/* xsns_01_counter.ino - Counter sensors (water meters, electricity meters etc.) sensor support for Tasmota Copyright (C) 2021 Maarten Damen and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_COUNTER /*********************************************************************************************\ * Counter sensors (water meters, electricity meters etc.) \*********************************************************************************************/ #define XSNS_01 1 #define USE_AC_ZERO_CROSS_DIMMER 1 #define D_PRFX_COUNTER "Counter" #define D_CMND_COUNTERTYPE "Type" #define D_CMND_COUNTERDEBOUNCE "Debounce" #define D_CMND_COUNTERDEBOUNCELOW "DebounceLow" #define D_CMND_COUNTERDEBOUNCEHIGH "DebounceHigh" const char kCounterCommands[] PROGMEM = D_PRFX_COUNTER "|" // Prefix "|" D_CMND_COUNTERTYPE "|" D_CMND_COUNTERDEBOUNCE "|" D_CMND_COUNTERDEBOUNCELOW "|" D_CMND_COUNTERDEBOUNCEHIGH ; void (* const CounterCommand[])(void) PROGMEM = { &CmndCounter, &CmndCounterType, &CmndCounterDebounce, &CmndCounterDebounceLow, &CmndCounterDebounceHigh }; uint8_t ctr_index[MAX_COUNTERS] = { 0, 1, 2, 3 }; struct COUNTER { uint32_t timer[MAX_COUNTERS]; // Last counter time in micro seconds uint32_t timer_low_high[MAX_COUNTERS]; // Last low/high counter time in micro seconds uint8_t no_pullup = 0; // Counter input pullup flag (1 = No pullup) uint8_t pin_state = 0; // LSB0..3 Last state of counter pin; LSB7==0 IRQ is FALLING, LSB7==1 IRQ is CHANGE bool any_counter = false; } Counter; #ifdef USE_AC_ZERO_CROSS_DIMMER struct AC_ZERO_CROSS_DIMMER { bool startReSync = false; uint32_t current_cycle_ClockCycles = 0; uint32_t dimm_timeClockCycles = 0; uint32_t currentCycleCount = 0; uint32_t tobe_cycle_timeClockCycles = 0; uint32_t lastCycleCount = 0; uint32_t currentSteps = 100; } ac_zero_cross_dimmer; #endif void ICACHE_RAM_ATTR CounterIsrArg(void *arg) { uint32_t index = *static_cast(arg); uint32_t time = micros(); uint32_t debounce_time; if (Counter.pin_state) { // handle low and high debounce times when configured if (digitalRead(Pin(GPIO_CNTR1, index)) == bitRead(Counter.pin_state, index)) { // new pin state to be ignored because debounce time was not met during last IRQ return; } debounce_time = time - Counter.timer_low_high[index]; if bitRead(Counter.pin_state, index) { // last valid pin state was high, current pin state is low if (debounce_time <= Settings.pulse_counter_debounce_high * 1000) return; } else { // last valid pin state was low, current pin state is high if (debounce_time <= Settings.pulse_counter_debounce_low * 1000) return; } // passed debounce check, save pin state and timing Counter.timer_low_high[index] = time; Counter.pin_state ^= (1<0) { ac_zero_cross_dimmer.startReSync = true; ac_zero_cross_dimmer.currentSteps = (ac_zero_cross_dimmer.currentCycleCount-ac_zero_cross_dimmer.lastCycleCount+(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles/2))/(ac_zero_cross_dimmer.tobe_cycle_timeClockCycles); ac_zero_cross_dimmer.current_cycle_ClockCycles = (ac_zero_cross_dimmer.currentCycleCount-ac_zero_cross_dimmer.lastCycleCount)/ac_zero_cross_dimmer.currentSteps; } ac_zero_cross_dimmer.lastCycleCount = ac_zero_cross_dimmer.currentCycleCount; } #endif return; } } debounce_time = time - Counter.timer[index]; if (debounce_time > Settings.pulse_counter_debounce * 1000) { Counter.timer[index] = time; if (bitRead(Settings.pulse_counter_type, index)) { RtcSettings.pulse_counter[index] = debounce_time; } else { RtcSettings.pulse_counter[index]++; } } } /********************************************************************************************/ void CounterInterruptDisable(bool state) { if (state) { // Disable interrupts if (Counter.any_counter) { for (uint32_t i = 0; i < MAX_COUNTERS; i++) { if (PinUsed(GPIO_CNTR1, i)) { detachInterrupt(Pin(GPIO_CNTR1, i)); } } Counter.any_counter = false; } } else { // Enable interrupts if (!Counter.any_counter) { CounterInit(); } } } bool CounterPinState(void) { if ((XdrvMailbox.index >= AGPIO(GPIO_CNTR1_NP)) && (XdrvMailbox.index < (AGPIO(GPIO_CNTR1_NP) + MAX_COUNTERS))) { bitSet(Counter.no_pullup, XdrvMailbox.index - AGPIO(GPIO_CNTR1_NP)); XdrvMailbox.index -= (AGPIO(GPIO_CNTR1_NP) - AGPIO(GPIO_CNTR1)); return true; } return false; } void CounterInit(void) { for (uint32_t i = 0; i < MAX_COUNTERS; i++) { if (PinUsed(GPIO_CNTR1, i)) { #ifdef USE_AC_ZERO_CROSS_DIMMER ac_zero_cross_dimmer.tobe_cycle_timeClockCycles = microsecondsToClockCycles(1000000 / Settings.pwm_frequency); #endif Counter.any_counter = true; pinMode(Pin(GPIO_CNTR1, i), bitRead(Counter.no_pullup, i) ? INPUT : INPUT_PULLUP); if ((0 == Settings.pulse_counter_debounce_low) && (0 == Settings.pulse_counter_debounce_high) && !Settings.flag4.zerocross_dimmer) { Counter.pin_state = 0; attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], FALLING); } else { Counter.pin_state = 0x8f; attachInterruptArg(Pin(GPIO_CNTR1, i), CounterIsrArg, &ctr_index[i], CHANGE); } } } } void CounterEverySecond(void) { for (uint32_t i = 0; i < MAX_COUNTERS; i++) { if (PinUsed(GPIO_CNTR1, i)) { if (bitRead(Settings.pulse_counter_type, i)) { uint32_t time = micros() - Counter.timer[i]; if (time > 4200000000) { // 70 minutes RtcSettings.pulse_counter[i] = 4200000000; // Set Timer to max in case of no more interrupts due to stall of measured device } } } } } void CounterSaveState(void) { for (uint32_t i = 0; i < MAX_COUNTERS; i++) { if (PinUsed(GPIO_CNTR1, i)) { Settings.pulse_counter[i] = RtcSettings.pulse_counter[i]; } } } void CounterShow(bool json) { bool header = false; uint8_t dsxflg = 0; for (uint32_t i = 0; i < MAX_COUNTERS; i++) { if (PinUsed(GPIO_CNTR1, i)) { char counter[33]; if (bitRead(Settings.pulse_counter_type, i)) { dtostrfd((double)RtcSettings.pulse_counter[i] / 1000000, 6, counter); } else { dsxflg++; snprintf_P(counter, sizeof(counter), PSTR("%lu"), RtcSettings.pulse_counter[i]); } if (json) { if (!header) { ResponseAppend_P(PSTR(",\"COUNTER\":{")); } ResponseAppend_P(PSTR("%s\"C%d\":%s"), (header)?",":"", i +1, counter); header = true; #ifdef USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period) && (1 == dsxflg)) { DomoticzSensor(DZ_COUNT, RtcSettings.pulse_counter[i]); dsxflg++; } #endif // USE_DOMOTICZ if ((0 == TasmotaGlobal.tele_period ) && (Settings.flag3.counter_reset_on_tele)) { RtcSettings.pulse_counter[i] = 0; } #ifdef USE_WEBSERVER } else { WSContentSend_PD(PSTR("{s}" D_COUNTER "%d{m}%s%s{e}"), i +1, counter, (bitRead(Settings.pulse_counter_type, i)) ? " " D_UNIT_SECOND : ""); #endif // USE_WEBSERVER } } } if (header) { ResponseJsonEnd(); } } #ifdef USE_AC_ZERO_CROSS_DIMMER void SyncACDimmer(void) { if (ac_zero_cross_dimmer.startReSync) { // currently only support one AC Dimmer PWM. Plan to support up to 4 Dimmer on same Phase. for (uint32_t i = 0; i < 1; i++) { if (PinUsed(GPIO_PWM1, i) && PinUsed(GPIO_CNTR1, i)) { // get current time because undefined through FUNC_LOOP process. const uint32_t current_cycle = ESP.getCycleCount(); digitalWrite(Pin(GPIO_PWM1, i), LOW); // reset trigger for PWM sync ac_zero_cross_dimmer.startReSync = false; // calculate timeoffset to fire PWM ac_zero_cross_dimmer.dimm_timeClockCycles = (ac_zero_cross_dimmer.tobe_cycle_timeClockCycles * (1024 - (Light.fade_running ? Light.fade_cur_10[i] : Light.fade_start_10[i]))) / 1024; ac_zero_cross_dimmer.dimm_timeClockCycles = tmax(ac_zero_cross_dimmer.dimm_timeClockCycles, 16000); // because in LOOP calculate the timelag to fire PWM correctly with zero-cross uint32_t timelag_ClockCycles = (current_cycle - ac_zero_cross_dimmer.currentCycleCount)%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles; timelag_ClockCycles = ((ac_zero_cross_dimmer.dimm_timeClockCycles + ac_zero_cross_dimmer.tobe_cycle_timeClockCycles) - timelag_ClockCycles)%ac_zero_cross_dimmer.tobe_cycle_timeClockCycles; delayMicroseconds(clockCyclesToMicroseconds(timelag_ClockCycles)); #ifdef ESP8266 pinMode(Pin(GPIO_PWM1, i), OUTPUT); // short fire to ensure not to hit next sinus curve. 0.78% of duty cycle (10ms) ~4µs uint32_t high = ac_zero_cross_dimmer.current_cycle_ClockCycles / 256; uint32_t low = ac_zero_cross_dimmer.current_cycle_ClockCycles - high; // Find the first GPIO being generated by checking GCC's find-first-set (returns 1 + the bit of the first 1 in an int32_t startWaveformClockCycles(Pin(GPIO_PWM1, i), high, low, 0, -1, 0, true); #endif // ESP8266 #ifdef ESP32 analogWrite(Pin(GPIO_PWM1, i), 5); #endif // ESP32 //AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("CNT: [%d] dimm_time_CCs %d, current_cycle_CC: %d, timelag %lu, lastcc %lu, currentSteps %d, curr %d"), i, ac_zero_cross_dimmer.dimm_timeClockCycles,ac_zero_cross_dimmer.current_cycle_ClockCycles , timelag_ClockCycles, ac_zero_cross_dimmer.currentCycleCount, ac_zero_cross_dimmer.currentSteps, Light.fade_cur_10[i]); } } } } #endif /*********************************************************************************************\ * Commands \*********************************************************************************************/ void CmndCounter(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) { if ((XdrvMailbox.data_len > 0) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) { if ((XdrvMailbox.data[0] == '-') || (XdrvMailbox.data[0] == '+')) { RtcSettings.pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload; Settings.pulse_counter[XdrvMailbox.index -1] += XdrvMailbox.payload; } else { RtcSettings.pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload; Settings.pulse_counter[XdrvMailbox.index -1] = XdrvMailbox.payload; } } ResponseCmndIdxNumber(RtcSettings.pulse_counter[XdrvMailbox.index -1]); } } void CmndCounterType(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_COUNTERS)) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1) && PinUsed(GPIO_CNTR1, XdrvMailbox.index -1)) { bitWrite(Settings.pulse_counter_type, XdrvMailbox.index -1, XdrvMailbox.payload &1); RtcSettings.pulse_counter[XdrvMailbox.index -1] = 0; Settings.pulse_counter[XdrvMailbox.index -1] = 0; } ResponseCmndIdxNumber(bitRead(Settings.pulse_counter_type, XdrvMailbox.index -1)); } } void CmndCounterDebounce(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) { Settings.pulse_counter_debounce = XdrvMailbox.payload; } ResponseCmndNumber(Settings.pulse_counter_debounce); } void CmndCounterDebounceLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) { Settings.pulse_counter_debounce_low = XdrvMailbox.payload; CounterInit(); } ResponseCmndNumber(Settings.pulse_counter_debounce_low); } void CmndCounterDebounceHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32001)) { Settings.pulse_counter_debounce_high = XdrvMailbox.payload; CounterInit(); } ResponseCmndNumber(Settings.pulse_counter_debounce_high); } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns01(uint8_t function) { bool result = false; if (Counter.any_counter) { switch (function) { case FUNC_EVERY_SECOND: CounterEverySecond(); break; case FUNC_JSON_APPEND: CounterShow(1); break; #ifdef USE_AC_ZERO_CROSS_DIMMER case FUNC_LOOP: SyncACDimmer(); break; #endif #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: CounterShow(0); break; #endif // USE_WEBSERVER case FUNC_SAVE_BEFORE_RESTART: case FUNC_SAVE_AT_MIDNIGHT: CounterSaveState(); break; case FUNC_COMMAND: result = DecodeCommand(kCounterCommands, CounterCommand); break; } } else { switch (function) { case FUNC_INIT: CounterInit(); break; case FUNC_PIN_STATE: result = CounterPinState(); break; } } return result; } #endif // USE_COUNTER