uint32_t max = (r > g && r > b) ? r : (g > b) ? g : b; // 0..255 uint32_t min = (r < g && r < b) ? r : (g < b) ? g : b; // 0..255 uint32_t d = max - min; // 0..255 uint16_t hue = 0; // hue value in degrees ranges from 0 to 359 uint8_t sat = 0; // 0..255 uint8_t bri = max; // 0..255 if (d != 0) { sat = changeUIntScale(d, 0, max, 0, 255); if (r == max) { hue = (g > b) ? changeUIntScale(g-b,0,d,0,60) : 360 - changeUIntScale(b-g,0,d,0,60); } else if (g == max) { hue = (b > r) ? 120 + changeUIntScale(b-r,0,d,0,60) : 120 - changeUIntScale(r-b,0,d,0,60); } else { hue = (r > g) ? 240 + changeUIntScale(r-g,0,d,0,60) : 240 - changeUIntScale(g-r,0,d,0,60); } hue = hue % 360; // 0..359 } if (r_hue) *r_hue = hue; if (r_sat) *r_sat = sat; if (r_bri) *r_bri = bri; //AddLog_P2(LOG_LEVEL_DEBUG_MORE, "RgbToHsb rgb (%d %d %d) hsb (%d %d %d)", r, g, b, hue, sat, bri); } void LightStateClass::HsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) { uint32_t r = 255; // default to white uint32_t g = 255; uint32_t b = 255; // we take brightness at 100%, brightness should be set separately hue = hue % 360; // normalize to 0..359 if (sat > 0) { uint32_t i = hue / 60; // quadrant 0..5 uint32_t f = hue % 60; // 0..59 uint32_t q = 255 - changeUIntScale(f, 0, 60, 0, sat); // 0..59 uint32_t p = 255 - sat; uint32_t t = 255 - changeUIntScale(60 - f, 0, 60, 0, sat); switch (i) { case 0: //r = 255; g = t; b = p; break; case 1: r = q; //g = 255; b = p; break; case 2: r = p; //g = 255; b = t; break; case 3: r = p; g = q; //b = 255; break; case 4: r = t; g = p; //b = 255; break; default: //r = 255; g = p; b = q; break; } } if (r_r) *r_r = r; if (r_g) *r_g = g; if (r_b) *r_b = b; } #define POW FastPrecisePowf // // Matrix 3x3 multiplied to a 3 vector, result in a 3 vector // void mat3x3(const float *mat33, const float *vec3, float *res3) { for (uint32_t i = 0; i < 3; i++) { const float * v = vec3; *res3 = 0.0f; for (uint32_t j = 0; j < 3; j++) { *res3 += *mat33++ * *v++; } res3++; } } void LightStateClass::RgbToXy(uint8_t i_r, uint8_t i_g, uint8_t i_b, float *r_x, float *r_y) { float x = 0.31271f; // default medium white float y = 0.32902f; if (i_r + i_b + i_g > 0) { float rgb[3] = { (float)i_r, (float)i_g, (float)i_b }; // https://gist.github.com/popcorn245/30afa0f98eea1c2fd34d // Gamma correction for (uint32_t i = 0; i < 3; i++) { rgb[i] = rgb[i] / 255.0f; rgb[i] = (rgb[i] > 0.04045f) ? POW((rgb[i] + 0.055f) / (1.0f + 0.055f), 2.4f) : (rgb[i] / 12.92f); } // conversion to X, Y, Z // Y is also the Luminance float XYZ[3]; static const float XYZ_factors[] = { 0.649926f, 0.103455f, 0.197109f, 0.234327f, 0.743075f, 0.022598f, 0.000000f, 0.053077f, 1.035763f }; mat3x3(XYZ_factors, rgb, XYZ); float XYZ_sum = XYZ[0] + XYZ[1] + XYZ[2]; x = XYZ[0] / XYZ_sum; y = XYZ[1] / XYZ_sum; // we keep the raw gamut, one nice thing could be to convert to a narrower gamut } if (r_x) *r_x = x; if (r_y) *r_y = y; } void LightStateClass::XyToRgb(float x, float y, uint8_t *rr, uint8_t *rg, uint8_t *rb) { float XYZ[3], rgb[3]; x = (x > 0.99f ? 0.99f : (x < 0.01f ? 0.01f : x)); y = (y > 0.99f ? 0.99f : (y < 0.01f ? 0.01f : y)); float z = 1.0f - x - y; XYZ[0] = x / y; XYZ[1] = 1.0f; XYZ[2] = z / y; static const float rgb_factors[] = { 3.2406f, -1.5372f, -0.4986f, -0.9689f, 1.8758f, 0.0415f, 0.0557f, -0.2040f, 1.0570f }; mat3x3(rgb_factors, XYZ, rgb); float max = (rgb[0] > rgb[1] && rgb[0] > rgb[2]) ? rgb[0] : (rgb[1] > rgb[2]) ? rgb[1] : rgb[2]; for (uint32_t i = 0; i < 3; i++) { rgb[i] = rgb[i] / max; // normalize to max == 1.0 rgb[i] = (rgb[i] <= 0.0031308f) ? 12.92f * rgb[i] : 1.055f * POW(rgb[i], (1.0f / 2.4f)) - 0.055f; // gamma } int32_t irgb[3]; for (uint32_t i = 0; i < 3; i++) { irgb[i] = rgb[i] * 255.0f + 0.5f; } if (rr) { *rr = (irgb[0] > 255 ? 255: (irgb[0] < 0 ? 0 : irgb[0])); } if (rg) { *rg = (irgb[1] > 255 ? 255: (irgb[1] < 0 ? 0 : irgb[1])); } if (rb) { *rb = (irgb[2] > 255 ? 255: (irgb[2] < 0 ? 0 : irgb[2])); } } class LightControllerClass { private: LightStateClass *_state; // are RGB and CT linked, i.e. if we set CT then RGB channels are off bool _ct_rgb_linked = true; bool _pwm_multi_channels = false; // treat each channel as independant dimmer public: LightControllerClass(LightStateClass& state) { _state = &state; } void setSubType(uint8_t sub_type) { _state->setSubType(sub_type); } inline bool setCTRGBLinked(bool ct_rgb_linked) { bool prev = _ct_rgb_linked; if (_pwm_multi_channels) { _ct_rgb_linked = false; // force to false if _pwm_multi_channels is set } else { _ct_rgb_linked = ct_rgb_linked; } return prev; } void setAlexaCTRange(bool alexa_ct_range) { // depending on SetOption82, full or limited CT range if (alexa_ct_range) { _state->setCTRange(CT_MIN_ALEXA, CT_MAX_ALEXA); // 200..380 } else { _state->setCTRange(CT_MIN, CT_MAX); // 153..500 } } inline bool isCTRGBLinked() { return _ct_rgb_linked; } inline bool setPWMMultiChannel(bool pwm_multi_channels) { bool prev = _pwm_multi_channels; _pwm_multi_channels = pwm_multi_channels; if (pwm_multi_channels) setCTRGBLinked(false); // if pwm multi channel, then unlink RGB and CT return prev; } inline bool isPWMMultiChannel(void) { return _pwm_multi_channels; } #ifdef DEBUG_LIGHT void debugLogs() { uint8_t r,g,b,c,w; _state->getActualRGBCW(&r,&g,&b,&c,&w); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs rgb (%d %d %d) cw (%d %d)", r, g, b, c, w); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::debugLogs lightCurrent (%d %d %d %d %d)", Light.current_color[0], Light.current_color[1], Light.current_color[2], Light.current_color[3], Light.current_color[4]); } #endif void loadSettings() { #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings Settings.light_color (%d %d %d %d %d - %d)", Settings.light_color[0], Settings.light_color[1], Settings.light_color[2], Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer); AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::loadSettings light_type/sub (%d %d)", light_type, Light.subtype); #endif if (_pwm_multi_channels) { _state->setChannelsRaw(Settings.light_color); } else { // first try setting CW, if zero, it select RGB mode _state->setCW(Settings.light_color[3], Settings.light_color[4], true); _state->setRGB(Settings.light_color[0], Settings.light_color[1], Settings.light_color[2]); // only if non-multi channel // We apply dimmer in priority to RGB uint8_t bri = _state->DimmerToBri(Settings.light_dimmer); // The default values are #FFFFFFFFFF, in this case we avoid setting all channels // at the same time, see #6534 and #8120 if ((DEFAULT_LIGHT_COMPONENT == Settings.light_color[0]) && (DEFAULT_LIGHT_COMPONENT == Settings.light_color[1]) && (DEFAULT_LIGHT_COMPONENT == Settings.light_color[2]) && (DEFAULT_LIGHT_COMPONENT == Settings.light_color[3]) && (DEFAULT_LIGHT_COMPONENT == Settings.light_color[4]) && (DEFAULT_LIGHT_DIMMER == Settings.light_dimmer) ) { if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) { _state->setCW(255, 0); // avoid having both white channels at 100%, zero second channel (#see 8120) } _state->setBriCT(bri); _state->setBriRGB(bri); _state->setColorMode(LCM_RGB); } if (Settings.light_color[0] + Settings.light_color[1] + Settings.light_color[2] > 0) { _state->setBriRGB(bri); } else { _state->setBriCT(bri); } } } void changeCTB(uint16_t new_ct, uint8_t briCT) { /* Color Temperature (https://developers.meethue.com/documentation/core-concepts) * * ct = 153 = 6500K = Cold = CCWW = FF00 * ct = 500 = 2000K = Warm = CCWW = 00FF */ // don't set CT if not supported if ((LST_COLDWARM != Light.subtype) && (LST_RGBW > Light.subtype)) { return; } _state->setCT(new_ct); _state->setBriCT(briCT); if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT saveSettings(); calcLevels(); //debugLogs(); } void changeDimmer(uint8_t dimmer, uint32_t mode = 0) { uint8_t bri = changeUIntScale(dimmer, 0, 100, 0, 255); switch (mode) { case 1: changeBriRGB(bri); if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force CT break; case 2: changeBriCT(bri); if (_ct_rgb_linked) { _state->setColorMode(LCM_CT); } // try to force CT break; default: changeBri(bri); break; } } void changeBri(uint8_t bri) { _state->setBri(bri); saveSettings(); calcLevels(); } void changeBriRGB(uint8_t bri) { _state->setBriRGB(bri); saveSettings(); calcLevels(); } void changeBriCT(uint8_t bri) { _state->setBriCT(bri); saveSettings(); calcLevels(); } void changeRGB(uint8_t r, uint8_t g, uint8_t b, bool keep_bri = false) { _state->setRGB(r, g, b, keep_bri); if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB saveSettings(); calcLevels(); } // calculate the levels for each channel // if no parameter, results are stored in Light.current_color void calcLevels(uint8_t *current_color = nullptr) { uint8_t r,g,b,c,w,briRGB,briCT; if (current_color == nullptr) { current_color = Light.current_color; } if (_pwm_multi_channels) { // if PWM multi channel, no more transformation required _state->getChannelsRaw(current_color); return; } _state->getActualRGBCW(&r,&g,&b,&c,&w); briRGB = _state->getBriRGB(); briCT = _state->getBriCT(); current_color[0] = current_color[1] = current_color[2] = 0; current_color[3] = current_color[4] = 0; switch (Light.subtype) { case LST_NONE: current_color[0] = 255; break; case LST_SINGLE: current_color[0] = briRGB; break; case LST_COLDWARM: current_color[0] = c; current_color[1] = w; break; case LST_RGBW: case LST_RGBCW: if (LST_RGBCW == Light.subtype) { current_color[3] = c; current_color[4] = w; } else { current_color[3] = briCT; } // continue case LST_RGB: current_color[0] = r; current_color[1] = g; current_color[2] = b; break; } } void changeHSB(uint16_t hue, uint8_t sat, uint8_t briRGB) { _state->setHS(hue, sat); _state->setBriRGB(briRGB); if (_ct_rgb_linked) { _state->setColorMode(LCM_RGB); } // try to force RGB saveSettings(); calcLevels(); } // save the current light state to Settings. void saveSettings() { if (Light.pwm_multi_channels) { // simply save each channel _state->getChannelsRaw(Settings.light_color); Settings.light_dimmer = 100; // arbitrary value, unused in this mode } else { uint8_t cm = _state->getColorMode(); memset(&Settings.light_color[0], 0, sizeof(Settings.light_color)); // clear all channels if (LCM_RGB & cm) { // can be either LCM_RGB or LCM_BOTH _state->getRGB(&Settings.light_color[0], &Settings.light_color[1], &Settings.light_color[2]); Settings.light_dimmer = _state->BriToDimmer(_state->getBriRGB()); // anyways we always store RGB with BrightnessRGB if (LCM_BOTH == cm) { // then store at actual brightness CW/WW if dual mode _state->getActualRGBCW(nullptr, nullptr, nullptr, &Settings.light_color[3], &Settings.light_color[4]); } } else if (LCM_CT == cm) { // cm can only be LCM_CT _state->getCW(&Settings.light_color[3], &Settings.light_color[4]); Settings.light_dimmer = _state->BriToDimmer(_state->getBriCT()); } } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightControllerClass::saveSettings Settings.light_color (%d %d %d %d %d - %d)", Settings.light_color[0], Settings.light_color[1], Settings.light_color[2], Settings.light_color[3], Settings.light_color[4], Settings.light_dimmer); #endif } // set all 5 channels at once. // Channels are: R G B CW WW // Brightness is automatically recalculated to adjust channels to the desired values void changeChannels(uint8_t *channels) { if (Light.pwm_multi_channels) { _state->setChannelsRaw(channels); } else if (LST_COLDWARM == Light.subtype) { // remap channels 0-1 to 3-4 if cold/warm uint8_t remapped_channels[5] = {0,0,0,channels[0],channels[1]}; _state->setChannels(remapped_channels); } else { _state->setChannels(channels); } saveSettings(); calcLevels(); } }; // the singletons for light state and Light Controller LightStateClass light_state = LightStateClass(); LightControllerClass light_controller = LightControllerClass(light_state); /*********************************************************************************************\ * Change scales from 8 bits to 10 bits and vice versa \*********************************************************************************************/ // 8 to 10 to 8 is garanteed to give the same result uint16_t change8to10(uint8_t v) { return changeUIntScale(v, 0, 255, 0, 1023); } // change from 10 bits to 8 bits, but any non-zero input will be non-zero uint8_t change10to8(uint16_t v) { return (0 == v) ? 0 : changeUIntScale(v, 4, 1023, 1, 255); } /*********************************************************************************************\ * Gamma correction \*********************************************************************************************/ // Calculate the gamma corrected value for LEDS uint16_t ledGamma_internal(uint16_t v, const struct gamma_table_t *gt_ptr) { uint16_t from_src = 0; uint16_t from_gamma = 0; for (const gamma_table_t *gt = gt_ptr; ; gt++) { uint16_t to_src = gt->to_src; uint16_t to_gamma = gt->to_gamma; if (v <= to_src) { return changeUIntScale(v, from_src, to_src, from_gamma, to_gamma); } from_src = to_src; from_gamma = to_gamma; } } // Calculate the reverse gamma value for LEDS uint16_t ledGammaReverse_internal(uint16_t vg, const struct gamma_table_t *gt_ptr) { uint16_t from_src = 0; uint16_t from_gamma = 0; for (const gamma_table_t *gt = gt_ptr; ; gt++) { uint16_t to_src = gt->to_src; uint16_t to_gamma = gt->to_gamma; if (vg <= to_gamma) { return changeUIntScale(vg, from_gamma, to_gamma, from_src, to_src); } from_src = to_src; from_gamma = to_gamma; } } // 10 bits in, 10 bits out uint16_t ledGamma10_10(uint16_t v) { return ledGamma_internal(v, gamma_table); } // 10 bits resolution, 8 bits in uint16_t ledGamma10(uint8_t v) { return ledGamma10_10(change8to10(v)); } // Legacy function uint8_t ledGamma(uint8_t v) { return change10to8(ledGamma10(v)); } /********************************************************************************************/ void LightPwmOffset(uint32_t offset) { Light.pwm_offset = offset; } bool LightModuleInit(void) { light_type = LT_BASIC; // Use basic PWM control if SetOption15 = 0 if (Settings.flag.pwm_control) { // SetOption15 - Switch between commands PWM or COLOR/DIMMER/CT/CHANNEL for (uint32_t i = 0; i < MAX_PWMS; i++) { if (PinUsed(GPIO_PWM1, i)) { light_type++; } // Use Dimmer/Color control for all PWM as SetOption15 = 1 } } light_flg = 0; if (XlgtCall(FUNC_MODULE_INIT)) { // serviced } #ifdef ESP8266 else if (SONOFF_BN == my_module_type) { // PWM Single color led (White) light_type = LT_PWM1; } else if (SONOFF_LED == my_module_type) { // PWM Dual color led (White warm and cold) if (!my_module.io[4]) { // Fix Sonoff Led instabilities pinMode(4, OUTPUT); // Stop floating outputs digitalWrite(4, LOW); } if (!my_module.io[5]) { pinMode(5, OUTPUT); // Stop floating outputs digitalWrite(5, LOW); } if (!my_module.io[14]) { pinMode(14, OUTPUT); // Stop floating outputs digitalWrite(14, LOW); } light_type = LT_PWM2; } #endif // ESP8266 if (light_type > LT_BASIC) { devices_present++; } // post-process for lights if (Settings.flag3.pwm_multi_channels) { // SetOption68 - Enable multi-channels PWM instead of Color PWM uint32_t pwm_channels = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); if (0 == pwm_channels) { pwm_channels = 1; } devices_present += pwm_channels - 1; // add the pwm channels controls at the end } else if ((Settings.param[P_RGB_REMAP] & 128) && (LST_RGBW <= (light_type & 7))) { // if RGBW or RGBCW, and SetOption37 >= 128, we manage RGB and W separately, hence adding a device devices_present++; } return (light_type > LT_BASIC); } // compute actual PWM min/max values from DimmerRange // must be called when DimmerRange is changed or LedTable void LightCalcPWMRange(void) { uint16_t pwm_min, pwm_max; pwm_min = change8to10(LightStateClass::DimmerToBri(Settings.dimmer_hw_min)); // default 0 pwm_max = change8to10(LightStateClass::DimmerToBri(Settings.dimmer_hw_max)); // default 100 if (Settings.light_correction) { pwm_min = ledGamma10_10(pwm_min); // apply gamma correction pwm_max = ledGamma10_10(pwm_max); // 0..1023 } pwm_min = pwm_min > 0 ? changeUIntScale(pwm_min, 1, 1023, 1, Settings.pwm_range) : 0; // adapt range but keep zero and non-zero values pwm_max = changeUIntScale(pwm_max, 1, 1023, 1, Settings.pwm_range); // pwm_max cannot be zero Light.pwm_min = pwm_min; Light.pwm_max = pwm_max; //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("LightCalcPWMRange %d %d - %d %d"), Settings.dimmer_hw_min, Settings.dimmer_hw_max, Light.pwm_min, Light.pwm_max); } void LightInit(void) { Light.device = devices_present; Light.subtype = (light_type & 7) > LST_MAX ? LST_MAX : (light_type & 7); // Always 0 - LST_MAX (5) Light.pwm_multi_channels = Settings.flag3.pwm_multi_channels; // SetOption68 - Enable multi-channels PWM instead of Color PWM if (LST_RGBW <= Light.subtype) { // only change if RGBW or RGBCW // do not allow independant RGB and WC colors bool ct_rgb_linked = !(Settings.param[P_RGB_REMAP] & 128); light_controller.setCTRGBLinked(ct_rgb_linked); } if ((LST_SINGLE <= Light.subtype) && Light.pwm_multi_channels) { // we treat each PWM channel as an independant one, hence we switch to light_controller.setPWMMultiChannel(true); Light.device = devices_present - Light.subtype + 1; // adjust if we also have relays } else if (!light_controller.isCTRGBLinked()) { // if RGBW or RGBCW, and SetOption37 >= 128, we manage RGB and W separately Light.device--; // we take the last two devices as lights } LightCalcPWMRange(); #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightInit Light.pwm_multi_channels=%d Light.subtype=%d Light.device=%d devices_present=%d", Light.pwm_multi_channels, Light.subtype, Light.device, devices_present); #endif light_controller.setSubType(Light.subtype); light_controller.loadSettings(); light_controller.setAlexaCTRange(Settings.flag4.alexa_ct_range); light_controller.calcLevels(); // calculate the initial values (#8058) if (LST_SINGLE == Light.subtype) { Settings.light_color[0] = 255; // One channel only supports Dimmer but needs max color } if (light_type < LT_PWM6) { // PWM for (uint32_t i = 0; i < light_type; i++) { Settings.pwm_value[i] = 0; // Disable direct PWM control if (PinUsed(GPIO_PWM1, i)) { pinMode(Pin(GPIO_PWM1, i), OUTPUT); } } if (PinUsed(GPIO_ARIRFRCV)) { if (PinUsed(GPIO_ARIRFSEL)) { pinMode(Pin(GPIO_ARIRFSEL), OUTPUT); digitalWrite(Pin(GPIO_ARIRFSEL), 1); // Turn off RF } } } uint32_t max_scheme = Light.max_scheme; if (Light.subtype < LST_RGB) { max_scheme = LS_POWER; } if ((LS_WAKEUP == Settings.light_scheme) || (Settings.light_scheme > max_scheme)) { Settings.light_scheme = LS_POWER; } Light.power = 0; Light.update = true; Light.wakeup_active = 0; if (Settings.flag4.fade_at_startup) { Light.fade_initialized = true; // consider fade intialized starting from black } LightUpdateColorMapping(); } void LightUpdateColorMapping(void) { uint8_t param = Settings.param[P_RGB_REMAP] & 127; if (param > 119){ param = 0; } uint8_t tmp[] = {0,1,2,3,4}; Light.color_remap[0] = tmp[param / 24]; for (uint32_t i = param / 24; i<4; ++i){ tmp[i] = tmp[i+1]; } param = param % 24; Light.color_remap[1] = tmp[(param / 6)]; for (uint32_t i = param / 6; i<3; ++i){ tmp[i] = tmp[i+1]; } param = param % 6; Light.color_remap[2] = tmp[(param / 2)]; for (uint32_t i = param / 2; i<2; ++i){ tmp[i] = tmp[i+1]; } param = param % 2; Light.color_remap[3] = tmp[param]; Light.color_remap[4] = tmp[1-param]; Light.update = true; //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("%d colors: %d %d %d %d %d") ,Settings.param[P_RGB_REMAP], Light.color_remap[0],Light.color_remap[1],Light.color_remap[2],Light.color_remap[3],Light.color_remap[4]); } uint8_t LightGetDimmer(uint8_t dimmer) { return light_state.getDimmer(dimmer); } void LightSetDimmer(uint8_t dimmer) { light_controller.changeDimmer(dimmer); } void LightGetHSB(uint16_t *hue, uint8_t *sat, uint8_t *bri) { light_state.getHSB(hue, sat, bri); } void LightHsToRgb(uint16_t hue, uint8_t sat, uint8_t *r_r, uint8_t *r_g, uint8_t *r_b) { light_state.HsToRgb(hue, sat, r_r, r_g, r_b); } // If SetOption68 is set, get the brightness for a specific device uint8_t LightGetBri(uint8_t device) { uint8_t bri = 254; // default value if relay if (Light.pwm_multi_channels) { if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) { bri = Light.current_color[device - Light.device]; } } else if (light_controller.isCTRGBLinked()) { // standard behavior if (device == Light.device) { bri = light_state.getBri(); } } else { // unlinked if (device == Light.device) { bri = light_state.getBriRGB(); } else if (device == Light.device + 1) { bri = light_state.getBriCT(); } } return bri; } // If SetOption68 is set, set the brightness for a specific device void LightSetBri(uint8_t device, uint8_t bri) { if (Light.pwm_multi_channels) { if ((device >= Light.device) && (device < Light.device + LST_MAX) && (device <= devices_present)) { Light.current_color[device - Light.device] = bri; light_controller.changeChannels(Light.current_color); } } else if (light_controller.isCTRGBLinked()) { // standard if (device == Light.device) { light_controller.changeBri(bri); } } else { // unlinked if (device == Light.device) { light_controller.changeBriRGB(bri); } else if (device == Light.device + 1) { light_controller.changeBriCT(bri); } } } void LightSetColorTemp(uint16_t ct) { /* Color Temperature (https://developers.meethue.com/documentation/core-concepts) * * ct = 153 = 6500K = Cold = CCWW = FF00 * ct = 600 = 2000K = Warm = CCWW = 00FF */ // don't set CT if not supported if ((LST_COLDWARM != Light.subtype) && (LST_RGBCW != Light.subtype)) { return; } light_controller.changeCTB(ct, light_state.getBriCT()); } uint16_t LightGetColorTemp(void) { // don't calculate CT for unsupported devices if ((LST_COLDWARM != Light.subtype) && (LST_RGBCW != Light.subtype)) { return 0; } return (light_state.getColorMode() & LCM_CT) ? light_state.getCT() : 0; } void LightSetSignal(uint16_t lo, uint16_t hi, uint16_t value) { /* lo - below lo is green hi - above hi is red */ if (Settings.flag.light_signal) { // SetOption18 - Pair light signal with CO2 sensor uint16_t signal = changeUIntScale(value, lo, hi, 0, 255); // 0..255 // AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "Light signal %d"), signal); light_controller.changeRGB(signal, 255 - signal, 0, true); // keep bri Settings.light_scheme = 0; if (0 == light_state.getBri()) { light_controller.changeBri(50); } } } // convert channels to string, use Option 17 to foce decimal, unless force_hex char* LightGetColor(char* scolor, boolean force_hex = false) { if ((0 == Settings.light_scheme) || (!Light.pwm_multi_channels)) { light_controller.calcLevels(); // recalculate levels only if Scheme 0, otherwise we mess up levels } scolor[0] = '\0'; for (uint32_t i = 0; i < Light.subtype; i++) { if (!force_hex && Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Light.current_color[i]); } else { snprintf_P(scolor, LIGHT_COLOR_SIZE, PSTR("%s%02X"), scolor, Light.current_color[i]); } } return scolor; } void LightPowerOn(void) { if (light_state.getBri() && !(Light.power)) { ExecuteCommandPower(Light.device, POWER_ON, SRC_LIGHT); } } void LightState(uint8_t append) { char scolor[LIGHT_COLOR_SIZE]; char scommand[33]; bool unlinked = !light_controller.isCTRGBLinked() && (Light.subtype >= LST_RGBW); // there are 2 power and dimmers for RGB and White if (append) { ResponseAppend_P(PSTR(",")); } else { Response_P(PSTR("{")); } if (!Light.pwm_multi_channels) { if (unlinked) { // RGB and W are unlinked, we display the second Power/Dimmer ResponseAppend_P(PSTR("\"" D_RSLT_POWER "%d\":\"%s\",\"" D_CMND_DIMMER "%d\":%d" ",\"" D_RSLT_POWER "%d\":\"%s\",\"" D_CMND_DIMMER "%d\":%d"), Light.device, GetStateText(Light.power & 1), Light.device, light_state.getDimmer(1), Light.device + 1, GetStateText(Light.power & 2 ? 1 : 0), Light.device + 1, light_state.getDimmer(2)); } else { GetPowerDevice(scommand, Light.device, sizeof(scommand), Settings.flag.device_index_enable); // SetOption26 - Switch between POWER or POWER1 ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_DIMMER "\":%d"), scommand, GetStateText(Light.power & 1), light_state.getDimmer()); } if (Light.subtype > LST_SINGLE) { ResponseAppend_P(PSTR(",\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor)); if (LST_RGB <= Light.subtype) { uint16_t hue; uint8_t sat, bri; light_state.getHSB(&hue, &sat, &bri); sat = changeUIntScale(sat, 0, 255, 0, 100); bri = changeUIntScale(bri, 0, 255, 0, 100); ResponseAppend_P(PSTR(",\"" D_CMND_HSBCOLOR "\":\"%d,%d,%d\""), hue,sat,bri); } // Add White level if ((LST_COLDWARM == Light.subtype) || (LST_RGBW <= Light.subtype)) { ResponseAppend_P(PSTR(",\"" D_CMND_WHITE "\":%d"), light_state.getDimmer(2)); } // Add CT if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) { ResponseAppend_P(PSTR(",\"" D_CMND_COLORTEMPERATURE "\":%d"), light_state.getCT()); } // Add status for each channel ResponseAppend_P(PSTR(",\"" D_CMND_CHANNEL "\":[" )); for (uint32_t i = 0; i < Light.subtype; i++) { uint8_t channel_raw = Light.current_color[i]; uint8_t channel = changeUIntScale(channel_raw,0,255,0,100); // if non null, force to be at least 1 if ((0 == channel) && (channel_raw > 0)) { channel = 1; } ResponseAppend_P(PSTR("%s%d" ), (i > 0 ? "," : ""), channel); } ResponseAppend_P(PSTR("]")); } if (append) { if (Light.subtype >= LST_RGB) { ResponseAppend_P(PSTR(",\"" D_CMND_SCHEME "\":%d"), Settings.light_scheme); } if (Light.max_scheme > LS_MAX) { ResponseAppend_P(PSTR(",\"" D_CMND_WIDTH "\":%d"), Settings.light_width); } ResponseAppend_P(PSTR(",\"" D_CMND_FADE "\":\"%s\",\"" D_CMND_SPEED "\":%d,\"" D_CMND_LEDTABLE "\":\"%s\""), GetStateText(Settings.light_fade), Settings.light_speed, GetStateText(Settings.light_correction)); } } else { // Light.pwm_multi_channels for (uint32_t i = 0; i < Light.subtype; i++) { GetPowerDevice(scommand, Light.device + i, sizeof(scommand), 1); uint32_t light_power_masked = Light.power & (1 << i); // the Light.power value for this device light_power_masked = light_power_masked ? 1 : 0; // convert to on/off ResponseAppend_P(PSTR("\"%s\":\"%s\",\"" D_CMND_CHANNEL "%d\":%d,"), scommand, GetStateText(light_power_masked), Light.device + i, changeUIntScale(Light.current_color[i], 0, 255, 0, 100)); } ResponseAppend_P(PSTR("\"" D_CMND_COLOR "\":\"%s\""), LightGetColor(scolor)); } // Light.pwm_multi_channels if (!append) { ResponseJsonEnd(); } } void LightPreparePower(power_t channels = 0xFFFFFFFF) { // 1 = only RGB, 2 = only CT, 3 = both RGB and CT #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower power=%d Light.power=%d", power, Light.power); #endif // If multi-channels, then we only switch off channels with a value of zero if (Light.pwm_multi_channels) { for (uint32_t i = 0; i < Light.subtype; i++) { if (bitRead(channels, i)) { // if channel is non-null, channel is supposed to be on, but it is off, do Power On if ((Light.current_color[i]) && (!bitRead(Light.power, i))) { if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes ExecuteCommandPower(Light.device + i, POWER_ON_NO_STATE, SRC_LIGHT); } } else { // if channel is zero and channel is on, set it off if ((0 == Light.current_color[i]) && bitRead(Light.power, i)) { ExecuteCommandPower(Light.device + i, POWER_OFF_NO_STATE, SRC_LIGHT); } } #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(Light.device + i); #endif // USE_DOMOTICZ } } } else { if (light_controller.isCTRGBLinked()) { // linked, standard if (light_state.getBri() && !(Light.power)) { if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes ExecuteCommandPower(Light.device, POWER_ON_NO_STATE, SRC_LIGHT); } } else if (!light_state.getBri() && Light.power) { ExecuteCommandPower(Light.device, POWER_OFF_NO_STATE, SRC_LIGHT); } } else { // RGB if (channels & 1) { if (light_state.getBriRGB() && !(Light.power & 1)) { if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes ExecuteCommandPower(Light.device, POWER_ON_NO_STATE, SRC_LIGHT); } } else if (!light_state.getBriRGB() && (Light.power & 1)) { ExecuteCommandPower(Light.device, POWER_OFF_NO_STATE, SRC_LIGHT); } } // White CT if (channels & 2) { if (light_state.getBriCT() && !(Light.power & 2)) { if (!Settings.flag.not_power_linked) { // SetOption20 - Control power in relation to Dimmer/Color/Ct changes ExecuteCommandPower(Light.device + 1, POWER_ON_NO_STATE, SRC_LIGHT); } } else if (!light_state.getBriCT() && (Light.power & 2)) { ExecuteCommandPower(Light.device + 1, POWER_OFF_NO_STATE, SRC_LIGHT); } } } #ifdef USE_DOMOTICZ DomoticzUpdatePowerState(Light.device); #endif // USE_DOMOTICZ } if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT MqttPublishTeleState(); } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG, "LightPreparePower End power=%d Light.power=%d", power, Light.power); #endif Light.power = power >> (Light.device - 1); // reset next state, works also with unlinked RGB/CT LightState(0); } #ifdef USE_LIGHT_PALETTE void LightSetPaletteEntry(void) { uint8_t bri = light_state.getBri(); uint8_t * palette_entry = &Light.palette[Light.wheel * LST_MAX]; for (int i = 0; i < LST_MAX; i++) { Light.new_color[i] = changeUIntScale(palette_entry[i], 0, 255, 0, bri); } light_state.setChannelsRaw(Light.new_color); if (!Light.pwm_multi_channels) { light_state.setCW(Light.new_color[3], Light.new_color[4], true); if (Light.new_color[0] || Light.new_color[1] || Light.new_color[2]) light_state.addRGBMode(); } } #endif // USE_LIGHT_PALETTE void LightCycleColor(int8_t direction) { // if (Light.strip_timer_counter % (Settings.light_speed * 2)) { return; } // Speed 1: 24sec, 2: 48sec, 3: 72sec, etc if (Settings.light_speed > 3) { if (Light.strip_timer_counter % (Settings.light_speed - 2)) { return; } // Speed 4: 24sec, 5: 36sec, 6: 48sec, etc } #ifdef USE_LIGHT_PALETTE if (Light.palette_count) { if (!Light.fade_running) { if (0 == direction) { Light.wheel = random(Light.palette_count); } else { Light.wheel += direction; if (Light.wheel >= Light.palette_count) { Light.wheel = 0; if (direction < 0) Light.wheel = Light.palette_count - 1; } } LightSetPaletteEntry(); } return; } #endif // USE_LIGHT_PALETTE if (0 == direction) { if (Light.random == Light.wheel) { Light.random = random(255); uint8_t my_dir = (Light.random < Light.wheel -128) ? 1 : (Light.random < Light.wheel ) ? 0 : (Light.random > Light.wheel +128) ? 0 : 1; // Increment or Decrement and roll-over Light.random = (Light.random & 0xFE) | my_dir; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: random %d"), Light.random); } // direction = (Light.random < Light.wheel) ? -1 : 1; direction = (Light.random &0x01) ? 1 : -1; } // if (Settings.light_speed < 3) { direction <<= (3 - Settings.light_speed); } // Speed 1: 12/4=3sec, 2: 12/2=6sec, 3: 12sec if (Settings.light_speed < 3) { direction *= (4 - Settings.light_speed); } // Speed 1: 12/3=4sec, 2: 12/2=6sec, 3: 12sec Light.wheel += direction; uint16_t hue = changeUIntScale(Light.wheel, 0, 255, 0, 359); // Scale to hue to keep amount of steps low (max 255 instead of 359) // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: random %d, wheel %d, hue %d"), Light.random, Light.wheel, hue); if (!Light.pwm_multi_channels) { uint8_t sat; light_state.getHSB(nullptr, &sat, nullptr); // Allow user control over Saturation light_state.setHS(hue, sat); } else { light_state.setHS(hue, 255); light_state.setBri(255); // If multi-channel, force bri to max, it will be later dimmed to correct value } light_controller.calcLevels(Light.new_color); } void LightSetPower(void) { // Light.power = XdrvMailbox.index; Light.old_power = Light.power; //Light.power = bitRead(XdrvMailbox.index, Light.device -1); uint32_t mask = 1; // default mask if (Light.pwm_multi_channels) { mask = (1 << Light.subtype) - 1; // wider mask } else if (!light_controller.isCTRGBLinked()) { mask = 3; // we got 2 devices, for RGB and White } uint32_t shift = Light.device - 1; // If PWM multi_channels // Ex: 3 Relays and 4 PWM - devices_present = 7, Light.device = 4, Light.subtype = 4 // Result: mask = 0b00001111 = 0x0F, shift = 3. // Power bits we consider are: 0b01111000 = 0x78 // If regular situation: devices_present == Light.subtype Light.power = (XdrvMailbox.index & (mask << shift)) >> shift; if (Light.wakeup_active) { Light.wakeup_active--; } #ifdef DEBUG_LIGHT AddLog_P2(LOG_LEVEL_DEBUG_MORE, "LightSetPower XdrvMailbox.index=%d Light.old_power=%d Light.power=%d mask=%d shift=%d", XdrvMailbox.index, Light.old_power, Light.power, mask, shift); #endif if (Light.power != Light.old_power) { Light.update = true; } LightAnimate(); } // On entry Light.new_color[5] contains the color to be displayed // and Light.last_color[5] the color currently displayed // Light.power tells which lights or channels (SetOption68) are on/off void LightAnimate(void) { uint16_t light_still_on = 0; bool power_off = false; // make sure we update CT range in case SetOption82 was changed light_controller.setAlexaCTRange(Settings.flag4.alexa_ct_range); Light.strip_timer_counter++; // set sleep parameter: either settings, // or set a maximum of PWM_MAX_SLEEP if light is on or Fade is running if (Light.power || Light.fade_running) { if (Settings.sleep > PWM_MAX_SLEEP) { ssleep = PWM_MAX_SLEEP; // set a maxumum value of 50 milliseconds to ensure that animations are smooth } else { ssleep = Settings.sleep; // or keep the current sleep if it's lower than 50 } } else { ssleep = Settings.sleep; } if (!Light.power) { // All channels powered off Light.strip_timer_counter = 0; if (Settings.light_scheme >= LS_MAX) { power_off = true; } } else { switch (Settings.light_scheme) { case LS_POWER: light_controller.calcLevels(Light.new_color); break; case LS_WAKEUP: if (2 == Light.wakeup_active) { Light.wakeup_active = 1; for (uint32_t i = 0; i < Light.subtype; i++) { Light.new_color[i] = 0; } Light.wakeup_counter = 0; Light.wakeup_dimmer = 0; } Light.wakeup_counter++; if (Light.wakeup_counter > ((Settings.light_wakeup * STATES) / Settings.light_dimmer)) { Light.wakeup_counter = 0; Light.wakeup_dimmer++; if (Light.wakeup_dimmer <= Settings.light_dimmer) { light_state.setDimmer(Light.wakeup_dimmer); light_controller.calcLevels(); for (uint32_t i = 0; i < Light.subtype; i++) { Light.new_color[i] = Light.current_color[i]; } } else { /* Response_P(PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\"}")); MqttPublishPrefixTopic_P(TELE, PSTR(D_CMND_WAKEUP)); */ Response_P(PSTR("{\"" D_CMND_WAKEUP "\":\"" D_JSON_DONE "\"")); LightState(1); ResponseJsonEnd(); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_CMND_WAKEUP)); XdrvRulesProcess(); Light.wakeup_active = 0; Settings.light_scheme = LS_POWER; } } break; case LS_CYCLEUP: case LS_CYCLEDN: case LS_RANDOM: if (LS_CYCLEUP == Settings.light_scheme) { LightCycleColor(1); } else if (LS_CYCLEDN == Settings.light_scheme) { LightCycleColor(-1); } else { LightCycleColor(0); } if (Light.pwm_multi_channels) { // See #8058 Light.new_color[0] = changeUIntScale(Light.new_color[0], 0, 255, 0, Settings.light_color[0]); Light.new_color[1] = changeUIntScale(Light.new_color[1], 0, 255, 0, Settings.light_color[1]); Light.new_color[2] = changeUIntScale(Light.new_color[2], 0, 255, 0, Settings.light_color[2]); } break; default: XlgtCall(FUNC_SET_SCHEME); } #ifdef USE_DEVICE_GROUPS if (Settings.light_scheme != Light.last_scheme) { Light.last_scheme = Settings.light_scheme; SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_SCHEME, Settings.light_scheme); Light.devgrp_no_channels_out = false; } #endif // USE_DEVICE_GROUPS } if ((Settings.light_scheme < LS_MAX) || power_off) { // exclude WS281X Neopixel schemes // Apply power modifiers to Light.new_color LightApplyPower(Light.new_color, Light.power); // AddLog_P2(LOG_LEVEL_INFO, PSTR("last_color (%02X%02X%02X%02X%02X) new_color (%02X%02X%02X%02X%02X) power %d"), // Light.last_color[0], Light.last_color[1], Light.last_color[2], Light.last_color[3], Light.last_color[4], // Light.new_color[0], Light.new_color[1], Light.new_color[2], Light.new_color[3], Light.new_color[4], // Light.power // ); if (memcmp(Light.last_color, Light.new_color, Light.subtype)) { Light.update = true; } if (Light.update) { #ifdef USE_DEVICE_GROUPS if (Light.power) LightSendDeviceGroupStatus(false); #endif // USE_DEVICE_GROUPS uint16_t cur_col_10[LST_MAX]; // 10 bits resolution Light.update = false; // first set 8 and 10 bits channels for (uint32_t i = 0; i < LST_MAX; i++) { Light.last_color[i] = Light.new_color[i]; // Extend from 8 to 10 bits if no correction (in case no gamma correction is required) cur_col_10[i] = change8to10(Light.new_color[i]); } if (Light.pwm_multi_channels) { calcGammaMultiChannels(cur_col_10); } else { calcGammaBulbs(cur_col_10); // Now see if we need to mix RGB and True White // Valid only for LST_RGBW, LST_RGBCW, rgbwwTable[4] is zero, and white is zero (see doc) if ((LST_RGBW <= Light.subtype) && (0 == Settings.rgbwwTable[4]) && (0 == cur_col_10[3]+cur_col_10[4])) { uint32_t min_rgb_10 = min3(cur_col_10[0], cur_col_10[1], cur_col_10[2]); for (uint32_t i=0; i<3; i++) { // substract white and adjust according to rgbwwTable uint32_t adjust10 = change8to10(Settings.rgbwwTable[i]); cur_col_10[i] = changeUIntScale(cur_col_10[i] - min_rgb_10, 0, 1023, 0, adjust10); } // compute the adjusted white levels for 10 and 8 bits uint32_t adjust_w_10 = changeUIntScale(Settings.rgbwwTable[3], 0, 255, 0, 1023); uint32_t white_10 = changeUIntScale(min_rgb_10, 0, 1023, 0, adjust_w_10); // set white power down corrected with rgbwwTable[3] if (LST_RGBW == Light.subtype) { // we simply set the white channel cur_col_10[3] = white_10; } else { // LST_RGBCW // we distribute white between cold and warm according to CT value uint32_t ct = light_state.getCT10bits(); cur_col_10[4] = changeUIntScale(ct, 0, 1023, 0, white_10); cur_col_10[3] = white_10 - cur_col_10[4]; } } } // Apply RGBWWTable only if Settings.rgbwwTable[4] != 0 if (0 != Settings.rgbwwTable[4]) { for (uint32_t i = 0; i 0) ? changeUIntScale(cur_col_10[i], 1, 1023, 1, Settings.pwm_range) : 0; } // apply port remapping on both 8 bits and 10 bits versions uint16_t orig_col_10bits[LST_MAX]; memcpy(orig_col_10bits, cur_col_10, sizeof(orig_col_10bits)); for (uint32_t i = 0; i < LST_MAX; i++) { cur_col_10[i] = orig_col_10bits[Light.color_remap[i]]; } if (!Settings.light_fade || skip_light_fade || power_off || (!Light.fade_initialized)) { // no fade // record the current value for a future Fade memcpy(Light.fade_start_10, cur_col_10, sizeof(Light.fade_start_10)); // push the final values at 8 and 10 bits resolution to the PWMs LightSetOutputs(cur_col_10); Light.fade_initialized = true; // it is now ok to fade } else { // fade on if (Light.fade_running) { // if fade is running, we take the curring value as the start for the next fade memcpy(Light.fade_start_10, Light.fade_cur_10, sizeof(Light.fade_start_10)); } memcpy(Light.fade_end_10, cur_col_10, sizeof(Light.fade_start_10)); Light.fade_running = true; Light.fade_duration = 0; // set the value to zero to force a recompute Light.fade_start = 0; // Fade will applied immediately below } } if (Light.fade_running) { if (LightApplyFade()) { // AddLog_P2(LOG_LEVEL_INFO, PSTR("LightApplyFade %d %d %d %d %d"), // Light.fade_cur_10[0], Light.fade_cur_10[1], Light.fade_cur_10[2], Light.fade_cur_10[3], Light.fade_cur_10[4]); LightSetOutputs(Light.fade_cur_10); } } #ifdef USE_PWM_DIMMER // If the power is off and the fade is done, turn the relay off. if (PWM_DIMMER == my_module_type && !Light.power && !Light.fade_running) PWMDimmerSetPower(); #endif // USE_PWM_DIMMER } } bool isChannelGammaCorrected(uint32_t channel) { if (!Settings.light_correction) { return false; } // Gamma correction not activated if (channel >= Light.subtype) { return false; } // Out of range #ifdef ESP8266 if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) { if ((LST_COLDWARM == Light.subtype) && (1 == channel)) { return false; } // PMW reserved for CT if ((LST_RGBCW == Light.subtype) && (4 == channel)) { return false; } // PMW reserved for CT } #endif // ESP8266 return true; } // is the channel a regular PWM or ColorTemp control bool isChannelCT(uint32_t channel) { #ifdef ESP8266 if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) { if ((LST_COLDWARM == Light.subtype) && (1 == channel)) { return true; } // PMW reserved for CT if ((LST_RGBCW == Light.subtype) && (4 == channel)) { return true; } // PMW reserved for CT } #endif // ESP8266 return false; } // Calculate the Gamma correction, if any, for fading, using the fast Gamma curve (10 bits in+out) uint16_t fadeGamma(uint32_t channel, uint16_t v) { if (isChannelGammaCorrected(channel)) { return ledGamma_internal(v, gamma_table_fast); } else { return v; } } uint16_t fadeGammaReverse(uint32_t channel, uint16_t vg) { if (isChannelGammaCorrected(channel)) { return ledGammaReverse_internal(vg, gamma_table_fast); } else { return vg; } } bool LightApplyFade(void) { // did the value chanegd and needs to be applied static uint32_t last_millis = 0; uint32_t now = millis(); if ((now - last_millis) <= 5) { return false; // the value was not changed in the last 5 milliseconds, ignore } last_millis = now; // Check if we need to calculate the duration if (0 == Light.fade_duration) { Light.fade_start = now; // compute the distance between start and and color (max of distance for each channel) uint32_t distance = 0; for (uint32_t i = 0; i < Light.subtype; i++) { int32_t channel_distance = fadeGammaReverse(i, Light.fade_end_10[i]) - fadeGammaReverse(i, Light.fade_start_10[i]); if (channel_distance < 0) { channel_distance = - channel_distance; } if (channel_distance > distance) { distance = channel_distance; } } if (distance > 0) { // compute the duration of the animation // Note: Settings.light_speed is the number of half-seconds for a 100% fade, // i.e. light_speed=1 means 1024 steps in 500ms Light.fade_duration = (distance * Settings.light_speed * 500) / 1023; if (Settings.save_data) { // Also postpone the save_data for the duration of the Fade (in seconds) uint32_t delay_seconds = 1 + (Light.fade_duration + 999) / 1000; // add one more second // AddLog_P2(LOG_LEVEL_INFO, PSTR("delay_seconds %d, save_data_counter %d"), delay_seconds, save_data_counter); if (save_data_counter < delay_seconds) { save_data_counter = delay_seconds; // pospone } } } else { // no fade needed, we keep the duration at zero, it will fallback directly to end of fade Light.fade_running = false; } } uint16_t fade_current = now - Light.fade_start; // number of milliseconds since start of fade if (fade_current <= Light.fade_duration) { // fade not finished //Serial.printf("Fade: %d / %d - ", fade_current, Light.fade_duration); for (uint32_t i = 0; i < Light.subtype; i++) { Light.fade_cur_10[i] = fadeGamma(i, changeUIntScale(fadeGammaReverse(i, fade_current), 0, Light.fade_duration, fadeGammaReverse(i, Light.fade_start_10[i]), fadeGammaReverse(i, Light.fade_end_10[i]))); // Light.fade_cur_10[i] = changeUIntScale(fade_current, // 0, Light.fade_duration, // Light.fade_start_10[i], Light.fade_end_10[i]); } } else { // stop fade //AddLop_P2(LOG_LEVEL_DEBUG, PSTR("Stop fade")); Light.fade_running = false; Light.fade_start = 0; Light.fade_duration = 0; // set light to target value memcpy(Light.fade_cur_10, Light.fade_end_10, sizeof(Light.fade_end_10)); // record the last value for next start memcpy(Light.fade_start_10, Light.fade_end_10, sizeof(Light.fade_start_10)); } return true; } // On entry we take the 5 channels 8 bits entry, and we apply Power modifiers // I.e. shut down channels that are powered down void LightApplyPower(uint8_t new_color[LST_MAX], power_t power) { // If SetOption68, multi_channels if (Light.pwm_multi_channels) { // if multi-channels, specifically apply the Light.power bits for (uint32_t i = 0; i < LST_MAX; i++) { if (0 == bitRead(power,i)) { // if power down bit is zero new_color[i] = 0; // shut down this channel } } // #ifdef DEBUG_LIGHT // AddLog_P2(LOG_LEVEL_DEBUG_MORE, "Animate>> Light.power=%d Light.new_color=[%d,%d,%d,%d,%d]", // Light.power, Light.new_color[0], Light.new_color[1], Light.new_color[2], // Light.new_color[3], Light.new_color[4]); // #endif } else { if (!light_controller.isCTRGBLinked()) { // we have 2 power bits for RGB and White if (0 == (power & 1)) { new_color[0] = new_color[1] = new_color[2] = 0; } if (0 == (power & 2)) { new_color[3] = new_color[4] = 0; } } else if (!power) { for (uint32_t i = 0; i < LST_MAX; i++) { new_color[i] = 0; } } } } void LightSetOutputs(const uint16_t *cur_col_10) { // now apply the actual PWM values, adjusted and remapped 10-bits range if (light_type < LT_PWM6) { // only for direct PWM lights, not for Tuya, Armtronix... for (uint32_t i = 0; i < (Light.subtype - Light.pwm_offset); i++) { if (PinUsed(GPIO_PWM1, i)) { //AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION "Cur_Col%d 10 bits %d"), i, cur_col_10[i]); uint16_t cur_col = cur_col_10[i + Light.pwm_offset]; if (!isChannelCT(i)) { // if CT don't use pwm_min and pwm_max cur_col = cur_col > 0 ? changeUIntScale(cur_col, 0, Settings.pwm_range, Light.pwm_min, Light.pwm_max) : 0; // shrink to the range of pwm_min..pwm_max } analogWrite(Pin(GPIO_PWM1, i), bitRead(pwm_inverted, i) ? Settings.pwm_range - cur_col : cur_col); } } } // char msg[24]; // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("LGT: Channels %s"), ToHex_P((const unsigned char *)cur_col_10, 10, msg, sizeof(msg))); uint8_t cur_col[LST_MAX]; for (uint32_t i = 0; i < LST_MAX; i++) { cur_col[i] = change10to8(cur_col_10[i]); } // Some devices need scaled RGB like Sonoff L1 // TODO, should be probably moved to the Sonoff L1 support code uint8_t scale_col[3]; uint32_t max = (cur_col[0] > cur_col[1] && cur_col[0] > cur_col[2]) ? cur_col[0] : (cur_col[1] > cur_col[2]) ? cur_col[1] : cur_col[2]; // 0..255 for (uint32_t i = 0; i < 3; i++) { scale_col[i] = (0 == max) ? 255 : (255 > max) ? changeUIntScale(cur_col[i], 0, max, 0, 255) : cur_col[i]; } char *tmp_data = XdrvMailbox.data; char *tmp_topic = XdrvMailbox.topic; XdrvMailbox.data = (char*)cur_col; XdrvMailbox.topic = (char*)scale_col; if (XlgtCall(FUNC_SET_CHANNELS)) { /* Serviced */ } else if (XdrvCall(FUNC_SET_CHANNELS)) { /* Serviced */ } XdrvMailbox.data = tmp_data; XdrvMailbox.topic = tmp_topic; } // Just apply basic Gamma to each channel void calcGammaMultiChannels(uint16_t cur_col_10[5]) { // Apply gamma correction for 8 and 10 bits resolutions, if needed if (Settings.light_correction) { for (uint32_t i = 0; i < LST_MAX; i++) { cur_col_10[i] = ledGamma10_10(cur_col_10[i]); } } } void calcGammaBulbs(uint16_t cur_col_10[5]) { // Apply gamma correction for 8 and 10 bits resolutions, if needed // First apply combined correction to the overall white power if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) { // channels for white are always the last two channels uint32_t cw1 = Light.subtype - 1; // address for the ColorTone PWM uint32_t cw0 = Light.subtype - 2; // address for the White Brightness PWM uint16_t white_bri10 = cur_col_10[cw0] + cur_col_10[cw1]; // cumulated brightness uint16_t white_bri10_1023 = (white_bri10 > 1023) ? 1023 : white_bri10; // max 1023 #ifdef ESP8266 if ((PHILIPS == my_module_type) || (Settings.flag4.pwm_ct_mode)) { // channel 1 is the color tone, mapped to cold channel (0..255) // Xiaomi Philips bulbs follow a different scheme: cur_col_10[cw1] = light_state.getCT10bits(); // channel 0=intensity, channel1=temperature if (Settings.light_correction) { // gamma correction cur_col_10[cw0] = ledGamma10_10(white_bri10_1023); // 10 bits gamma correction } else { cur_col_10[cw0] = white_bri10_1023; // no gamma, extend to 10 bits } } else #endif // ESP8266 if (Settings.light_correction) { // if sum of both channels is > 255, then channels are probably uncorrelated if (white_bri10 <= 1031) { // take a margin of 8 above 1023 to account for rounding errors // we calculate the gamma corrected sum of CW + WW uint16_t white_bri_gamma10 = ledGamma10_10(white_bri10_1023); // then we split the total energy among the cold and warm leds cur_col_10[cw0] = changeUIntScale(cur_col_10[cw0], 0, white_bri10_1023, 0, white_bri_gamma10); cur_col_10[cw1] = changeUIntScale(cur_col_10[cw1], 0, white_bri10_1023, 0, white_bri_gamma10); } else { cur_col_10[cw0] = ledGamma10_10(cur_col_10[cw0]); cur_col_10[cw1] = ledGamma10_10(cur_col_10[cw1]); } } } if (Settings.light_correction) { // then apply gamma correction to RGB channels if (LST_RGB <= Light.subtype) { for (uint32_t i = 0; i < 3; i++) { cur_col_10[i] = ledGamma10_10(cur_col_10[i]); } } // If RGBW or Single channel, also adjust White channel if ((LST_SINGLE == Light.subtype) || (LST_RGBW == Light.subtype)) { cur_col_10[Light.subtype - 1] = ledGamma10_10(cur_col_10[Light.subtype - 1]); } } } #ifdef USE_DEVICE_GROUPS void LightSendDeviceGroupStatus(bool status) { static uint8_t last_bri; uint8_t bri = light_state.getBri(); bool send_bri_update = (status || bri != last_bri); if (Light.subtype > LST_SINGLE && !Light.devgrp_no_channels_out) { static uint8_t channels[LST_MAX + 1] = { 0, 0, 0, 0, 0, 0 }; if (status) { light_state.getChannels(channels); } else { memcpy(channels, Light.new_color, LST_MAX); channels[LST_MAX]++; } SendLocalDeviceGroupMessage((send_bri_update ? DGR_MSGTYP_PARTIAL_UPDATE : DGR_MSGTYP_UPDATE), DGR_ITEM_LIGHT_CHANNELS, channels); } if (send_bri_update) { last_bri = bri; SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_BRI, light_state.getBri()); } } void LightHandleDevGroupItem(void) { static bool send_state = false; static bool restore_power = false; bool more_to_come; uint32_t value = XdrvMailbox.payload; #ifdef USE_PWM_DIMMER_REMOTE if (*XdrvMailbox.topic) return; // Ignore updates from other device groups #endif // USE_PWM_DIMMER_REMOTE switch (XdrvMailbox.command_code) { case DGR_ITEM_EOL: more_to_come = (XdrvMailbox.index & DGR_FLAG_MORE_TO_COME); if (restore_power && !more_to_come) { restore_power = false; Light.power = Light.old_power; } LightAnimate(); if (send_state && !more_to_come) { light_controller.saveSettings(); if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT MqttPublishTeleState(); } send_state = false; } break; case DGR_ITEM_LIGHT_BRI: if (light_state.getBri() != value) { light_state.setBri(value); send_state = true; } break; case DGR_ITEM_LIGHT_SCHEME: if (Settings.light_scheme != value) { Light.last_scheme = Settings.light_scheme = value; Light.devgrp_no_channels_out = (value != 0); send_state = true; } break; case DGR_ITEM_LIGHT_CHANNELS: #ifdef USE_DGR_LIGHT_SEQUENCE { static uint8_t last_sequence = 0; // If a sequence offset is set, set the channels to the ones we received // changes ago. if (Light.sequence_offset) { light_controller.changeChannels(Light.channels_fifo); // Shift the fifo down and load the newly received channels at the end for this update and // any updates we missed. int last_entry = (Light.sequence_offset - 1) * LST_MAX; for (uint8_t sequence = (uint8_t)XdrvMailbox.data[LST_MAX]; (uint8_t)(sequence - last_sequence) > 0; last_sequence++) { memmove(Light.channels_fifo, &Light.channels_fifo[LST_MAX], last_entry); memcpy(&Light.channels_fifo[last_entry], XdrvMailbox.data, LST_MAX); } } else { #endif // USE_DGR_LIGHT_SEQUENCE light_controller.changeChannels((uint8_t *)XdrvMailbox.data); #ifdef USE_DGR_LIGHT_SEQUENCE } } #endif // USE_DGR_LIGHT_SEQUENCE send_state = true; break; case DGR_ITEM_LIGHT_FIXED_COLOR: if (Light.subtype >= LST_RGBW) { send_state = true; #ifdef USE_LIGHT_PALETTE if (Light.palette_count) { Light.wheel = value % Light.palette_count; LightSetPaletteEntry(); break; } #endif // !USE_LIGHT_PALETTE value = value % MAX_FIXED_COLOR; if (value) { bool save_decimal_text = Settings.flag.decimal_text; char str[16]; LightColorEntry(str, sprintf_P(str, PSTR("%u"), value)); Settings.flag.decimal_text = save_decimal_text; uint32_t old_bri = light_state.getBri(); light_controller.changeChannels(Light.entry_color); light_controller.changeBri(old_bri); Settings.light_scheme = 0; Light.devgrp_no_channels_out = false; } else { light_state.setColorMode(LCM_CT); } if (!restore_power && !Light.power) { Light.old_power = Light.power; Light.power = 0xff; restore_power = true; } } break; case DGR_ITEM_LIGHT_FADE: if (Settings.light_fade != value) { Settings.light_fade = value; send_state = true; } break; case DGR_ITEM_LIGHT_SPEED: if (Settings.light_speed != value && value > 0 && value <= 40) { Settings.light_speed = value; send_state = true; } break; case DGR_ITEM_STATUS: SendLocalDeviceGroupMessage(DGR_MSGTYP_PARTIAL_UPDATE, DGR_ITEM_LIGHT_FADE, Settings.light_fade, DGR_ITEM_LIGHT_SPEED, Settings.light_speed, DGR_ITEM_LIGHT_SCHEME, Settings.light_scheme); LightSendDeviceGroupStatus(true); break; } } #endif // USE_DEVICE_GROUPS /*********************************************************************************************\ * Commands \*********************************************************************************************/ bool LightColorEntry(char *buffer, uint32_t buffer_length) { char scolor[10]; char *p; char *str; uint32_t entry_type = 0; // Invalid uint8_t value = Light.fixed_color_index; #ifdef USE_LIGHT_PALETTE if (Light.palette_count) value = Light.wheel; #endif // USE_LIGHT_PALETTE if (buffer[0] == '#') { // Optional hexadecimal entry buffer++; buffer_length--; } if (Light.subtype >= LST_RGB) { char option = (1 == buffer_length) ? buffer[0] : '\0'; if ('+' == option) { #ifdef USE_LIGHT_PALETTE if (Light.palette_count || Light.fixed_color_index < MAX_FIXED_COLOR) { #else // USE_LIGHT_PALETTE if (Light.fixed_color_index < MAX_FIXED_COLOR) { #endif // !USE_LIGHT_PALETTE value++; } } else if ('-' == option) { #ifdef USE_LIGHT_PALETTE if (Light.palette_count || Light.fixed_color_index > 1) { #else // USE_LIGHT_PALETTE if (Light.fixed_color_index > 1) { #endif // !USE_LIGHT_PALETTE value--; } } else { value = atoi(buffer); } #ifdef USE_LIGHT_PALETTE if (Light.palette_count) value = value % Light.palette_count; #endif // USE_LIGHT_PALETTE } memset(&Light.entry_color, 0x00, sizeof(Light.entry_color)); // erase all channels except if the last character is '=', #6799 while ((buffer_length > 0) && ('=' == buffer[buffer_length - 1])) { buffer_length--; // remove all trailing '=' memcpy(&Light.entry_color, &Light.current_color, sizeof(Light.entry_color)); } if (strstr(buffer, ",") != nullptr) { // Decimal entry int8_t i = 0; for (str = strtok_r(buffer, ",", &p); str && i < 6; str = strtok_r(nullptr, ",", &p)) { if (i < LST_MAX) { Light.entry_color[i++] = atoi(str); } } entry_type = 2; // Decimal } else if (((2 * Light.subtype) == buffer_length) || (buffer_length > 3)) { // Hexadecimal entry for (uint32_t i = 0; i < tmin((uint)(buffer_length / 2), sizeof(Light.entry_color)); i++) { strlcpy(scolor, buffer + (i *2), 3); Light.entry_color[i] = (uint8_t)strtol(scolor, &p, 16); } entry_type = 1; // Hexadecimal } #ifdef USE_LIGHT_PALETTE else if (Light.palette_count) { value--; Light.wheel = value; memcpy_P(&Light.entry_color, &Light.palette[value * LST_MAX], LST_MAX); entry_type = 1; // Hexadecimal } #endif // USE_LIGHT_PALETTE else if ((Light.subtype >= LST_RGB) && (value > 0) && (value <= MAX_FIXED_COLOR)) { Light.fixed_color_index = value; memcpy_P(&Light.entry_color, &kFixedColor[value -1], 3); entry_type = 1; // Hexadecimal } else if ((value > 199) && (value <= 199 + MAX_FIXED_COLD_WARM)) { if (LST_RGBW == Light.subtype) { memcpy_P(&Light.entry_color[3], &kFixedWhite[value -200], 1); entry_type = 1; // Hexadecimal } else if (LST_COLDWARM == Light.subtype) { memcpy_P(&Light.entry_color, &kFixedColdWarm[value -200], 2); entry_type = 1; // Hexadecimal } else if (LST_RGBCW == Light.subtype) { memcpy_P(&Light.entry_color[3], &kFixedColdWarm[value -200], 2); entry_type = 1; // Hexadecimal } } if (entry_type) { Settings.flag.decimal_text = entry_type -1; // SetOption17 - Switch between decimal or hexadecimal output } return (entry_type); } /********************************************************************************************/ void CmndSupportColor(void) { bool valid_entry = false; bool coldim = false; if (XdrvMailbox.data_len > 0) { valid_entry = LightColorEntry(XdrvMailbox.data, XdrvMailbox.data_len); if (valid_entry) { if (XdrvMailbox.index <= 2) { // Color(1), 2 #ifdef USE_LIGHT_PALETTE if (Light.palette_count && XdrvMailbox.index == 2) { LightSetPaletteEntry(); } else { #endif // USE_LIGHT_PALETTE uint32_t old_bri = light_state.getBri(); // change all channels to specified values light_controller.changeChannels(Light.entry_color); if (2 == XdrvMailbox.index) { // If Color2, set back old brightness light_controller.changeBri(old_bri); } #ifdef USE_LIGHT_PALETTE } #endif // USE_LIGHT_PALETTE Settings.light_scheme = 0; coldim = true; } else { // Color3, 4, 5 and 6 for (uint32_t i = 0; i < LST_RGB; i++) { Settings.ws_color[XdrvMailbox.index -3][i] = Light.entry_color[i]; } } } } char scolor[LIGHT_COLOR_SIZE]; if (!valid_entry && (XdrvMailbox.index <= 2)) { ResponseCmndChar(LightGetColor(scolor)); } if (XdrvMailbox.index >= 3) { scolor[0] = '\0'; for (uint32_t i = 0; i < LST_RGB; i++) { if (Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.ws_color[XdrvMailbox.index -3][i]); } else { snprintf_P(scolor, sizeof(scolor), PSTR("%s%02X"), scolor, Settings.ws_color[XdrvMailbox.index -3][i]); } } ResponseCmndIdxChar(scolor); } if (coldim) { LightPreparePower(); // no parameter, recalculate Power for all channels } } void CmndColor(void) { // Color - Show current RGBWW color state // Color1 - Change color to RGBWW // Color2 - Change color to RGBWW but retain brightness (=dimmer) // Color3 - Change color to RGB of WS2812 Clock Second // Color4 - Change color to RGB of WS2812 Clock Minute // Color5 - Change color to RGB of WS2812 Clock Hour // Color6 - Change color to RGB of WS2812 Clock Marker if ((Light.subtype > LST_SINGLE) && (XdrvMailbox.index > 0) && (XdrvMailbox.index <= 6)) { CmndSupportColor(); } } void CmndWhite(void) { // White - Show current White (=Dimmer2) state // White 0..100 - Set White colors dimmer state if (Light.pwm_multi_channels) { return; } if ( ((Light.subtype >= LST_RGBW) || (LST_COLDWARM == Light.subtype)) && (XdrvMailbox.index == 1)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { light_controller.changeDimmer(XdrvMailbox.payload, 2); LightPreparePower(2); } else { ResponseCmndNumber(light_state.getDimmer(2)); } } } void CmndChannel(void) { // Channel - Show current Channel state // Channel 0..100 - Set Channel dimmer state // Channel + - Incerement Channel in steps of 10 // Channel - - Decrement Channel in steps of 10 if ((XdrvMailbox.index >= Light.device) && (XdrvMailbox.index < Light.device + Light.subtype )) { uint32_t light_index = XdrvMailbox.index - Light.device; power_t coldim = 0; // bit flag to update // Handle +/- special command if (1 == XdrvMailbox.data_len) { uint8_t channel = changeUIntScale(Light.current_color[light_index],0,255,0,100); if ('+' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (channel > 89) ? 100 : channel + 10; } else if ('-' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (channel < 11) ? 1 : channel - 10; } } // Set "Channel" directly - this allows Color and Direct PWM control to coexist if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { Light.current_color[light_index] = changeUIntScale(XdrvMailbox.payload,0,100,0,255); if (Light.pwm_multi_channels) { coldim = 1 << light_index; // change the specified channel } else { if (light_controller.isCTRGBLinked()) { // if we change channels 1,2,3 then turn off CT mode (unless non-linked) if ((light_index < 3) && (light_controller.isCTRGBLinked())) { Light.current_color[3] = Light.current_color[4] = 0; } else { Light.current_color[0] = Light.current_color[1] = Light.current_color[2] = 0; } coldim = 1; } else { if (light_index < 3) { coldim = 1; } // RGB else { coldim = 2; } // CT } } light_controller.changeChannels(Light.current_color); } ResponseCmndIdxNumber(changeUIntScale(Light.current_color[light_index],0,255,0,100)); if (coldim) { LightPreparePower(coldim); } } } void CmndHsbColor(void) { // HsbColor - Show current HSB // HsbColor 360,100,100 - Set Hue, Saturation and Brighthness // HsbColor 360,100 - Set Hue and Saturation // HsbColor 360 - Set Hue // HsbColor1 360 - Set Hue // HsbColor2 100 - Set Saturation // HsbColor3 100 - Set Brightness if (Light.subtype >= LST_RGB) { if (XdrvMailbox.data_len > 0) { uint16_t c_hue; uint8_t c_sat; light_state.getHSB(&c_hue, &c_sat, nullptr); uint32_t HSB[3]; HSB[0] = c_hue; HSB[1] = c_sat; HSB[2] = light_state.getBriRGB(); if ((2 == XdrvMailbox.index) || (3 == XdrvMailbox.index)) { if ((uint32_t)XdrvMailbox.payload > 100) { XdrvMailbox.payload = 100; } HSB[XdrvMailbox.index-1] = changeUIntScale(XdrvMailbox.payload, 0, 100, 0, 255); } else { uint32_t paramcount = ParseParameters(3, HSB); if (HSB[0] > 360) { HSB[0] = 360; } for (uint32_t i = 1; i < paramcount; i++) { if (HSB[i] > 100) { HSB[i] == 100; } HSB[i] = changeUIntScale(HSB[i], 0, 100, 0, 255); // change sat and bri to 0..255 } } light_controller.changeHSB(HSB[0], HSB[1], HSB[2]); LightPreparePower(1); } else { LightState(0); } } } void CmndScheme(void) { // Scheme 0..12 - Select one of schemes 0 to 12 // Scheme 2 - Select scheme 2 // Scheme 2,0 - Select scheme 2 with color wheel set to 0 (HSB Red) // Scheme + - Select next scheme // Scheme - - Select previous scheme if (Light.subtype >= LST_RGB) { uint32_t max_scheme = Light.max_scheme; if (1 == XdrvMailbox.data_len) { if (('+' == XdrvMailbox.data[0]) && (Settings.light_scheme < max_scheme)) { XdrvMailbox.payload = Settings.light_scheme + ((0 == Settings.light_scheme) ? 2 : 1); // Skip wakeup } else if (('-' == XdrvMailbox.data[0]) && (Settings.light_scheme > 0)) { XdrvMailbox.payload = Settings.light_scheme - ((2 == Settings.light_scheme) ? 2 : 1); // Skip wakeup } } if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= max_scheme)) { uint32_t parm[2]; if (ParseParameters(2, parm) > 1) { Light.wheel = parm[1]; #ifdef USE_LIGHT_PALETTE Light.wheel--; #endif // USE_LIGHT_PALETTE } Settings.light_scheme = XdrvMailbox.payload; if (LS_WAKEUP == Settings.light_scheme) { Light.wakeup_active = 3; } LightPowerOn(); Light.strip_timer_counter = 0; // Publish state message for Hass if (Settings.flag3.hass_tele_on_power) { // SetOption59 - Send tele/%topic%/STATE in addition to stat/%topic%/RESULT MqttPublishTeleState(); } } ResponseCmndNumber(Settings.light_scheme); } } void CmndWakeup(void) { // Wakeup - Start wakeup light // Wakeup 0..100 - Start wakeup light to dimmer value 0..100 if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { light_controller.changeDimmer(XdrvMailbox.payload); } Light.wakeup_active = 3; Settings.light_scheme = LS_WAKEUP; LightPowerOn(); ResponseCmndChar(D_JSON_STARTED); } void CmndColorTemperature(void) { // CT - Show current color temperature // CT 153..500 - Set color temperature // CT + - Incerement color temperature in steps of 34 // CT - - Decrement color temperature in steps of 34 if (Light.pwm_multi_channels) { return; } if ((LST_COLDWARM == Light.subtype) || (LST_RGBCW == Light.subtype)) { // ColorTemp uint32_t ct = light_state.getCT(); if (1 == XdrvMailbox.data_len) { if ('+' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (ct > (CT_MAX-34)) ? CT_MAX : ct + 34; } else if ('-' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (ct < (CT_MIN+34)) ? CT_MIN : ct - 34; } } if ((XdrvMailbox.payload >= CT_MIN) && (XdrvMailbox.payload <= CT_MAX)) { // https://developers.meethue.com/documentation/core-concepts light_controller.changeCTB(XdrvMailbox.payload, light_state.getBriCT()); LightPreparePower(2); } else { ResponseCmndNumber(ct); } } } void CmndDimmer(void) { // Dimmer - Show current Dimmer state // Dimmer0 0..100 - Change both RGB and W(W) Dimmers // Dimmer1 0..100 - Change RGB Dimmer // Dimmer2 0..100 - Change W(W) Dimmer // Dimmer3 0..100 - Change both RGB and W(W) Dimmers with no fading // Dimmer + - Incerement Dimmer in steps of 10 // Dimmer - - Decrement Dimmer in steps of 10 uint32_t dimmer; if (XdrvMailbox.index == 3) { skip_light_fade = true; XdrvMailbox.index = 0; } else if (XdrvMailbox.index > 2) { XdrvMailbox.index = 1; } if ((light_controller.isCTRGBLinked()) || (0 == XdrvMailbox.index)) { dimmer = light_state.getDimmer(); } else { dimmer = light_state.getDimmer(XdrvMailbox.index); } // Handle +/- special command if (1 == XdrvMailbox.data_len) { if ('+' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (dimmer > 89) ? 100 : dimmer + 10; } else if ('-' == XdrvMailbox.data[0]) { XdrvMailbox.payload = (dimmer < 11) ? 1 : dimmer - 10; } } // If value is ok, change it, otherwise report old value if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) { if (light_controller.isCTRGBLinked()) { // normal state, linked RGB and CW light_controller.changeDimmer(XdrvMailbox.payload); LightPreparePower(); } else { if (0 != XdrvMailbox.index) { light_controller.changeDimmer(XdrvMailbox.payload, XdrvMailbox.index); LightPreparePower(1 << (XdrvMailbox.index - 1)); // recalculate only the target dimmer } else { // change both dimmers light_controller.changeDimmer(XdrvMailbox.payload, 1); light_controller.changeDimmer(XdrvMailbox.payload, 2); LightPreparePower(); } } #if defined(USE_PWM_DIMMER) && defined(USE_DEVICE_GROUPS) uint8_t bri = light_state.getBri(); if (bri != Settings.bri_power_on) { Settings.bri_power_on = bri; SendLocalDeviceGroupMessage(DGR_MSGTYP_PARTIAL_UPDATE, DGR_ITEM_BRI_POWER_ON, Settings.bri_power_on); } #endif // USE_PWM_DIMMER && USE_DEVICE_GROUPS Light.update = true; if (skip_light_fade) LightAnimate(); } else { ResponseCmndNumber(dimmer); } skip_light_fade = false; } void CmndDimmerRange(void) { // DimmerRange - Show current dimmer range as used by Tuya and PS16DZ Dimmers // DimmerRange 0,100 - Set dimmer hardware range from 0 to 100 and restart if (XdrvMailbox.data_len > 0) { uint32_t parm[2]; parm[0] = Settings.dimmer_hw_min; parm[1] = Settings.dimmer_hw_max; ParseParameters(2, parm); if (parm[0] < parm[1]) { Settings.dimmer_hw_min = parm[0]; Settings.dimmer_hw_max = parm[1]; } else { Settings.dimmer_hw_min = parm[1]; Settings.dimmer_hw_max = parm[0]; } LightCalcPWMRange(); Light.update = true; } Response_P(PSTR("{\"" D_CMND_DIMMER_RANGE "\":{\"Min\":%d,\"Max\":%d}}"), Settings.dimmer_hw_min, Settings.dimmer_hw_max); } void CmndLedTable(void) { // LedTable - Show current LedTable state // LedTable 0 - Turn LedTable Off // LedTable On - Turn LedTable On // LedTable Toggle - Toggle LedTable state if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 2)) { switch (XdrvMailbox.payload) { case 0: // Off case 1: // On Settings.light_correction = XdrvMailbox.payload; break; case 2: // Toggle Settings.light_correction ^= 1; break; } LightCalcPWMRange(); Light.update = true; } ResponseCmndStateText(Settings.light_correction); } void CmndRgbwwTable(void) { // RgbWwTable - Show current RGBWW State // RgbWwTable 255,255,255,255,255 - Set RGBWW state to maximum if ((XdrvMailbox.data_len > 0)) { uint32_t parm[LST_RGBCW -1]; uint32_t parmcount = ParseParameters(LST_RGBCW, parm); for (uint32_t i = 0; i < parmcount; i++) { Settings.rgbwwTable[i] = parm[i]; } Light.update = true; } char scolor[LIGHT_COLOR_SIZE]; scolor[0] = '\0'; for (uint32_t i = 0; i < LST_RGBCW; i++) { snprintf_P(scolor, sizeof(scolor), PSTR("%s%s%d"), scolor, (i > 0) ? "," : "", Settings.rgbwwTable[i]); } ResponseCmndChar(scolor); } void CmndFade(void) { // Fade - Show current Fade state // Fade 0 - Turn Fade Off // Fade On - Turn Fade On // Fade Toggle - Toggle Fade state switch (XdrvMailbox.payload) { case 0: // Off case 1: // On Settings.light_fade = XdrvMailbox.payload; break; case 2: // Toggle Settings.light_fade ^= 1; break; } #ifdef USE_DEVICE_GROUPS if (XdrvMailbox.payload >= 0 && XdrvMailbox.payload <= 2) SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_FADE, Settings.light_fade); #endif // USE_DEVICE_GROUPS #ifdef USE_LIGHT if (!Settings.light_fade) { Light.fade_running = false; } #endif // USE_LIGHT ResponseCmndStateText(Settings.light_fade); } void CmndSpeed(void) { // Speed 1 - Fast // Speed 40 - Very slow // Speed + - Increment Speed // Speed - - Decrement Speed if (1 == XdrvMailbox.data_len) { if (('+' == XdrvMailbox.data[0]) && (Settings.light_speed > 1)) { XdrvMailbox.payload = Settings.light_speed - 1; } else if (('-' == XdrvMailbox.data[0]) && (Settings.light_speed < 40)) { XdrvMailbox.payload = Settings.light_speed + 1; } } if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 40)) { Settings.light_speed = XdrvMailbox.payload; #ifdef USE_DEVICE_GROUPS SendLocalDeviceGroupMessage(DGR_MSGTYP_UPDATE, DGR_ITEM_LIGHT_SPEED, Settings.light_speed); #endif // USE_DEVICE_GROUPS } ResponseCmndNumber(Settings.light_speed); } void CmndWakeupDuration(void) { // WakeUpDuration - Show current Wake Up duration in seconds // WakeUpDuration 60 - Set Wake Up duration to 60 seconds if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 3001)) { Settings.light_wakeup = XdrvMailbox.payload; Light.wakeup_active = 0; } ResponseCmndNumber(Settings.light_wakeup); } #ifdef USE_LIGHT_PALETTE void CmndPalette(void) { uint8_t * palette_entry; char * p; // Palette Color[ ...] if (XdrvMailbox.data_len) { Light.wheel = 0; Light.palette_count = 0; if (Light.palette) { free(Light.palette); Light.palette = nullptr; } if (XdrvMailbox.data_len > 1 || XdrvMailbox.data[0] != '0') { uint8_t palette_count = 0; char * color = XdrvMailbox.data; if (!(Light.palette = (uint8_t *)malloc(255 * Light.subtype))) return; palette_entry = Light.palette; for (;;) { p = strchr(color, ' '); if (p) *p = 0; color = Trim(color); if (*color && LightColorEntry(color, strlen(color))) { memcpy(palette_entry, Light.entry_color, Light.subtype); palette_entry += Light.subtype; palette_count++; } if (!p) break; color = p + 1; } if (!(Light.palette = (uint8_t *)realloc(Light.palette, palette_count * Light.subtype))) return; Light.palette_count = palette_count; } } char palette_str[5 * Light.subtype * Light.palette_count + 3]; p = palette_str; *p++ = '['; if (Light.palette_count) { palette_entry = Light.palette; for (int entry = 0; entry < Light.palette_count; entry++) { if (Settings.flag.decimal_text) { // SetOption17 - Switch between decimal or hexadecimal output *p++ = '"'; for (uint32_t i = 0; i < Light.subtype; i++) { p += sprintf_P(p, PSTR("%d,"), *palette_entry++); } *(p - 1) = '"'; } else { for (uint32_t i = 0; i < Light.subtype; i++) { p += sprintf_P(p, PSTR("%02X"), *palette_entry++); } } *p++ = ','; } p--; } *p++ = ']'; *p = 0; ResponseCmndChar(palette_str); } #endif // USE_LIGHT_PALETTE #ifdef USE_DGR_LIGHT_SEQUENCE void CmndSequenceOffset(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 255)) { if (XdrvMailbox.payload != Light.sequence_offset) { if (Light.sequence_offset) free(Light.channels_fifo); Light.sequence_offset = XdrvMailbox.payload; if (Light.sequence_offset) Light.channels_fifo = (uint8_t *)calloc(Light.sequence_offset, LST_MAX); } } ResponseCmndNumber(Light.sequence_offset); } #endif // USE_DGR_LIGHT_SEQUENCE void CmndUndocA(void) { // Theos legacy status char scolor[LIGHT_COLOR_SIZE]; LightGetColor(scolor, true); // force hex whatever Option 17 scolor[6] = '\0'; // RGB only Response_P(PSTR("%s,%d,%d,%d,%d,%d"), scolor, Settings.light_fade, Settings.light_correction, Settings.light_scheme, Settings.light_speed, Settings.light_width); MqttPublishPrefixTopic_P(STAT, XdrvMailbox.topic); mqtt_data[0] = '\0'; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv04(uint8_t function) { bool result = false; if (FUNC_MODULE_INIT == function) { return LightModuleInit(); } else if (light_type) { switch (function) { case FUNC_SERIAL: result = XlgtCall(FUNC_SERIAL); break; case FUNC_LOOP: if (Light.fade_running) { if (LightApplyFade()) { LightSetOutputs(Light.fade_cur_10); } } break; case FUNC_EVERY_50_MSECOND: LightAnimate(); break; #ifdef USE_DEVICE_GROUPS case FUNC_DEVICE_GROUP_ITEM: LightHandleDevGroupItem(); break; #endif // USE_DEVICE_GROUPS case FUNC_SET_POWER: LightSetPower(); break; case FUNC_COMMAND: result = DecodeCommand(kLightCommands, LightCommand); if (!result) { result = XlgtCall(FUNC_COMMAND); } break; case FUNC_PRE_INIT: LightInit(); break; } } return result; } #endif // USE_LIGHT