/* Node MCU/ESP8266 Sketch to emulate Argo Ulisse 13 DCI remote Controls Argo Ulisse 13 DCI A/C Copyright 2017 Schmolders Copyright 2019 crankyoldgit */ #include "ir_Argo.h" #include #include #ifndef UNIT_TEST #include #endif // UNIT_TEST #include "IRremoteESP8266.h" #include "IRtext.h" #include "IRutils.h" // Constants // using SPACE modulation. MARK is always const 400u const uint16_t kArgoHdrMark = 6400; const uint16_t kArgoHdrSpace = 3300; const uint16_t kArgoBitMark = 400; const uint16_t kArgoOneSpace = 2200; const uint16_t kArgoZeroSpace = 900; const uint32_t kArgoGap = kDefaultMessageGap; // Made up value. Complete guess. using irutils::addBoolToString; using irutils::addIntToString; using irutils::addLabeledString; using irutils::addModeToString; using irutils::addTempToString; using irutils::setBit; using irutils::setBits; #if SEND_ARGO // Send an Argo A/C message. // // Args: // data: An array of kArgoStateLength bytes containing the IR command. // // Status: BETA / Probably works. void IRsend::sendArgo(const unsigned char data[], const uint16_t nbytes, const uint16_t repeat) { // Check if we have enough bytes to send a proper message. if (nbytes < kArgoStateLength) return; // TODO(kaschmo): validate sendGeneric(kArgoHdrMark, kArgoHdrSpace, kArgoBitMark, kArgoOneSpace, kArgoBitMark, kArgoZeroSpace, 0, 0, // No Footer. data, nbytes, 38, false, repeat, kDutyDefault); } #endif // SEND_ARGO IRArgoAC::IRArgoAC(const uint16_t pin, const bool inverted, const bool use_modulation) : _irsend(pin, inverted, use_modulation) { this->stateReset(); } void IRArgoAC::begin(void) { _irsend.begin(); } #if SEND_ARGO void IRArgoAC::send(const uint16_t repeat) { _irsend.sendArgo(getRaw(), kArgoStateLength, repeat); } #endif // SEND_ARGO uint8_t IRArgoAC::calcChecksum(const uint8_t state[], const uint16_t length) { // Corresponds to byte 11 being constant 0b01 // Only add up bytes to 9. byte 10 is 0b01 constant anyway. // Assume that argo array is MSB first (left) return sumBytes(state, length - 2, 2); } bool IRArgoAC::validChecksum(const uint8_t state[], const uint16_t length) { return ((state[length - 2] >> 2) + (state[length - 1] << 6)) == IRArgoAC::calcChecksum(state, length); } void IRArgoAC::checksum(void) { uint8_t sum = IRArgoAC::calcChecksum(argo, kArgoStateLength); // Append sum to end of array // Set const part of checksum bit 10 argo[10] = 0b00000010; argo[10] += sum << 2; // Shift up 2 bits and append to byte 10 argo[11] = sum >> 6; // Shift down 6 bits and add in two LSBs of bit 11 } void IRArgoAC::stateReset(void) { for (uint8_t i = 0; i < kArgoStateLength; i++) argo[i] = 0x0; // Argo Message. Store MSB left. // Default message: argo[0] = 0b10101100; // LSB first (as sent) 0b00110101; //const preamble argo[1] = 0b11110101; // LSB first: 0b10101111; //const preamble // Keep payload 2-9 at zero argo[10] = 0b00000010; // Const 01, checksum 6bit argo[11] = 0b00000000; // Checksum 2bit this->off(); this->setTemp(20); this->setRoomTemp(25); this->setMode(kArgoAuto); this->setFan(kArgoFanAuto); } uint8_t* IRArgoAC::getRaw(void) { this->checksum(); // Ensure correct bit array before returning return argo; } void IRArgoAC::setRaw(const uint8_t state[]) { memcpy(argo, state, kArgoStateLength); } void IRArgoAC::on(void) { setPower(true); } void IRArgoAC::off(void) { setPower(false); } void IRArgoAC::setPower(const bool on) { setBit(&argo[9], kArgoPowerBitOffset, on); } bool IRArgoAC::getPower(void) { return GETBIT8(argo[9], kArgoPowerBitOffset); } void IRArgoAC::setMax(const bool on) { setBit(&argo[9], kArgoMaxBitOffset, on); } bool IRArgoAC::getMax(void) { return GETBIT8(argo[9], kArgoMaxBitOffset); } // Set the temp in deg C // Sending 0 equals +4 void IRArgoAC::setTemp(const uint8_t degrees) { uint8_t temp = std::max(kArgoMinTemp, degrees); // delta 4 degrees. "If I want 12 degrees, I need to send 8" temp = std::min(kArgoMaxTemp, temp) - kArgoTempDelta; // Settemp = Bit 6,7 of byte 2, and bit 0-2 of byte 3 // mask out bits // argo[13] & 0x00000100; // mask out ON/OFF Bit setBits(&argo[2], kArgoTempLowOffset, kArgoTempLowSize, temp); setBits(&argo[3], kArgoTempHighOffset, kArgoTempHighSize, temp >> kArgoTempLowSize); } uint8_t IRArgoAC::getTemp(void) { return ((GETBITS8(argo[3], kArgoTempHighOffset, kArgoTempHighSize) << kArgoTempLowSize) | GETBITS8(argo[2], kArgoTempLowOffset, kArgoTempLowSize)) + kArgoTempDelta; } // Set the speed of the fan void IRArgoAC::setFan(const uint8_t fan) { setBits(&argo[3], kArgoFanOffset, kArgoFanSize, std::min(fan, kArgoFan3)); } uint8_t IRArgoAC::getFan(void) { return GETBITS8(argo[3], kArgoFanOffset, kArgoFanSize); } void IRArgoAC::setFlap(const uint8_t flap) { flap_mode = flap; // TODO(kaschmo): set correct bits for flap mode } uint8_t IRArgoAC::getFlap(void) { return flap_mode; } uint8_t IRArgoAC::getMode(void) { return GETBITS8(argo[2], kArgoModeOffset, kArgoModeSize); } void IRArgoAC::setMode(const uint8_t mode) { switch (mode) { case kArgoCool: case kArgoDry: case kArgoAuto: case kArgoOff: case kArgoHeat: case kArgoHeatAuto: setBits(&argo[2], kArgoModeOffset, kArgoModeSize, mode); return; default: this->setMode(kArgoAuto); } } void IRArgoAC::setNight(const bool on) { setBit(&argo[9], kArgoNightBitOffset, on); } bool IRArgoAC::getNight(void) { return GETBIT8(argo[9], kArgoNightBitOffset); } void IRArgoAC::setiFeel(const bool on) { setBit(&argo[9], kArgoIFeelBitOffset, on); } bool IRArgoAC::getiFeel(void) { return GETBIT8(argo[9], kArgoIFeelBitOffset); } void IRArgoAC::setTime(void) { // TODO(kaschmo): use function call from checksum to set time first } void IRArgoAC::setRoomTemp(const uint8_t degrees) { uint8_t temp = std::min(degrees, kArgoMaxRoomTemp); temp = std::max(temp, kArgoTempDelta) - kArgoTempDelta; setBits(&argo[3], kArgoRoomTempLowOffset, kArgoRoomTempLowSize, temp); setBits(&argo[4], kArgoRoomTempHighOffset, kArgoRoomTempHighSize, temp >> kArgoRoomTempLowSize); } uint8_t IRArgoAC::getRoomTemp(void) { return ((GETBITS8(argo[4], kArgoRoomTempHighOffset, kArgoRoomTempHighSize) << kArgoRoomTempLowSize) | GETBITS8(argo[3], kArgoRoomTempLowOffset, kArgoRoomTempLowSize)) + kArgoTempDelta; } // Convert a standard A/C mode into its native mode. uint8_t IRArgoAC::convertMode(const stdAc::opmode_t mode) { switch (mode) { case stdAc::opmode_t::kCool: return kArgoCool; case stdAc::opmode_t::kHeat: return kArgoHeat; case stdAc::opmode_t::kDry: return kArgoDry; case stdAc::opmode_t::kOff: return kArgoOff; // No fan mode. default: return kArgoAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRArgoAC::convertFan(const stdAc::fanspeed_t speed) { switch (speed) { case stdAc::fanspeed_t::kMin: case stdAc::fanspeed_t::kLow: return kArgoFan1; case stdAc::fanspeed_t::kMedium: return kArgoFan2; case stdAc::fanspeed_t::kHigh: case stdAc::fanspeed_t::kMax: return kArgoFan3; default: return kArgoFanAuto; } } // Convert a standard A/C Fan speed into its native fan speed. uint8_t IRArgoAC::convertSwingV(const stdAc::swingv_t position) { switch (position) { case stdAc::swingv_t::kHighest: return kArgoFlapFull; case stdAc::swingv_t::kHigh: return kArgoFlap5; case stdAc::swingv_t::kMiddle: return kArgoFlap4; case stdAc::swingv_t::kLow: return kArgoFlap3; case stdAc::swingv_t::kLowest: return kArgoFlap1; default: return kArgoFlapAuto; } } // Convert a native mode to it's common equivalent. stdAc::opmode_t IRArgoAC::toCommonMode(const uint8_t mode) { switch (mode) { case kArgoCool: return stdAc::opmode_t::kCool; case kArgoHeat: return stdAc::opmode_t::kHeat; case kArgoDry: return stdAc::opmode_t::kDry; // No fan mode. default: return stdAc::opmode_t::kAuto; } } // Convert a native fan speed to it's common equivalent. stdAc::fanspeed_t IRArgoAC::toCommonFanSpeed(const uint8_t speed) { switch (speed) { case kArgoFan3: return stdAc::fanspeed_t::kMax; case kArgoFan2: return stdAc::fanspeed_t::kMedium; case kArgoFan1: return stdAc::fanspeed_t::kMin; default: return stdAc::fanspeed_t::kAuto; } } // Convert the A/C state to it's common equivalent. stdAc::state_t IRArgoAC::toCommon(void) { stdAc::state_t result; result.protocol = decode_type_t::ARGO; result.power = this->getPower(); result.mode = this->toCommonMode(this->getMode()); result.celsius = true; result.degrees = this->getTemp(); result.fanspeed = this->toCommonFanSpeed(this->getFan()); result.turbo = this->getMax(); result.sleep = this->getNight() ? 0 : -1; // Not supported. result.model = -1; // Not supported. result.swingv = stdAc::swingv_t::kOff; result.swingh = stdAc::swingh_t::kOff; result.light = false; result.filter = false; result.econo = false; result.quiet = false; result.clean = false; result.beep = false; result.clock = -1; return result; } // Convert the internal state into a human readable string. String IRArgoAC::toString(void) { String result = ""; result.reserve(100); // Reserve some heap for the string to reduce fragging. result += addBoolToString(getPower(), kPowerStr, false); result += addIntToString(getMode(), kModeStr); result += kSpaceLBraceStr; switch (getMode()) { case kArgoAuto: result += kAutoStr; break; case kArgoCool: result += kCoolStr; break; case kArgoHeat: result += kHeatStr; break; case kArgoDry: result += kDryStr; break; case kArgoHeatAuto: result += kHeatStr; result += ' '; result += kAutoStr; break; case kArgoOff: result += kOffStr; break; default: result += kUnknownStr; } result += ')'; result += addIntToString(getFan(), kFanStr); result += kSpaceLBraceStr; switch (getFan()) { case kArgoFanAuto: result += kAutoStr; break; case kArgoFan3: result += kMaxStr; break; case kArgoFan1: result += kMinStr; break; case kArgoFan2: result += kMedStr; break; default: result += kUnknownStr; } result += ')'; result += addTempToString(getTemp()); result += kCommaSpaceStr; result += kRoomStr; result += ' '; result += addTempToString(getRoomTemp(), true, false); result += addBoolToString(getMax(), kMaxStr); result += addBoolToString(getiFeel(), kIFeelStr); result += addBoolToString(getNight(), kNightStr); return result; } #if DECODE_ARGO // Decode the supplied Argo message. // // Args: // results: Ptr to the data to decode and where to store the decode result. // offset: The starting index to use when attempting to decode the raw data. // Typically/Defaults to kStartOffset. // nbits: The number of data bits to expect. Typically kArgoBits. // strict: Flag indicating if we should perform strict matching. // Returns: // boolean: True if it can decode it, false if it can't. // // Status: BETA / Probably works. // // Note: // This decoder is based soley off sendArgo(). We have no actual captures // to test this against. If you have one of these units, please let us know. bool IRrecv::decodeArgo(decode_results *results, uint16_t offset, const uint16_t nbits, const bool strict) { if (strict && nbits != kArgoBits) return false; // Match Header + Data if (!matchGeneric(results->rawbuf + offset, results->state, results->rawlen - offset, nbits, kArgoHdrMark, kArgoHdrSpace, kArgoBitMark, kArgoOneSpace, kArgoBitMark, kArgoZeroSpace, 0, 0, // Footer (None, allegedly. This seems very wrong.) true, _tolerance, 0, false)) return false; // Compliance // Verify we got a valid checksum. if (strict && !IRArgoAC::validChecksum(results->state)) return false; // Success results->decode_type = decode_type_t::ARGO; results->bits = nbits; // No need to record the state as we stored it as we decoded it. // As we use result->state, we don't record value, address, or command as it // is a union data type. return true; } #endif // DECODE_ARGO