/* xnrg_19_cse7761.ino - CSE7761 energy sensor support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_CSE7761 /*********************************************************************************************\ * CSE7761 - Energy (Sonoff Dual R3 Pow) * {"NAME":"Sonoff Dual R3","GPIO":[0,0,1,0,0,0,3232,3200,0,0,225,0,0,0,0,0,0,0,0,0,1,7296,7328,224,0,0,0,0,160,161,0,0,0,0,0,0],"FLAG":0,"BASE":1} * * Based on datasheet from ChipSea and analysing serial data * See https://github.com/arendst/Tasmota/discussions/10793 \*********************************************************************************************/ #define XNRG_19 19 //#define CSE7761_SIMULATE #define CSE7761_UREF 42563 // RmsUc #define CSE7761_IREF 52241 // RmsIAC #define CSE7761_PREF 44513 // PowerPAC #define CSE7761_REG_SYSCON 0x00 // System Control Register #define CSE7761_REG_EMUCON 0x01 // Metering control register #define CSE7761_REG_EMUCON2 0x13 // Metering control register 2 #define CSE7761_REG_UFREQ 0x23 // Voltage Frequency Register #define CSE7761_REG_RMSIA 0x24 // The effective value of channel A current #define CSE7761_REG_RMSIB 0x25 // The effective value of channel B current #define CSE7761_REG_RMSU 0x26 // Voltage RMS #define CSE7761_REG_POWERPA 0x2C // Channel A active power, update rate 27.2Hz #define CSE7761_REG_POWERPB 0x2D // Channel B active power, update rate 27.2Hz #define CSE7761_REG_SYSSTATUS 0x43 // System status register #define CSE7761_REG_COEFFOFFSET 0x6E // Coefficient checksum offset (0xFFFF) #define CSE7761_REG_COEFFCHKSUM 0x6F // Coefficient checksum #define CSE7761_REG_RMSIAC 0x70 // Channel A effective current conversion coefficient #define CSE7761_REG_RMSIBC 0x71 // Channel B effective current conversion coefficient #define CSE7761_REG_RMSUC 0x72 // Effective voltage conversion coefficient #define CSE7761_REG_POWERPAC 0x73 // Channel A active power conversion coefficient #define CSE7761_REG_POWERPBC 0x74 // Channel B active power conversion coefficient #define CSE7761_REG_POWERSC 0x75 // Apparent power conversion coefficient #define CSE7761_REG_ENERGYAC 0x76 // Channel A energy conversion coefficient #define CSE7761_REG_ENERGYBC 0x77 // Channel B energy conversion coefficient #define CSE7761_SPECIAL_COMMAND 0xEA // Start special command #define CSE7761_CMD_RESET 0x96 // Reset command, after receiving the command, the chip resets #define CSE7761_CMD_CHAN_A_SELECT 0x5A // Current channel A setting command, which specifies the current used to calculate apparent power, // Power factor, phase angle, instantaneous active power, instantaneous apparent power and // The channel indicated by the signal of power overload is channel A #define CSE7761_CMD_CHAN_B_SELECT 0xA5 // Current channel B setting command, which specifies the current used to calculate apparent power, // Power factor, phase angle, instantaneous active power, instantaneous apparent power and // The channel indicated by the signal of power overload is channel B #define CSE7761_CMD_CLOSE_WRITE 0xDC // Close write operation #define CSE7761_CMD_ENABLE_WRITE 0xE5 // Enable write operation enum CSE7761 { RmsIAC, RmsIBC, RmsUC, PowerPAC, PowerPBC, PowerSC, EnergyAC, EnergyBC }; #include TasmotaSerial *Cse7761Serial = nullptr; struct { uint32_t voltage_rms = 0; uint32_t current_rms[2] = { 0 }; uint32_t energy[2] = { 0 }; uint32_t active_power[2] = { 0 }; uint16_t coefficient[8] = { 0 }; uint8_t energy_update = 0; uint8_t init = 4; uint8_t ready = 0; } CSE7761Data; void Cse7761Write(uint32_t reg, uint32_t data) { uint8_t buffer[5]; buffer[0] = 0xA5; buffer[1] = reg; uint32_t len = 2; if (data) { if (data < 0xFF) { buffer[2] = data & 0xFF; len = 3; } else { buffer[2] = (data >> 8) & 0xFF; buffer[3] = data & 0xFF; len = 4; } uint8_t crc = 0; for (uint32_t i = 0; i < len; i++) { crc += buffer[i]; } buffer[len] = ~crc; len++; } Cse7761Serial->write(buffer, len); AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Tx %*_H"), len, buffer); } uint32_t Cse7761Read(uint32_t reg) { while (Cse7761Serial->available()) { Cse7761Serial->read(); } Cse7761Write(reg, 0); uint8_t buffer[8] = { 0 }; uint32_t rcvd = 0; uint32_t timeout = millis() + 3; while (!TimeReached(timeout)) { int value = Cse7761Serial->read(); if ((value > -1) && (rcvd < sizeof(buffer) -1)) { buffer[rcvd++] = value; } } if (!rcvd) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx none")); return 0; } AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx %*_H"), rcvd, buffer); if (rcvd > 5) { AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: Rx overflow")); return 0; } rcvd--; uint32_t result = 0; uint8_t crc = 0xA5 + reg; for (uint32_t i = 0; i < rcvd; i++) { result = (result << 8) | buffer[i]; crc += buffer[i]; } crc = ~crc; if (crc != buffer[rcvd]) { AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Rx %*_H, CRC error %02X"), rcvd +1, buffer, crc); return 1; } return result; } uint32_t Cse7761ReadFallback(uint32_t reg, uint32_t prev) { uint32_t value = Cse7761Read(reg); if (1 == value) { // CRC Error so use previous value read value = prev; } return value; } uint32_t Cse7761Ref(uint32_t unit) { switch (unit) { case 1: return 0x400000 * 100 / CSE7761Data.coefficient[RmsUC]; case 2: return (0x800000 * 100 / CSE7761Data.coefficient[RmsIAC]) * 10; // Stay within 32 bits case 3: return 0x80000000 / CSE7761Data.coefficient[PowerPAC]; } return 0; } bool Cse7761ChipInit(void) { uint16_t calc_chksum = 0xFFFF; for (uint32_t i = 0; i < 8; i++) { CSE7761Data.coefficient[i] = Cse7761Read(CSE7761_REG_RMSIAC + i); calc_chksum += CSE7761Data.coefficient[i]; } calc_chksum = ~calc_chksum; // uint16_t dummy = Cse7761Read(CSE7761_REG_COEFFOFFSET); uint16_t coeff_chksum = Cse7761Read(CSE7761_REG_COEFFCHKSUM); if ((calc_chksum != coeff_chksum) || (!calc_chksum)) { AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Default calibration")); CSE7761Data.coefficient[RmsIAC] = CSE7761_IREF; // CSE7761Data.coefficient[RmsIBC] = 0xCC05; CSE7761Data.coefficient[RmsUC] = CSE7761_UREF; CSE7761Data.coefficient[PowerPAC] = CSE7761_PREF; // CSE7761Data.coefficient[PowerPBC] = 0xADD7; } if (HLW_PREF_PULSE == Settings.energy_power_calibration) { Settings.energy_voltage_calibration = Cse7761Ref(1); Settings.energy_current_calibration = Cse7761Ref(2); Settings.energy_power_calibration = Cse7761Ref(3); } Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_ENABLE_WRITE); // delay(8); // Exception on ESP8266 uint32_t timeout = millis() + 8; while (!TimeReached(timeout)) { } uint8_t sys_status = Cse7761Read(CSE7761_REG_SYSSTATUS); #ifdef CSE7761_SIMULATE sys_status = 0x11; #endif if (sys_status & 0x10) { // Write enable to protected registers (WREN) /* System Control Register (SYSCON) Addr:0x00 Default value: 0x0A04 Bit name Function description 15-11 NC -, the default is 1 10 ADC2ON =1, means ADC current channel B is on (Sonoff Dual R3 Pow) =0, means ADC current channel B is closed 9 NC -, the default is 1. 8-6 PGAIB[2:0] Current channel B analog gain selection highest bit =1XX, PGA of current channel B=16 (Sonoff Dual R3 Pow) =011, PGA of current channel B=8 =010, PGA of current channel B=4 =001, PGA of current channel B=2 =000, PGA of current channel B=1 5-3 PGAU[2:0] Highest bit of voltage channel analog gain selection =1XX, PGA of voltage U=16 =011, PGA of voltage U=8 =010, PGA of voltage U=4 =001, PGA of voltage U=2 =000, PGA of voltage U=1 (Sonoff Dual R3 Pow) 2-0 PGAIA[2:0] Current channel A analog gain selection highest bit =1XX, PGA of current channel A=16 (Sonoff Dual R3 Pow) =011, PGA of current channel A=8 =010, PGA of current channel A=4 =001, PGA of current channel A=2 =000, PGA of current channel A=1 */ Cse7761Write(CSE7761_REG_SYSCON | 0x80, 0xFF04); /* Energy Measure Control Register (EMUCON) Addr:0x01 Default value: 0x0000 Bit name Function description 15-14 Tsensor_Step[1:0] Measurement steps of temperature sensor: =2'b00 The first step of temperature sensor measurement, the Offset of OP1 and OP2 is +/+. (Sonoff Dual R3 Pow) =2'b01 The second step of temperature sensor measurement, the Offset of OP1 and OP2 is +/-. =2'b10 The third step of temperature sensor measurement, the Offset of OP1 and OP2 is -/+. =2'b11 The fourth step of temperature sensor measurement, the Offset of OP1 and OP2 is -/-. After measuring these four results and averaging, the AD value of the current measured temperature can be obtained. 13 tensor_en Temperature measurement module control =0 when the temperature measurement module is closed; (Sonoff Dual R3 Pow) =1 when the temperature measurement module is turned on; 12 comp_off Comparator module close signal: =0 when the comparator module is in working state =1 when the comparator module is off (Sonoff Dual R3 Pow) 11-10 Pmode[1:0] Selection of active energy calculation method: Pmode =00, both positive and negative active energy participate in the accumulation, the accumulation method is algebraic sum mode, the reverse REVQ symbol indicates to active power; (Sonoff Dual R3 Pow) Pmode = 01, only accumulate positive active energy; Pmode = 10, both positive and negative active energy participate in the accumulation, and the accumulation method is absolute value method. No reverse active power indication; Pmode =11, reserved, the mode is the same as Pmode =00 9 NC - 8 ZXD1 The initial value of ZX output is 0, and different waveforms are output according to the configuration of ZXD1 and ZXD0: =0, it means that the ZX output changes only at the selected zero-crossing point (Sonoff Dual R3 Pow) =1, indicating that the ZX output changes at both the positive and negative zero crossings 7 ZXD0 =0, indicates that the positive zero-crossing point is selected as the zero-crossing detection signal (Sonoff Dual R3 Pow) =1, indicating that the negative zero-crossing point is selected as the zero-crossing detection signal 6 HPFIBOFF =0, enable current channel B digital high-pass filter (Sonoff Dual R3 Pow) =1, turn off the digital high-pass filter of current channel B 5 HPFIAOFF =0, enable current channel A digital high-pass filter (Sonoff Dual R3 Pow) =1, turn off the digital high-pass filter of current channel A 4 HPFUOFF =0, enable U channel digital high pass filter (Sonoff Dual R3 Pow) =1, turn off the U channel digital high-pass filter 3-2 NC - 1 PBRUN =1, enable PFB pulse output and active energy register accumulation; (Sonoff Dual R3 Pow) =0 (default), turn off PFB pulse output and active energy register accumulation. 0 PARUN =1, enable PFA pulse output and active energy register accumulation; (Sonoff Dual R3 Pow) =0 (default), turn off PFA pulse output and active energy register accumulation. */ Cse7761Write(CSE7761_REG_EMUCON | 0x80, 0x1003); /* Energy Measure Control Register (EMUCON2) Addr: 0x13 Default value: 0x0001 Bit name Function description 15-13 NC - 12 SDOCmos =1, SDO pin CMOS open-drain output =0, SDO pin CMOS output (Sonoff Dual R3 Pow) 11 EPB_CB Energy_PB clear signal control, the default is 0, and it needs to be configured to 1 in UART mode. Clear after reading is not supported in UART mode =1, Energy_PB will not be cleared after reading; (Sonoff Dual R3 Pow) =0, Energy_PB is cleared after reading; 10 EPA_CB Energy_PA clear signal control, the default is 0, it needs to be configured to 1 in UART mode, Clear after reading is not supported in UART mode =1, Energy_PA will not be cleared after reading; (Sonoff Dual R3 Pow) =0, Energy_PA is cleared after reading; 9-8 DUPSEL[1:0] Average register update frequency control =00, Update frequency 3.4Hz =01, Update frequency 6.8Hz =10, Update frequency 13.65Hz =11, Update frequency 27.3Hz (Sonoff Dual R3 Pow) 7 CHS_IB Current channel B measurement selection signal =1, measure the current of channel B (Sonoff Dual R3 Pow) =0, measure the internal temperature of the chip 6 PfactorEN Power factor function enable =1, turn on the power factor output function (Sonoff Dual R3 Pow) =0, turn off the power factor output function 5 WaveEN Waveform data, instantaneous data output enable signal =1, turn on the waveform data output function =0, turn off the waveform data output function (Sonoff Dual R3 Pow) 4 SAGEN Voltage drop detection enable signal, WaveEN=1 must be configured first =1, turn on the voltage drop detection function =0, turn off the voltage drop detection function (Sonoff Dual R3 Pow) 3 OverEN Overvoltage, overcurrent, and overload detection enable signal, WaveEN=1 must be configured first =1, turn on the overvoltage, overcurrent, and overload detection functions =0, turn off the overvoltage, overcurrent, and overload detection functions (Sonoff Dual R3 Pow) 2 ZxEN Zero-crossing detection, phase angle, voltage frequency measurement enable signal =1, turn on the zero-crossing detection, phase angle, and voltage frequency measurement functions =0, disable zero-crossing detection, phase angle, voltage frequency measurement functions (Sonoff Dual R3 Pow) 1 PeakEN Peak detect enable signal =1, turn on the peak detection function =0, turn off the peak detection function (Sonoff Dual R3 Pow) 0 NC Default is 1 */ Cse7761Write(CSE7761_REG_EMUCON2 | 0x80, 0x0FC1); } else { AddLog(LOG_LEVEL_DEBUG, PSTR("C61: Write failed")); return false; } return true; } void Cse7761GetData(void) { // The effective value of current and voltage Rms is a 24-bit signed number, the highest bit is 0 for valid data, // and when the highest bit is 1, the reading will be processed as zero // The active power parameter PowerA/B is in two’s complement format, 32-bit data, the highest bit is Sign bit. uint32_t value = Cse7761ReadFallback(CSE7761_REG_RMSU, CSE7761Data.voltage_rms); #ifdef CSE7761_SIMULATE value = 2342160; // 237.7V #endif CSE7761Data.voltage_rms = (value >= 0x800000) ? 0 : value; value = Cse7761ReadFallback(CSE7761_REG_RMSIA, CSE7761Data.current_rms[0]); #ifdef CSE7761_SIMULATE value = 455; #endif CSE7761Data.current_rms[0] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA value = Cse7761ReadFallback(CSE7761_REG_POWERPA, CSE7761Data.active_power[0]); #ifdef CSE7761_SIMULATE value = 217; #endif CSE7761Data.active_power[0] = (0 == CSE7761Data.current_rms[0]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value; value = Cse7761ReadFallback(CSE7761_REG_RMSIB, CSE7761Data.current_rms[1]); #ifdef CSE7761_SIMULATE value = 29760; // 0.185A #endif CSE7761Data.current_rms[1] = ((value >= 0x800000) || (value < 1600)) ? 0 : value; // No load threshold of 10mA value = Cse7761ReadFallback(CSE7761_REG_POWERPB, CSE7761Data.active_power[1]); #ifdef CSE7761_SIMULATE value = 2126641; // 44.05W #endif CSE7761Data.active_power[1] = (0 == CSE7761Data.current_rms[1]) ? 0 : (value & 0x80000000) ? (~value) + 1 : value; AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("C61: U%d, I%d/%d, P%d/%d"), CSE7761Data.voltage_rms, CSE7761Data.current_rms[0], CSE7761Data.current_rms[1], CSE7761Data.active_power[0], CSE7761Data.active_power[1]); if (Energy.power_on) { // Powered on // Voltage = RmsU * RmsUC * 10 / 0x400000 // Energy.voltage[0] = (float)(((uint64_t)CSE7761Data.voltage_rms * CSE7761Data.coefficient[RmsUC] * 10) >> 22) / 1000; // V Energy.voltage[0] = ((float)CSE7761Data.voltage_rms / Settings.energy_voltage_calibration); // V for (uint32_t channel = 0; channel < 2; channel++) { Energy.data_valid[channel] = 0; // Active power = PowerPA * PowerPAC * 1000 / 0x80000000 // Energy.active_power[channel] = (float)(((uint64_t)CSE7761Data.active_power[channel] * CSE7761Data.coefficient[PowerPAC + channel] * 1000) >> 31) / 1000; // W Energy.active_power[channel] = (float)CSE7761Data.active_power[channel] / Settings.energy_power_calibration; // W if (0 == Energy.active_power[channel]) { Energy.current[channel] = 0; } else { // Current = RmsIA * RmsIAC / 0x800000 // Energy.current[channel] = (float)(((uint64_t)CSE7761Data.current_rms[channel] * CSE7761Data.coefficient[RmsIAC + channel]) >> 23) / 1000; // A Energy.current[channel] = (float)CSE7761Data.current_rms[channel] / Settings.energy_current_calibration; // A CSE7761Data.energy[channel] += Energy.active_power[channel]; CSE7761Data.energy_update++; } } } } /********************************************************************************************/ void Cse7761Every200ms(void) { if (2 == CSE7761Data.ready) { Cse7761GetData(); } } void Cse7761EverySecond(void) { if (CSE7761Data.init) { if (3 == CSE7761Data.init) { Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_RESET); } else if (2 == CSE7761Data.init) { uint16_t syscon = Cse7761Read(0x00); // Default 0x0A04 #ifdef CSE7761_SIMULATE syscon = 0x0A04; #endif if ((0x0A04 == syscon) && Cse7761ChipInit()) { CSE7761Data.ready = 1; } } else if (1 == CSE7761Data.init) { if (1 == CSE7761Data.ready) { Cse7761Write(CSE7761_SPECIAL_COMMAND, CSE7761_CMD_CLOSE_WRITE); AddLog(LOG_LEVEL_INFO, PSTR("C61: CSE7761 found")); CSE7761Data.ready = 2; } } CSE7761Data.init--; } else { if (2 == CSE7761Data.ready) { if (CSE7761Data.energy_update) { uint32_t energy_sum = ((CSE7761Data.energy[0] + CSE7761Data.energy[1]) * 1000) / CSE7761Data.energy_update; if (energy_sum) { Energy.kWhtoday_delta += energy_sum / 36; EnergyUpdateToday(); } } CSE7761Data.energy[0] = 0; CSE7761Data.energy[1] = 0; CSE7761Data.energy_update = 0; } } } void Cse7761SnsInit(void) { // Software serial init needs to be done here as earlier (serial) interrupts may lead to Exceptions Cse7761Serial = new TasmotaSerial(Pin(GPIO_CSE7761_RX), Pin(GPIO_CSE7761_TX), 1); if (Cse7761Serial->begin(38400, SERIAL_8E1)) { if (Cse7761Serial->hardwareSerial()) { SetSerial(38400, TS_SERIAL_8E1); ClaimSerial(); } } else { TasmotaGlobal.energy_driver = ENERGY_NONE; } } void Cse7761DrvInit(void) { if (PinUsed(GPIO_CSE7761_RX) && PinUsed(GPIO_CSE7761_TX)) { CSE7761Data.ready = 0; CSE7761Data.init = 4; // Init setup steps Energy.phase_count = 2; // Handle two channels as two phases Energy.voltage_common = true; // Use common voltage TasmotaGlobal.energy_driver = XNRG_19; } } bool Cse7761Command(void) { bool serviced = true; uint32_t channel = (2 == XdrvMailbox.index) ? 1 : 0; uint32_t value = (uint32_t)(CharToFloat(XdrvMailbox.data) * 100); // 1.23 = 123 if (CMND_POWERCAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(3); } // Service in xdrv_03_energy.ino } else if (CMND_VOLTAGECAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(1); } // Service in xdrv_03_energy.ino } else if (CMND_CURRENTCAL == Energy.command_code) { if (1 == XdrvMailbox.payload) { XdrvMailbox.payload = Cse7761Ref(2); } // Service in xdrv_03_energy.ino } else if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.active_power[channel]) { if ((value > 100) && (value < 200000)) { // Between 1W and 2000W Settings.energy_power_calibration = ((CSE7761Data.active_power[channel]) / value) * 100; } } } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.voltage_rms) { if ((value > 10000) && (value < 26000)) { // Between 100V and 260V Settings.energy_voltage_calibration = (CSE7761Data.voltage_rms * 100) / value; } } } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len && CSE7761Data.current_rms[channel]) { if ((value > 1000) && (value < 1000000)) { // Between 10mA and 10A Settings.energy_current_calibration = ((CSE7761Data.current_rms[channel] * 100) / value) * 1000; } } } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg19(uint8_t function) { bool result = false; switch (function) { case FUNC_EVERY_200_MSECOND: Cse7761Every200ms(); break; case FUNC_ENERGY_EVERY_SECOND: Cse7761EverySecond(); break; case FUNC_COMMAND: result = Cse7761Command(); break; case FUNC_INIT: Cse7761SnsInit(); break; case FUNC_PRE_INIT: Cse7761DrvInit(); break; } return result; } #endif // USE_CSE7761 #endif // USE_ENERGY_SENSOR