/* xdrv_23_zigbee_converters.ino - zigbee support for Tasmota Copyright (C) 2021 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE /*********************************************************************************************\ * ZCL \*********************************************************************************************/ enum Z_DataTypes { Znodata = 0x00, Zdata8 = 0x08, Zdata16, Zdata24, Zdata32, Zdata40, Zdata48, Zdata56, Zdata64, Zbool = 0x10, Zmap8 = 0x18, Zmap16, Zmap24, Zmap32, Zmap40, Zmap48, Zmap56, Zmap64, Zuint8 = 0x20, Zuint16, Zuint24, Zuint32, Zuint40, Zuint48, Zuint56, Zuint64, Zint8 = 0x28, Zint16, Zint24, Zint32, Zint40, Zint48, Zint56, Zint64, Zenum8 = 0x30, Zenum16 = 0x31, Zsemi = 0x38, Zsingle = 0x39, Zdouble = 0x3A, Zoctstr = 0x41, Zstring = 0x42, Zoctstr16 = 0x43, Zstring16 = 0x44, Arrray = 0x48, Zstruct = 0x4C, Zset = 0x50, Zbag = 0x51, ZToD = 0xE0, Zdate = 0xE1, ZUTC = 0xE2, ZclusterId = 0xE8, ZattribId = 0xE9, ZbacOID = 0xEA, ZEUI64 = 0xF0, Zkey128 = 0xF1, Zunk = 0xFF, // adding fake type for Tuya specific encodings Ztuya0 = Zoctstr, Ztuya1 = Zbool, Ztuya2 = Zint32, Ztuya3 = Zstring, Ztuya4 = Zuint8, Ztuya5 = Zuint32 }; // // get the lenth in bytes for a data-type // return 0 if unknown of type specific // // Note: this code is smaller than a static array uint8_t Z_getDatatypeLen(uint8_t t) { if ( ((t >= 0x08) && (t <= 0x0F)) || // data8 - data64 ((t >= 0x18) && (t <= 0x2F)) ) { // map/uint/int return (t & 0x07) + 1; } switch (t) { case Zbool: case Zenum8: return 1; case Zenum16: case Zsemi: case ZclusterId: case ZattribId: return 2; case Zsingle: case ZToD: case Zdate: case ZUTC: case ZbacOID: return 4; case Zdouble: case ZEUI64: return 8; case Zkey128: return 16; case Znodata: default: return 0; } } // is the type a discrete type, cf. section 2.6.2 of ZCL spec bool Z_isDiscreteDataType(uint8_t t) { if ( ((t >= 0x20) && (t <= 0x2F)) || // uint8 - int64 ((t >= 0x38) && (t <= 0x3A)) || // semi - double ((t >= 0xE0) && (t <= 0xE2)) ) { // ToD - UTC return false; } else { return true; } } typedef struct Z_AttributeConverter { uint8_t type; uint8_t cluster_short; uint16_t attribute; uint16_t name_offset; uint8_t multiplier_idx; // multiplier index for numerical value, use CmToMultiplier(), (if > 0 multiply by x, if <0 device by x) // the high 4 bits are used to encode flags // currently: 0x80 = this parameter needs to be exported to ZbData uint8_t mapping; // high 4 bits = type, low 4 bits = offset in bytes from header // still room for a byte } Z_AttributeConverter; // Get offset in bytes of attributes, starting after the header (skipping first 4 bytes) #define Z_OFFSET(c,a) (offsetof(class c, a) - sizeof(Z_Data)) #define Z_CLASS(c) c // necessary to get a valid token without concatenation (which wouldn't work) #define Z_MAPPING(c,a) (((((uint8_t)Z_CLASS(c)::type) & 0x0F) << 4) | Z_OFFSET(c,a)) // lines with this marker, will be used to export automatically data to `ZbData` // at the condition Z_MAPPING() is also used const uint8_t Z_EXPORT_DATA = 0x80; // Cluster numbers are store in 8 bits format to save space, // the following tables allows the conversion from 8 bits index Cx... // to the 16 bits actual cluster number enum Cx_cluster_short { Cx0000, Cx0001, Cx0002, Cx0003, Cx0004, Cx0005, Cx0006, Cx0007, Cx0008, Cx0009, Cx000A, Cx000B, Cx000C, Cx000D, Cx000E, Cx000F, Cx0010, Cx0011, Cx0012, Cx0013, Cx0014, Cx001A, Cx0020, Cx0100, Cx0101, Cx0102, Cx0201, Cx0300, Cx0400, Cx0401, Cx0402, Cx0403, Cx0404, Cx0405, Cx0406, Cx0500, Cx0702, Cx0B01, Cx0B04, Cx0B05, CxEF00, CxFCC0, CxFCCC, }; const uint16_t Cx_cluster[] PROGMEM = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x000F, 0x0010, 0x0011, 0x0012, 0x0013, 0x0014, 0x001A, 0x0020, 0x0100, 0x0101, 0x0102, 0x0201, 0x0300, 0x0400, 0x0401, 0x0402, 0x0403, 0x0404, 0x0405, 0x0406, 0x0500, 0x0702, 0x0B01, 0x0B04, 0x0B05, 0xEF00, 0xFCC0, 0xFCCC, }; uint16_t CxToCluster(uint8_t cx) { if (cx < ARRAY_SIZE(Cx_cluster)) { return pgm_read_word(&Cx_cluster[cx]); } return 0xFFFF; } uint8_t ClusterToCx(uint16_t cluster) { for (uint32_t i=0; iname_offset)) { continue; } // avoid strcasecmp_P() from crashing if (0 == strcasecmp_P(command, Z_strings + pgm_read_word(&converter->name_offset))) { if (cluster) { *cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); } if (attribute) { *attribute = pgm_read_word(&converter->attribute); } if (multiplier) { *multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); } if (zigbee_type) { *zigbee_type = pgm_read_byte(&converter->type); } uint8_t conv_mapping = pgm_read_byte(&converter->mapping); if (data_type) { *data_type = (Z_Data_Type) ((conv_mapping & 0xF0)>>4); } if (map_offset) { *map_offset = (conv_mapping & 0x0F); } return (const __FlashStringHelper*) (Z_strings + pgm_read_word(&converter->name_offset)); } } return nullptr; } // // Find attribute details: Name, Type, Multiplier by cuslter/attr_id // const __FlashStringHelper* zigbeeFindAttributeById(uint16_t cluster, uint16_t attr_id, uint8_t *attr_type, int8_t *multiplier) { for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); uint16_t conv_attr_id = pgm_read_word(&converter->attribute); if ((conv_cluster == cluster) && (conv_attr_id == attr_id)) { if (multiplier) { *multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); } if (attr_type) { *attr_type = pgm_read_byte(&converter->type); } return (const __FlashStringHelper*) (Z_strings + pgm_read_word(&converter->name_offset)); } } return nullptr; } class ZCLFrame { public: ZCLFrame(uint8_t frame_control, uint16_t manuf_code, uint8_t transact_seq, uint8_t cmd_id, const char *buf, size_t buf_len, uint16_t clusterid, uint16_t groupaddr, uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast, uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber): _manuf_code(manuf_code), _transact_seq(transact_seq), _cmd_id(cmd_id), _payload(buf_len ? buf_len : 250), // allocate the data frame from source or preallocate big enough _cluster_id(clusterid), _groupaddr(groupaddr), _srcaddr(srcaddr), _srcendpoint(srcendpoint), _dstendpoint(dstendpoint), _wasbroadcast(wasbroadcast), _linkquality(linkquality), _securityuse(securityuse), _seqnumber(seqnumber) { _frame_control.d8 = frame_control; _payload.addBuffer(buf, buf_len); }; void log(void) { char hex_char[_payload.len()*2+2]; ToHex_P((unsigned char*)_payload.getBuffer(), _payload.len(), hex_char, sizeof(hex_char)); Response_P(PSTR("{\"" D_JSON_ZIGBEEZCL_RECEIVED "\":{" "\"groupid\":%d," "\"clusterid\":\"0x%04X\"," "\"srcaddr\":\"0x%04X\"," "\"srcendpoint\":%d," "\"dstendpoint\":%d," "\"wasbroadcast\":%d," "\"" D_CMND_ZIGBEE_LINKQUALITY "\":%d," "\"securityuse\":%d," "\"seqnumber\":%d," "\"fc\":\"0x%02X\"," "\"frametype\":%d,\"direction\":%d,\"disableresp\":%d," "\"manuf\":\"0x%04X\",\"transact\":%d," "\"cmdid\":\"0x%02X\",\"payload\":\"%s\"}}"), _groupaddr, _cluster_id, _srcaddr, _srcendpoint, _dstendpoint, _wasbroadcast, _linkquality, _securityuse, _seqnumber, _frame_control, _frame_control.b.frame_type, _frame_control.b.direction, _frame_control.b.disable_def_resp, _manuf_code, _transact_seq, _cmd_id, hex_char); if (Settings.flag3.tuya_serial_mqtt_publish) { MqttPublishPrefixTopicRulesProcess_P(TELE, PSTR(D_RSLT_SENSOR)); } else { AddLogZ_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), TasmotaGlobal.mqtt_data); } } static ZCLFrame parseRawFrame(const SBuffer &buf, uint8_t offset, uint8_t len, uint16_t clusterid, uint16_t groupid, uint16_t srcaddr, uint8_t srcendpoint, uint8_t dstendpoint, uint8_t wasbroadcast, uint8_t linkquality, uint8_t securityuse, uint8_t seqnumber) { // parse a raw frame and build the ZCL frame object uint32_t i = offset; ZCLHeaderFrameControl_t frame_control; uint16_t manuf_code = 0; uint8_t transact_seq; uint8_t cmd_id; frame_control.d8 = buf.get8(i++); if (frame_control.b.manuf_specific) { manuf_code = buf.get16(i); i += 2; } transact_seq = buf.get8(i++); cmd_id = buf.get8(i++); ZCLFrame zcl_frame(frame_control.d8, manuf_code, transact_seq, cmd_id, (const char *)(buf.buf() + i), len + offset - i, clusterid, groupid, srcaddr, srcendpoint, dstendpoint, wasbroadcast, linkquality, securityuse, seqnumber); return zcl_frame; } bool isClusterSpecificCommand(void) { return _frame_control.b.frame_type & 1; } void parseReportAttributes(Z_attribute_list& attr_list); void generateSyntheticAttributes(Z_attribute_list& attr_list); void removeInvalidAttributes(Z_attribute_list& attr_list); void computeSyntheticAttributes(Z_attribute_list& attr_list); void generateCallBacks(Z_attribute_list& attr_list); void parseReadAttributes(Z_attribute_list& attr_list); void parseReadAttributesResponse(Z_attribute_list& attr_list); void parseReadConfigAttributes(Z_attribute_list& attr_list); void parseConfigAttributes(Z_attribute_list& attr_list); void parseWriteAttributesResponse(Z_attribute_list& attr_list); void parseResponse(void); void parseResponse_inner(uint8_t cmd, bool cluster_specific, uint8_t status); void parseClusterSpecificCommand(Z_attribute_list& attr_list); // synthetic attributes converters void syntheticAqaraSensor(Z_attribute_list &attr_list, class Z_attribute &attr); void syntheticAqaraSensor2(Z_attribute_list &attr_list, class Z_attribute &attr); void syntheticAqaraCubeOrButton(Z_attribute_list &attr_list, class Z_attribute &attr); void syntheticAqaraVibration(Z_attribute_list &attr_list, class Z_attribute &attr); void syntheticAnalogValue(Z_attribute_list &attr_list, class Z_attribute &attr); // handle read attributes auto-responder void autoResponder(const uint16_t *attr_list_ids, size_t attr_len); inline void setGroupId(uint16_t groupid) { _groupaddr = groupid; } inline void setClusterId(uint16_t clusterid) { _cluster_id = clusterid; } inline uint16_t getSrcAddr(void) const { return _srcaddr; } inline uint16_t getGroupAddr(void) const { return _groupaddr; } inline uint16_t getClusterId(void) const { return _cluster_id; } inline uint8_t getLinkQuality(void) const { return _linkquality; } inline uint8_t getCmdId(void) const { return _cmd_id; } inline uint16_t getSrcEndpoint(void) const { return _srcendpoint; } const SBuffer &getPayload(void) const { return _payload; } uint16_t getManufCode(void) const { return _manuf_code; } private: ZCLHeaderFrameControl_t _frame_control = { .d8 = 0 }; uint16_t _manuf_code = 0; // optional uint8_t _transact_seq = 0; // transaction sequence number uint8_t _cmd_id = 0; SBuffer _payload; uint16_t _cluster_id = 0; uint16_t _groupaddr = 0; // information from decoded ZCL frame uint16_t _srcaddr; uint8_t _srcendpoint; uint8_t _dstendpoint; uint8_t _wasbroadcast; uint8_t _linkquality; uint8_t _securityuse; uint8_t _seqnumber; }; // Zigbee ZCL converters // from https://github.com/Koenkk/zigbee-shepherd-converters/blob/638d29f0cace6343052b9a4e7fd60980fa785479/converters/fromZigbee.js#L55 // Input voltage in mV, i.e. 3000 = 3.000V // Output percentage from 0 to 100 as int uint8_t toPercentageCR2032(uint32_t voltage) { uint32_t percentage; if (voltage < 2100) { percentage = 0; } else if (voltage < 2440) { percentage = 6 - ((2440 - voltage) * 6) / 340; } else if (voltage < 2740) { percentage = 18 - ((2740 - voltage) * 12) / 300; } else if (voltage < 2900) { percentage = 42 - ((2900 - voltage) * 24) / 160; } else if (voltage < 3000) { percentage = 100 - ((3000 - voltage) * 58) / 100; } else if (voltage >= 3000) { percentage = 100; } return percentage; } // // Appends the attribute value to Write or to Report // Adds to buf: // - n bytes: value (typically between 1 and 4 bytes, or bigger for strings) // returns number of bytes of attribute, or <0 if error int32_t encodeSingleAttribute(class SBuffer &buf, double val_d, const char *val_str, uint8_t attrtype) { uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute length, overloaded for variable length attributes uint32_t u32 = val_d; int32_t i32 = val_d; float f32 = val_d; switch (attrtype) { // unsigned 8 case Zbool: // bool case Zuint8: // uint8 case Zenum8: // enum8 case Zdata8: // data8 case Zmap8: // map8 buf.add8(u32); break; // unsigned 16 case Zuint16: // uint16 case Zenum16: // enum16 case Zdata16: // data16 case Zmap16: // map16 buf.add16(u32); break; // unisgned 32 case Zuint24: buf.add16(u32); buf.add8(u32 >> 16); break; // unisgned 24 case Zuint32: // uint32 case Zdata32: // data32 case Zmap32: // map32 case ZUTC: // UTC - epoch 32 bits, seconds since 1-Jan-2000 buf.add32(u32); break; // signed 8 case Zint8: // int8 buf.add8(i32); break; case Zint16: // int16 buf.add16(i32); break; case Zint32: // int32 buf.add32(i32); break; case Zsingle: // float buf.add32( *((uint32_t*)&f32) ); // cast float as uint32_t break; case Zstring: case Zstring16: { if (nullptr == val_str) { return -2; } size_t val_len = strlen(val_str); if (val_len > 32) { val_len = 32; } len = val_len + 1; buf.add8(val_len); if (Zstring16 == attrtype) { buf.add8(0); // len is on 2 bytes len++; } for (uint32_t i = 0; i < val_len; i++) { buf.add8(val_str[i]); } } break; default: return -1; } return len; } // // parse a single attribute // // Input: // attr: attribute object to store to // buf: the buffer to read from // offset: location in the buffer to read from // attrtype: type of attribute (byte) or -1 to read from the stream as first byte // Output: // return: the length in bytes of the attribute uint32_t parseSingleAttribute(Z_attribute & attr, const SBuffer &buf, uint32_t offset, int32_t attrtype = -1) { uint32_t i = offset; if (attrtype < 0) { attrtype = buf.get8(i++); } // fallback - enter a null value attr.setNone(); // set to null by default uint32_t len = Z_getDatatypeLen(attrtype); // pre-compute lenght, overloaded for variable length attributes // now parse accordingly to attr type switch (attrtype) { // case Znodata: // nodata // case Zunk: // unk // break; case Zbool: // bool case Zuint8: // uint8 case Zenum8: // enum8 { uint8_t uint8_val = buf.get8(i); // i += 1; if (0xFF != uint8_val) { attr.setUInt(uint8_val); } } break; case Zuint16: // uint16 case Zenum16: // enum16 { uint16_t uint16_val = buf.get16(i); // i += 2; if (0xFFFF != uint16_val) { attr.setUInt(uint16_val); } } break; case Zuint24: { uint32_t uint24_val = buf.get16(i) + (buf.get8(i+2) >> 16); // i += 3; if (0xFFFFFF != uint24_val) { attr.setUInt(uint24_val); } } break; case Zuint32: // uint32 case ZUTC: // UTC { uint32_t uint32_val = buf.get32(i); // i += 4; if (0xFFFFFFFF != uint32_val) { attr.setUInt(uint32_val); } } break; // Note: uint40, uint48, uint56, uint64 are displayed as Hex // Note: int40, int48, int56, int64 are displayed as Hex case Zuint40: // uint40 case Zuint48: // uint48 case Zuint56: // uint56 case Zuint64: // uint64 case Zint40: // int40 case Zint48: // int48 case Zint56: // int56 case Zint64: // int64 { // uint8_t len = attrtype - 0x27; // 5 - 8 // print as HEX "0x...." char hex[2*len+3]; snprintf_P(hex, sizeof(hex), PSTR("0x")); for (uint32_t j=0; j buf.len()) { // make sure we don't get past the buffer len = buf.len() - i; } // check if we can safely use a string if ((Zoctstr == attrtype) || (Zoctstr16 == attrtype)) { parse_as_string = false; } if (parse_as_string) { char str[len+1]; strncpy(str, buf.charptr(i), len); str[len] = 0x00; attr.setStr(str); } else { attr.setBuf(buf, i, len); } // i += len; // break; } // i += buf.get8(i) + 1; break; case Zstruct: { uint16_t struct_size = buf.get16(i); len = 2; if (0xFFFF != struct_size) { if (struct_size > 16) { struct_size = 16; } // parse inner attributes - supports only fixed length for now for (uint32_t j = 0; j < struct_size; j++) { uint8_t attr_type = buf.get8(i+len); len += Z_getDatatypeLen(attr_type) + 1; } attr.setBuf(buf, i, len); } } break; case Zdata8: // data8 case Zmap8: // map8 { uint8_t uint8_val = buf.get8(i); // i += 1; attr.setUInt(uint8_val); } break; case Zdata16: // data16 case Zmap16: // map16 { uint16_t uint16_val = buf.get16(i); // i += 2; attr.setUInt(uint16_val); } break; case Zdata32: // data32 case Zmap32: // map32 { uint32_t uint32_val = buf.get32(i); // i += 4; attr.setUInt(uint32_val); } break; case Zsingle: // float { uint32_t uint32_val = buf.get32(i); float * float_val = (float*) &uint32_val; // i += 4; attr.setFloat(*float_val); } break; // TODO case ZToD: // ToD case Zdate: // date case ZclusterId: // clusterId case ZattribId: // attribId case ZbacOID: // bacOID case ZEUI64: // EUI64 case Zkey128: // key128 case Zsemi: // semi (float on 2 bytes) break; // Other un-implemented data types case Zdata24: // data24 case Zdata40: // data40 case Zdata48: // data48 case Zdata56: // data56 case Zdata64: // data64 break; // map case Zmap24: // map24 case Zmap40: // map40 case Zmap48: // map48 case Zmap56: // map56 case Zmap64: // map64 break; case Zdouble: // double precision { uint64_t uint64_val = buf.get64(i); double * double_val = (double*) &uint64_val; // i += 8; attr.setFloat((float) *double_val); } break; } i += len; return i - offset; // how much have we increased the index } // First pass, parse all attributes in their native format void ZCLFrame::parseReportAttributes(Z_attribute_list& attr_list) { uint32_t i = 0; uint32_t len = _payload.len(); if (ZCL_WRITE_ATTRIBUTES == getCmdId()) { attr_list.addAttribute(PSTR("Command"), true).setStr(PSTR("Write")); } while (len >= i + 3) { uint16_t attrid = _payload.get16(i); i += 2; // exception for Xiaomi lumi.weather - specific field to be treated as octet and not char if ((0x0000 == _cluster_id) && (0xFF01 == attrid)) { if (0x42 == _payload.get8(i)) { _payload.set8(i, 0x41); // change type from 0x42 to 0x41 } } // TODO look for suffix Z_attribute & attr = attr_list.addAttribute(_cluster_id, attrid); i += parseSingleAttribute(attr, _payload, i); } // Issue Philips outdoor motion sensor SML002, see https://github.com/Koenkk/zigbee2mqtt/issues/897 // The sensor expects the coordinator to send a Default Response to acknowledge the attribute reporting if (0 == _frame_control.b.disable_def_resp) { // the device expects a default response SBuffer buf(2); buf.add8(_cmd_id); buf.add8(0x00); // Status = OK ZigbeeZCLSend_Raw(ZigbeeZCLSendMessage({ _srcaddr, 0x0000, _cluster_id, _srcendpoint, ZCL_DEFAULT_RESPONSE, _manuf_code, false /* not cluster specific */, false /* noresponse */, true /* direct no retry */, _transact_seq, /* zcl transaction id */ buf.getBuffer(), buf.len() })); } } // // Extract attributes hidden in other compound attributes // void ZCLFrame::generateSyntheticAttributes(Z_attribute_list& attr_list) { // scan through attributes and apply specific converters for (auto &attr : attr_list) { if (attr.key_is_str) { continue; } // pass if key is a name uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id; switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute case 0x0000FF01: syntheticAqaraSensor(attr_list, attr); break; case 0x0000FF02: syntheticAqaraSensor2(attr_list, attr); break; case 0x00120055: syntheticAqaraCubeOrButton(attr_list, attr); break; case 0x01010055: case 0x01010508: syntheticAqaraVibration(attr_list, attr); break; case 0x000C0055: // Analog Value syntheticAnalogValue(attr_list, attr); break; } } } // // Remove invalid values // void ZCLFrame::removeInvalidAttributes(Z_attribute_list& attr_list) { // scan through attributes and apply specific converters for (auto &attr : attr_list) { if (attr.key_is_str) { continue; } // pass if key is a name uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id; switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute case 0x04020000: // Temperature if (attr.getInt() <= -10000) { // #9978, remove temperature of -100.00°C sent by lumi.weather attr_list.removeAttribute(&attr); } break; } } } // // Compute new attributes based on the standard set // Note: both function are now split to compute on extracted attributes // void ZCLFrame::computeSyntheticAttributes(Z_attribute_list& attr_list) { const char * model_c = zigbee_devices.getModelId(_srcaddr); // null if unknown String modelId((char*) model_c); // scan through attributes and apply specific converters for (auto &attr : attr_list) { if (attr.key_is_str) { continue; } // pass if key is a name uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id; switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute case 0x00010020: // BatteryVoltage if (attr_list.countAttribute(0x0001,0x0021) == 0) { // if it does not already contain BatteryPercentage uint32_t mv = attr.getUInt()*100; attr_list.addAttribute(0x0001, 0x0021).setUInt(toPercentageCR2032(mv) * 2); } break; case 0x00010021: // BatteryPercentage if (modelId.startsWith(F("TRADFRI"))) { attr.setUInt(attr.getUInt() * 2); // bug in TRADFRI battery, need to double the value } break; case 0x00060000: // "Power" for lumi Door/Window is converted to "Contact" if (modelId.startsWith(F("lumi.sensor_magnet"))) { attr.setKeyId(0x0500, 0xFFF0 + ZA_Contact); // change cluster and attribute to 0500/FFF0 } break; case 0x02010008: // Pi Heating Demand - solve Eutotronic bug case 0x02014008: // Eurotronic Host Flags decoding { const char * manufacturer_c = zigbee_devices.getManufacturerId(_srcaddr); // null if unknown String manufacturerId((char*) manufacturer_c); if (manufacturerId.equals(F("Eurotronic"))) { if (ccccaaaa == 0x02010008) { // Eurotronic does not report 0..100 but 0..255, including 255 which is normally an ivalid value uint8_t valve = attr.getUInt(); if (attr.isNone()) { valve = 255; } uint8_t valve_100 = changeUIntScale(valve, 0, 255, 0, 100); attr.setUInt(valve_100); } else if (ccccaaaa == 0x02014008) { uint32_t mode = attr.getUInt(); if (mode & 0x02) { attr_list.addAttribute(0x0201, 0xF002).setUInt(1); } if (mode & 0x04) { attr_list.addAttribute(0x0201, 0xF004).setUInt(1); } if (mode & 0x10) { attr_list.addAttribute(0x0201, 0xF010).setUInt(1); } if (mode & 0x80) { attr_list.addAttribute(0x0201, 0xF080).setUInt(1); } } } } break; case 0x03000000: // Hue case 0x03000001: // Sat case 0x03000003: // X case 0x03000004: // Y { // generate synthetic RGB const Z_attribute * attr_rgb = attr_list.findAttribute(0x0300, 0xFFF0); if (attr_rgb == nullptr) { // make sure we didn't already computed it uint8_t r,g,b; bool is_rgb = false; const Z_attribute * attr_hue = attr_list.findAttribute(0x0300, 0x0000); const Z_attribute * attr_sat = attr_list.findAttribute(0x0300, 0x0001); const Z_attribute * attr_x = attr_list.findAttribute(0x0300, 0x0003); const Z_attribute * attr_y = attr_list.findAttribute(0x0300, 0x0004); if (attr_hue && attr_sat) { uint8_t sat = changeUIntScale(attr_sat->getUInt(), 0, 254, 0, 255); HsToRgb(attr_hue->getUInt(), sat, &r, &g, &b); is_rgb = true; } else if (attr_x && attr_y) { XyToRgb(attr_x->getUInt() / 65535.0f, attr_y->getUInt() / 65535.0f, &r, &g, &b); is_rgb = true; } if (is_rgb) { SBuffer rgb(3); rgb.add8(r); rgb.add8(g); rgb.add8(b); attr_list.addAttribute(0x0300, 0xFFF0).setBuf(rgb, 0, 3); } } } break; case 0x04030000: // SeaPressure { int16_t pressure = attr.getInt(); int16_t pressure_sealevel = (pressure / FastPrecisePow(1.0 - ((float)Settings.altitude / 44330.0f), 5.255f)) - 21.6f; attr_list.addAttribute(0x0403, 0xFFF0).setInt(pressure_sealevel); // We create a synthetic attribute 0403/FFF0 to indicate sea level } break; case 0x05000002: // ZoneStatus const Z_Data_Alarm & alarm = (const Z_Data_Alarm&) zigbee_devices.getShortAddr(_srcaddr).data.find(Z_Data_Type::Z_Alarm, _srcendpoint); if (&alarm != nullptr) { alarm.convertZoneStatus(attr_list, attr.getUInt()); } break; } } } // Set deferred callbacks for Occupancy // TODO make delay a parameter void ZCLFrame::generateCallBacks(Z_attribute_list& attr_list) { static const uint32_t OCCUPANCY_TIMEOUT = 90 * 1000; // 90 s // scan through attributes and apply specific converters for (auto &attr : attr_list) { if (attr.key_is_str) { continue; } // pass if key is a name uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id; switch (ccccaaaa) { // 0xccccaaaa . c=cluster, a=attribute case 0x04060000: // Occupancy uint32_t occupancy = attr.getUInt(); if (occupancy) { uint32_t pir_timer = OCCUPANCY_TIMEOUT; const Z_Data_PIR & pir_found = (const Z_Data_PIR&) zigbee_devices.getShortAddr(_srcaddr).data.find(Z_Data_Type::Z_PIR, _srcendpoint); if (&pir_found != nullptr) { pir_timer = pir_found.getTimeoutSeconds() * 1000; } if (pir_timer > 0) { zigbee_devices.setTimer(_srcaddr, 0 /* groupaddr */, pir_timer, _cluster_id, _srcendpoint, Z_CAT_VIRTUAL_OCCUPANCY, 0, &Z_OccupancyCallback); } } else { zigbee_devices.resetTimersForDevice(_srcaddr, 0 /* groupaddr */, Z_CAT_VIRTUAL_OCCUPANCY); } break; } } } // A command has been sent to a device this device, or to a group // Set timers to read back values. // If it's a device address, also set a timer for reachability test void sendHueUpdate(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint = 0) { uint32_t wait_ms = 0xFFFF; switch (cluster) { case 0x0006: wait_ms = 200; // wait 0.2 s break; case 0x0008: wait_ms = 1050; // wait 1.0 s break; case 0x0102: wait_ms = 10000; // wait 10.0 s break; case 0x0300: wait_ms = 1050; // wait 1.0 s break; default: break; } if (0xFFFF != wait_ms) { if ((BAD_SHORTADDR != shortaddr) && (0 == endpoint)) { endpoint = zigbee_devices.findFirstEndpoint(shortaddr); } if ((BAD_SHORTADDR == shortaddr) || (endpoint)) { // send if group address or endpoint is known zigbee_devices.queueTimer(shortaddr, groupaddr, wait_ms, cluster, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback); if (BAD_SHORTADDR != shortaddr) { // reachability test is not possible for group addresses, since we don't know the list of devices in the group zigbee_devices.setTimer(shortaddr, groupaddr, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, cluster, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable); } } } } // ZCL_READ_ATTRIBUTES void ZCLFrame::parseReadAttributes(Z_attribute_list& attr_list) { uint32_t i = 0; uint32_t len = _payload.len(); uint16_t read_attr_ids[len/2]; attr_list.addAttributePMEM(PSTR(D_CMND_ZIGBEE_CLUSTER)).setUInt(_cluster_id); JsonGeneratorArray attr_numbers; Z_attribute_list attr_names; while (len >= 2 + i) { uint16_t attrid = _payload.get16(i); attr_numbers.add(attrid); read_attr_ids[i/2] = attrid; // find the attribute name for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); uint16_t conv_attribute = pgm_read_word(&converter->attribute); if ((conv_cluster == _cluster_id) && (conv_attribute == attrid)) { attr_names.addAttribute(Z_strings + pgm_read_word(&converter->name_offset), true).setBool(true); break; } } i += 2; } attr_list.addAttributePMEM(PSTR("Read")).setStrRaw(attr_numbers.toString().c_str()); attr_list.addAttributePMEM(PSTR("ReadNames")).setStrRaw(attr_names.toString(true).c_str()); // call auto-responder autoResponder(read_attr_ids, len/2); } // ZCL_CONFIGURE_REPORTING_RESPONSE void ZCLFrame::parseConfigAttributes(Z_attribute_list& attr_list) { uint32_t len = _payload.len(); Z_attribute_list attr_config_list; for (uint32_t i=0; len >= i+4; i+=4) { uint8_t status = _payload.get8(i); uint16_t attr_id = _payload.get8(i+2); Z_attribute_list attr_config_response; attr_config_response.addAttributePMEM(PSTR("Status")).setUInt(status); attr_config_response.addAttributePMEM(PSTR("StatusMsg")).setStr(getZigbeeStatusMessage(status).c_str()); const __FlashStringHelper* attr_name = zigbeeFindAttributeById(_cluster_id, attr_id, nullptr, nullptr); if (attr_name) { attr_config_list.addAttribute(attr_name).setStrRaw(attr_config_response.toString(true).c_str()); } else { attr_config_list.addAttribute(_cluster_id, attr_id).setStrRaw(attr_config_response.toString(true).c_str()); } } Z_attribute &attr_1 = attr_list.addAttributePMEM(PSTR("ConfigResponse")); attr_1.setStrRaw(attr_config_list.toString(true).c_str()); } // ZCL_WRITE_ATTRIBUTES_RESPONSE void ZCLFrame::parseWriteAttributesResponse(Z_attribute_list& attr_list) { parseResponse_inner(ZCL_WRITE_ATTRIBUTES_RESPONSE, false, _payload.get8(0)); } // ZCL_READ_REPORTING_CONFIGURATION_RESPONSE void ZCLFrame::parseReadConfigAttributes(Z_attribute_list& attr_list) { uint32_t i = 0; uint32_t len = _payload.len(); Z_attribute &attr_root = attr_list.addAttributePMEM(PSTR("ReadConfig")); Z_attribute_list attr_1; while (len >= i + 4) { uint8_t status = _payload.get8(i); uint8_t direction = _payload.get8(i+1); uint16_t attrid = _payload.get16(i+2); Z_attribute_list attr_2; if (direction) { attr_2.addAttributePMEM(PSTR("DirectionReceived")).setBool(true); } // find the attribute name int8_t multiplier = 1; for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); uint16_t conv_attribute = pgm_read_word(&converter->attribute); if ((conv_cluster == _cluster_id) && (conv_attribute == attrid)) { const char * attr_name = Z_strings + pgm_read_word(&converter->name_offset); attr_2.addAttribute(attr_name, true).setBool(true); multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); break; } } i += 4; if (0 != status) { attr_2.addAttributePMEM(PSTR("Status")).setUInt(status); attr_2.addAttributePMEM(PSTR("StatusMsg")).setStr(getZigbeeStatusMessage(status).c_str()); } else { // no error, decode data if (direction) { // only Timeout period is present uint16_t attr_timeout = _payload.get16(i); i += 2; attr_2.addAttributePMEM(PSTR("TimeoutPeriod")).setUInt((0xFFFF == attr_timeout) ? -1 : attr_timeout); } else { // direction == 0, we have a data type uint8_t attr_type = _payload.get8(i); bool attr_discrete = Z_isDiscreteDataType(attr_type); uint16_t attr_min_interval = _payload.get16(i+1); uint16_t attr_max_interval = _payload.get16(i+3); i += 5; attr_2.addAttributePMEM(PSTR("MinInterval")).setUInt((0xFFFF == attr_min_interval) ? -1 : attr_min_interval); attr_2.addAttributePMEM(PSTR("MaxInterval")).setUInt((0xFFFF == attr_max_interval) ? -1 : attr_max_interval); if (!attr_discrete) { // decode Reportable Change Z_attribute &attr_change = attr_2.addAttributePMEM(PSTR("ReportableChange")); i += parseSingleAttribute(attr_change, _payload, i, attr_type); if ((1 != multiplier) && (0 != multiplier)) { float fval = attr_change.getFloat(); if (multiplier > 0) { fval = fval * multiplier; } else { fval = fval / (-multiplier); } attr_change.setFloat(fval); } } } } attr_1.addAttribute(_cluster_id, attrid).setStrRaw(attr_2.toString(true).c_str()); } attr_root.setStrRaw(attr_1.toString(true).c_str()); } // ZCL_READ_ATTRIBUTES_RESPONSE void ZCLFrame::parseReadAttributesResponse(Z_attribute_list& attr_list) { uint32_t i = 0; uint32_t len = _payload.len(); while (len >= i + 4) { uint16_t attrid = _payload.get16(i); i += 2; uint8_t status = _payload.get8(i++); if (0 == status) { Z_attribute & attr = attr_list.addAttribute(_cluster_id, attrid); i += parseSingleAttribute(attr, _payload, i); } } } void ZCLFrame::parseResponse_inner(uint8_t cmd, bool cluster_specific, uint8_t status) { Z_attribute_list attr_list; // "Device" char s[12]; snprintf_P(s, sizeof(s), PSTR("0x%04X"), _srcaddr); attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_DEVICE)).setStr(s); // "Name" const char * friendlyName = zigbee_devices.getFriendlyName(_srcaddr); if (friendlyName) { attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_NAME)).setStr(friendlyName); } // "Command" snprintf_P(s, sizeof(s), PSTR("%04X%c%02X"), _cluster_id, cluster_specific ? '!' : '_', cmd); attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_CMD)).setStr(s); // "Status" attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_STATUS)).setUInt(status); // "StatusMessage" attr_list.addAttributePMEM(PSTR(D_JSON_ZIGBEE_STATUS_MSG)).setStr(getZigbeeStatusMessage(status).c_str()); // Add Endpoint attr_list.addAttributePMEM(PSTR(D_CMND_ZIGBEE_ENDPOINT)).setUInt(_srcendpoint); // Add Group if non-zero if (_groupaddr) { // TODO what about group zero attr_list.group_id = _groupaddr; } // Add linkquality attr_list.lqi = _linkquality; Response_P(PSTR("{\"" D_JSON_ZIGBEE_RESPONSE "\":%s}"), attr_list.toString(true).c_str()); MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED)); } // ZCL_DEFAULT_RESPONSE void ZCLFrame::parseResponse(void) { if (_payload.len() < 2) { return; } // wrong format uint8_t cmd = _payload.get8(0); uint8_t status = _payload.get8(1); parseResponse_inner(cmd, true, status); } /*********************************************************************************************\ * Callbacks \*********************************************************************************************/ // Reset the debounce marker void Z_ResetDebounce(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { zigbee_devices.getShortAddr(shortaddr).debounce_endpoint = 0; } // Parse non-normalized attributes void ZCLFrame::parseClusterSpecificCommand(Z_attribute_list& attr_list) { // Check if debounce is active and if the packet is a duplicate Z_Device & device = zigbee_devices.getShortAddr(_srcaddr); if ((device.debounce_endpoint != 0) && (device.debounce_endpoint == _srcendpoint) && (device.debounce_transact == _transact_seq)) { // this is a duplicate, drop the packet AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Discarding duplicate command from 0x%04X, endpoint %d"), _srcaddr, _srcendpoint); } else { // reset the duplicate marker, parse the packet normally, and set a timer to reset the marker later (which will discard any existing timer for the same device/endpoint) device.debounce_endpoint = _srcendpoint; device.debounce_transact = _transact_seq; zigbee_devices.setTimer(_srcaddr, 0 /* groupaddr */, USE_ZIGBEE_DEBOUNCE_COMMANDS, 0 /*clusterid*/, _srcendpoint, Z_CAT_DEBOUNCE_CMD, 0, &Z_ResetDebounce); convertClusterSpecific(attr_list, _cluster_id, _cmd_id, _frame_control.b.direction, _srcaddr, _srcendpoint, _payload); if (!Settings.flag5.zb_disable_autoquery) { // read attributes unless disabled if (!_frame_control.b.direction) { // only handle server->client (i.e. device->coordinator) if (_wasbroadcast) { // only update for broadcast messages since we don't see unicast from device to device and we wouldn't know the target sendHueUpdate(BAD_SHORTADDR, _groupaddr, _cluster_id); } } } } } // ====================================================================== // Convert AnalogValue according to the device type void ZCLFrame::syntheticAnalogValue(Z_attribute_list &attr_list, class Z_attribute &attr) { const char * modelId_c = zigbee_devices.getModelId(_srcaddr); // null if unknown String modelId((char*) modelId_c); if (modelId.startsWith(F("lumi.sensor_cube"))) { attr.setKeyId(0x000C, 0xFF55); // change to AqaraRotate } if (modelId.startsWith(F("lumi.plug"))) { attr.setKeyId(0x0702, 0x0000); // change to EnergyTotal } if (modelId.startsWith(F("lumi.ctrl"))) { attr.setKeyId(0x0B04, 0x050B); // change to ActivePower } } // ====================================================================== // New version of synthetic attribute generation void ZCLFrame::syntheticAqaraSensor(Z_attribute_list &attr_list, class Z_attribute &attr) { const SBuffer * buf = attr.getRaw(); if (buf) { const SBuffer & buf2 = *buf; uint32_t i = 0; uint32_t len = buf2.len(); const char * modelId_c = zigbee_devices.getModelId(_srcaddr); // null if unknown String modelId((char*) modelId_c); while (len >= 2 + i) { uint8_t attrid = buf2.get8(i++); Z_attribute attr; // temporary attribute i += parseSingleAttribute(attr, buf2, i); int32_t ival32 = attr.getInt(); uint32_t uval32 = attr.getUInt(); bool translated = false; // were we able to translate to a known format? if (0x01 == attrid) { float batteryvoltage = attr.getFloat() / 100; attr_list.addAttribute(0x0001, 0x0020).setFloat(batteryvoltage); uint8_t batterypercentage = toPercentageCR2032(uval32); attr_list.addAttribute(0x0001, 0x0021).setUInt(batterypercentage * 2); } else if ((nullptr != modelId) && ((0 == getManufCode()) || (0x115F == getManufCode()))) { translated = true; if (modelId.startsWith(F("lumi.sensor_magnet"))) { // door / window sensor if (0x64 == attrid) { attr_list.addAttribute(0x0500, 0xFFF0 + ZA_Contact).copyVal(attr); // Contact } } else if (modelId.startsWith(F("lumi.sensor_smoke"))) { // gas leak if (0x64 == attrid) { attr_list.addAttributePMEM(PSTR("SmokeDensity")).copyVal(attr); } } else if (modelId.startsWith(F("lumi.sensor_natgas"))) { // gas leak if (0x64 == attrid) { attr_list.addAttributePMEM(PSTR("GasDensity")).copyVal(attr); } } else if (modelId.startsWith(F("lumi.sensor_ht")) || modelId.equals(F("lumi.sens")) || modelId.startsWith(F("lumi.weather"))) { // Temp sensor // Filter according to prefix of model name // onla Aqara Temp/Humidity has manuf_code of zero. If non-zero we skip the parameters if (0x64 == attrid) { attr_list.addAttribute(0x0402, 0x0000).setInt(ival32); // Temperature } else if (0x65 == attrid) { attr_list.addAttribute(0x0405, 0x0000).setUInt(uval32); // Humidity * 100 } else if (0x66 == attrid) { attr_list.addAttribute(0x0403, 0x0000).setUInt((ival32 + 50) / 100); // Pressure } } else if (modelId.startsWith(F("lumi.plug")) || modelId.startsWith(F("lumi.ctrl"))) { if (0x64 == attrid) { attr_list.addAttribute(0x0006, 0x0000).setInt(uval32); // Power (on/off) } else if (0x98 == attrid) { attr_list.addAttribute(0x0B04, 0x050B).setInt(ival32); // Active Power } else if (0x95 == attrid) { attr_list.addAttribute(0x0702, 0x0000).setUInt(uval32); // EnergyDelivered } } else { translated = false; // we didn't find a match } } if (!translated) { if (attrid >= 100) { // payload is always above 0x64 or 100 char attr_name[12]; snprintf_P(attr_name, sizeof(attr_name), PSTR("Xiaomi_%02X"), attrid); attr_list.addAttribute(attr_name).copyVal(attr); } } } } } void ZCLFrame::syntheticAqaraSensor2(class Z_attribute_list &attr_list, class Z_attribute &attr) { const SBuffer * buf = attr.getRaw(); if (buf) { const SBuffer & buf2 = *buf; uint32_t len = buf2.len(); // Look for battery value which is the first attribute of type 0x21 uint16_t struct_size = buf2.get16(0); size_t struct_len = 2; if (0xFFFF != struct_size) { if (struct_size > 16) { struct_size = 16; } for (uint32_t j = 0; (j < struct_size) && (struct_len < len); j++) { uint8_t attr_type = buf2.get8(struct_len); if (0x21 == attr_type) { uint16_t val = buf2.get16(struct_len+1); float batteryvoltage = (float)val / 100; attr_list.addAttribute(0x0001, 0x0020).setFloat(batteryvoltage); uint8_t batterypercentage = toPercentageCR2032(val); attr_list.addAttribute(0x0001, 0x0021).setUInt(batterypercentage * 2); break; } struct_len += Z_getDatatypeLen(attr_type) + 1; } } } attr_list.removeAttribute(&attr); } // Aqara Cube and Button void ZCLFrame::syntheticAqaraCubeOrButton(class Z_attribute_list &attr_list, class Z_attribute &attr) { const char * modelId_c = zigbee_devices.findShortAddr(_srcaddr).modelId; // null if unknown String modelId((char*) modelId_c); if (modelId.startsWith(F("lumi.sensor_cube"))) { // only for Aqara cube int32_t val = attr.getInt(); const __FlashStringHelper *aqara_cube = F("AqaraCube"); const __FlashStringHelper *aqara_cube_side = F("AqaraCubeSide"); const __FlashStringHelper *aqara_cube_from_side = F("AqaraCubeFromSide"); switch (val) { case 0: attr_list.addAttribute(aqara_cube).setStr(PSTR("shake")); break; case 2: attr_list.addAttribute(aqara_cube).setStr(PSTR("wakeup")); break; case 3: attr_list.addAttribute(aqara_cube).setStr(PSTR("fall")); break; case 64 ... 127: attr_list.addAttribute(aqara_cube).setStr(PSTR("flip90")); attr_list.addAttribute(aqara_cube_side).setInt(val % 8); attr_list.addAttribute(aqara_cube_from_side).setInt((val - 64) / 8); break; case 128 ... 132: attr_list.addAttribute(aqara_cube).setStr(PSTR("flip180")); attr_list.addAttribute(aqara_cube_side).setInt(val - 128); break; case 256 ... 261: attr_list.addAttribute(aqara_cube).setStr(PSTR("slide")); attr_list.addAttribute(aqara_cube_side).setInt(val - 256); break; case 512 ... 517: attr_list.addAttribute(aqara_cube).setStr(PSTR("tap")); attr_list.addAttribute(aqara_cube_side).setInt(val - 512); break; } attr_list.removeAttribute(&attr); // Source: https://github.com/kirovilya/ioBroker.zigbee // +---+ // | 2 | // +---+---+---+ // | 4 | 0 | 1 | // +---+---+---+ // |M5I| // +---+ // | 3 | // +---+ // Side 5 is with the MI logo, side 3 contains the battery door. // presentValue = 0 = shake // presentValue = 2 = wakeup // presentValue = 3 = fly/fall // presentValue = y + x * 8 + 64 = 90º Flip from side x on top to side y on top // presentValue = x + 128 = 180º flip to side x on top // presentValue = x + 256 = push/slide cube while side x is on top // presentValue = x + 512 = double tap while side x is on top } else if (modelId.startsWith(F("lumi.remote")) || modelId.startsWith(F("lumi.sensor_swit"))) { // only for Aqara buttons WXKG11LM & WXKG12LM, 'swit' because of #9923 int32_t val = attr.getInt(); const __FlashStringHelper *aqara_click = F("click"); // deprecated const __FlashStringHelper *aqara_action = F("action"); // deprecated Z_attribute & attr_click = attr_list.addAttribute(PSTR("Click"), true); switch (val) { case 0: attr_list.addAttribute(aqara_action).setStr(PSTR("hold")); // deprecated attr_click.setStr(PSTR("hold")); break; case 1: attr_list.addAttribute(aqara_click).setStr(PSTR("single")); // deprecated attr_click.setStr(PSTR("single")); break; case 2: attr_list.addAttribute(aqara_click).setStr(PSTR("double")); // deprecated attr_click.setStr(PSTR("double")); break; case 3: attr_click.setStr(PSTR("triple")); break; case 4: attr_click.setStr(PSTR("quadruple")); break; case 16: attr_list.addAttribute(aqara_action).setStr(PSTR("hold")); // deprecated attr_click.setStr(PSTR("hold")); break; case 17: attr_list.addAttribute(aqara_action).setStr(PSTR("release")); // deprecated attr_click.setStr(PSTR("release")); break; case 18: attr_list.addAttribute(aqara_action).setStr(PSTR("shake")); // deprecated attr_click.setStr(PSTR("shake")); break; case 255: attr_list.addAttribute(aqara_action).setStr(PSTR("release")); // deprecated attr_click.setStr(PSTR("release")); break; default: attr_list.addAttribute(aqara_click).setUInt(val); attr_click.setStr(PSTR("release")); break; } } } // Aqara vibration device void ZCLFrame::syntheticAqaraVibration(class Z_attribute_list &attr_list, class Z_attribute &attr) { switch (attr.key.id.attr_id) { case 0x0055: { int32_t ivalue = attr.getInt(); const __FlashStringHelper * svalue; switch (ivalue) { case 1: svalue = F("vibrate"); break; case 2: svalue = F("tilt"); break; case 3: svalue = F("drop"); break; default: svalue = F("unknown"); break; } attr.setStr((const char*)svalue); } break; case 0x0503: break; case 0x0505: break; case 0x0508: { // see https://github.com/Koenkk/zigbee2mqtt/issues/295 and http://faire-ca-soi-meme.fr/domotique/2018/09/03/test-xiaomi-aqara-vibration-sensor/ // report accelerometer measures const SBuffer * buf = attr.getRaw(); if (buf) { const SBuffer & buf2 = *buf; int16_t x, y, z; z = buf2.get16(0); y = buf2.get16(2); x = buf2.get16(4); char temp[32]; snprintf_P(temp, sizeof(temp), PSTR("[%i,%i,%i]"), x, y, z); attr.setStrRaw(temp); // calculate angles float X = x; float Y = y; float Z = z; int32_t Angle_X = 0.5f + atanf(X/sqrtf(z*z+y*y)) * f_180pi; int32_t Angle_Y = 0.5f + atanf(Y/sqrtf(x*x+z*z)) * f_180pi; int32_t Angle_Z = 0.5f + atanf(Z/sqrtf(x*x+y*y)) * f_180pi; snprintf_P(temp, sizeof(temp), PSTR("[%i,%i,%i]"), Angle_X, Angle_Y, Angle_Z); attr_list.addAttributePMEM(PSTR("AqaraAngles")).setStrRaw(temp); } } break; } } /// Publish a message for `"Occupancy":0` when the timer expired void Z_OccupancyCallback(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) { Z_attribute_list attr_list; attr_list.addAttribute(0x0406, 0x0000).setUInt(0); // Occupancy Z_postProcessAttributes(shortaddr, endpoint, attr_list); // make sure all is updated accordingly zigbee_devices.jsonPublishNow(shortaddr, attr_list); } // ====================================================================== void Z_postProcessAttributes(uint16_t shortaddr, uint16_t src_ep, class Z_attribute_list& attr_list) { Z_Device & device = zigbee_devices.getShortAddr(shortaddr); uint8_t count_ep = device.countEndpoints(); for (auto &attr : attr_list) { // add endpoint suffix if needed if ((Settings.flag4.zb_index_ep) && (src_ep != 1) && (count_ep > 1)) { // we need to add suffix if the suffix is not already different from 1 if (attr.key_suffix == 1) { attr.key_suffix = src_ep; } } // attr is Z_attribute& if (!attr.key_is_str) { uint16_t cluster = attr.key.id.cluster; uint16_t attribute = attr.key.id.attr_id; uint32_t ccccaaaa = (attr.key.id.cluster << 16) | attr.key.id.attr_id; // Look for an entry in the converter table bool found = false; const char * conv_name; Z_Data_Type map_type = Z_Data_Type::Z_Unknown; uint8_t map_offset = 0; uint8_t zigbee_type = Znodata; int8_t conv_multiplier; for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t conv_cluster = CxToCluster(pgm_read_byte(&converter->cluster_short)); uint16_t conv_attribute = pgm_read_word(&converter->attribute); if ((conv_cluster == cluster) && ((conv_attribute == attribute) || (conv_attribute == 0xFFFF)) ) { conv_multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); zigbee_type = pgm_read_byte(&converter->type); uint8_t mapping = pgm_read_byte(&converter->mapping); map_type = (Z_Data_Type) ((mapping & 0xF0)>>4); map_offset = (mapping & 0x0F); conv_name = Z_strings + pgm_read_word(&converter->name_offset); found = true; break; } } float fval = attr.getFloat(); if (found && (map_type != Z_Data_Type::Z_Unknown)) { // We apply an automatic mapping to Z_Data_XXX object // First we find or instantiate the correct Z_Data_XXX accorfing to the endpoint // Then store the attribute at the attribute addres (via offset) and according to size 8/16/32 bits // add the endpoint if it was not already known device.addEndpoint(src_ep); // we don't apply the multiplier, but instead store in Z_Data_XXX object Z_Data & data = device.data.getByType(map_type, src_ep); uint8_t *attr_address = ((uint8_t*)&data) + sizeof(Z_Data) + map_offset; uint32_t uval32 = attr.getUInt(); // call converter to uint only once int32_t ival32 = attr.getInt(); // call converter to int only once // AddLog_P(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Mapping type=%d offset=%d zigbee_type=%02X value=%d\n"), (uint8_t) map_type, map_offset, zigbee_type, ival32); switch (ccccaaaa) { case 0xEF000202: case 0xEF000203: // need to convert Tuya temperatures from 1/10 to 1/00 °C ival32 = ival32 * 10; break; } switch (zigbee_type) { case Zenum8: case Zmap8: case Zbool: case Zuint8: *(uint8_t*)attr_address = uval32; break; case Zenum16: case Zmap16: case Zuint16: *(uint16_t*)attr_address = uval32; break; case Zuint32: *(uint32_t*)attr_address = uval32; break; case Zint8: *(int8_t*)attr_address = ival32; break; case Zint16: *(int16_t*)attr_address = ival32; break; case Zint32: *(int32_t*)attr_address = ival32; break; } if (Z_Data_Set::updateData(data)) { zigbee_devices.dirty(); } } uint16_t uval16 = attr.getUInt(); // call converter to uint only once int16_t ival16 = attr.getInt(); // call converter to int only once // update any internal structure switch (ccccaaaa) { case 0x00000004: device.setManufId(attr.getStr()); break; case 0x00000005: device.setModelId(attr.getStr()); break; case 0x00010021: device.setBatteryPercent(uval16 / 2); break; case 0x00060000: case 0x00068000: device.setPower(attr.getBool(), src_ep); break; } // now apply the multiplier to make it human readable if (found) { if (0 == conv_multiplier) { attr_list.removeAttribute(&attr); continue; } // remove attribute if multiplier is zero if (1 != conv_multiplier) { if (conv_multiplier > 0) { fval = fval * conv_multiplier; } else { fval = fval / (-conv_multiplier); } attr.setFloat(fval); } } // Replace cluster/attribute with name if (found) { if (0x00 != pgm_read_byte(conv_name)) {// if name is not null, replace it attr.setKeyName(conv_name, true); // PMEM string so no need to copy } } } } } // Internal search function void Z_parseAttributeKey_inner(class Z_attribute & attr, uint16_t preferred_cluster) { // scan attributes to find by name, and retrieve type for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint16_t local_attr_id = pgm_read_word(&converter->attribute); uint16_t local_cluster_id = CxToCluster(pgm_read_byte(&converter->cluster_short)); uint8_t local_type_id = pgm_read_byte(&converter->type); int8_t local_multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); // AddLog_P(LOG_LEVEL_DEBUG, PSTR("Try cluster = 0x%04X, attr = 0x%04X, type_id = 0x%02X"), local_cluster_id, local_attr_id, local_type_id); if (!attr.key_is_str) { if ((attr.key.id.cluster == local_cluster_id) && (attr.key.id.attr_id == local_attr_id)) { attr.attr_type = local_type_id; break; } } else if (pgm_read_word(&converter->name_offset)) { const char * key = attr.key.key; // AddLog_P(LOG_LEVEL_DEBUG, PSTR("Comparing '%s' with '%s'"), attr_name, converter->name); if (0 == strcasecmp_P(key, Z_strings + pgm_read_word(&converter->name_offset))) { if ((preferred_cluster == 0xFFFF) || // any cluster (local_cluster_id == preferred_cluster)) { // match attr.setKeyId(local_cluster_id, local_attr_id); attr.attr_type = local_type_id; attr.attr_multiplier = local_multiplier; break; } } } } } // // Given an attribute string, retrieve all attribute details. // Input: the attribute has a key name, either: / or /% or "" // Ex: "0008/0000", "0008/0000%20", "Dimmer" // Use: // Z_attribute attr; // attr.setKeyName("0008/0000%20") // if (Z_parseAttributeKey(attr)) { // // ok // } // // Output: // The `attr` attribute has the correct cluster, attr_id, attr_type, attr_multiplier // Note: the attribute value is unchanged and unparsed // // Note: if the type is specified in the key, the multiplier is not applied, no conversion happens bool Z_parseAttributeKey(class Z_attribute & attr, uint16_t preferred_cluster) { // check if the name has the format "XXXX/YYYY" where XXXX is the cluster, YYYY the attribute id // alternative "XXXX/YYYY%ZZ" where ZZ is the type (for unregistered attributes) if (attr.key_is_str) { const char * key = attr.key.key; char * delimiter = strchr(key, '/'); char * delimiter2 = strchr(key, '%'); if (delimiter) { uint16_t attr_id = 0xFFFF; uint16_t cluster_id = 0xFFFF; uint8_t type_id = Zunk; cluster_id = strtoul(key, &delimiter, 16); if (!delimiter2) { attr_id = strtoul(delimiter+1, nullptr, 16); } else { attr_id = strtoul(delimiter+1, &delimiter2, 16); type_id = strtoul(delimiter2+1, nullptr, 16); } attr.setKeyId(cluster_id, attr_id); attr.attr_type = type_id; } } // AddLog_P(LOG_LEVEL_DEBUG, PSTR("cluster_id = 0x%04X, attr_id = 0x%04X"), cluster_id, attr_id); // do we already know the type, i.e. attribute and cluster are also known if ((Zunk == attr.attr_type) && (preferred_cluster != 0xFFFF)) { Z_parseAttributeKey_inner(attr, preferred_cluster); // try to find with the selected cluster } if (Zunk == attr.attr_type) { Z_parseAttributeKey_inner(attr, 0xFFFF); // try again with any cluster } return (Zunk != attr.attr_type) ? true : false; } // generic toAttributes() based on declaration in the attribute array // can be overloaded for specific objects // Input: // the Json object to add attributes to // the type of object (necessary since the type system is unaware of the actual sub-type) void Z_Data::toAttributes(Z_attribute_list & attr_list) const { Z_Data_Type type = getType(); // iterate through attributes to see which ones need to be exported for (uint32_t i = 0; i < ARRAY_SIZE(Z_PostProcess); i++) { const Z_AttributeConverter *converter = &Z_PostProcess[i]; uint8_t conv_export = pgm_read_byte(&converter->multiplier_idx) & Z_EXPORT_DATA; uint8_t conv_mapping = pgm_read_byte(&converter->mapping); int8_t multiplier = CmToMultiplier(pgm_read_byte(&converter->multiplier_idx)); Z_Data_Type map_type = (Z_Data_Type) ((conv_mapping & 0xF0)>>4); uint8_t map_offset = (conv_mapping & 0x0F); if ((conv_export != 0) && (map_type == type)) { // we need to export this attribute const char * conv_name = Z_strings + pgm_read_word(&converter->name_offset); uint8_t zigbee_type = pgm_read_byte(&converter->type); // zigbee type to select right size 8/16/32 bits uint8_t * attr_address = ((uint8_t*)this) + sizeof(Z_Data) + map_offset; // address of attribute in memory int32_t data_size = 0; int32_t ival32; uint32_t uval32; switch (zigbee_type) { case Zenum8: case Zmap8: case Zbool: case Zuint8: uval32 = *(uint8_t*)attr_address; if (uval32 != 0x000000FF) data_size = 8; break; case Zmap16: case Zenum16: case Zuint16: uval32 = *(uint16_t*)attr_address; if (uval32 != 0x0000FFFF) data_size = 16; break; case Zuint32: uval32 = *(uint32_t*)attr_address; if (uval32 != 0xFFFFFFFF) data_size = 32; break; case Zint8: ival32 = *(int8_t*)attr_address; if (ival32 != -0x80) data_size = -8; break; case Zint16: ival32 = *(int16_t*)attr_address; if (ival32 != -0x8000) data_size = -16; break; case Zint32: ival32 = *(int32_t*)attr_address; if (ival32 != -0x80000000) data_size = -32; break; } if (data_size != 0) { Z_attribute & attr = attr_list.addAttribute(conv_name); float fval; if (data_size > 0) { fval = uval32; } else { fval = ival32; } if ((1 != multiplier) && (0 != multiplier)) { if (multiplier > 0) { fval = fval * multiplier; } else { fval = fval / (-multiplier); } } attr.setFloat(fval); } } } } // // Check if this device needs Battery reporting // This is useful for IKEA or Philips devices that tend to drain battery quickly when Battery reporting is set // bool Z_BatteryReportingDeviceSpecific(uint16_t shortaddr) { const Z_Device & device = zigbee_devices.findShortAddr(shortaddr); if (device.manufacturerId) { String manuf_c(device.manufacturerId); if ((manuf_c.startsWith(F("IKEA"))) || (manuf_c.startsWith(F("Philips")))) { return false; } } return true; } #endif // USE_ZIGBEE