/*
xdrv_27_shutter.ino - Shutter/Blind support for Tasmota
Copyright (C) 2019 Stefan Bode
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_SHUTTER
/*********************************************************************************************\
* Shutter or Blind support using two consecutive relays
\*********************************************************************************************/
#define XDRV_27 27
#define D_PRFX_SHUTTER "Shutter"
#define D_CMND_SHUTTER_OPEN "Open"
#define D_CMND_SHUTTER_CLOSE "Close"
#define D_CMND_SHUTTER_STOP "Stop"
#define D_CMND_SHUTTER_POSITION "Position"
#define D_CMND_SHUTTER_OPENTIME "OpenDuration"
#define D_CMND_SHUTTER_CLOSETIME "CloseDuration"
#define D_CMND_SHUTTER_RELAY "Relay"
#define D_CMND_SHUTTER_SETHALFWAY "SetHalfway"
#define D_CMND_SHUTTER_SETCLOSE "SetClose"
#define D_CMND_SHUTTER_INVERT "Invert"
#define D_CMND_SHUTTER_CLIBRATION "Calibration"
#define D_CMND_SHUTTER_MOTORDELAY "MotorDelay"
#define D_CMND_SHUTTER_FREQUENCY "Frequency"
#define D_SHUTTER "SHUTTER"
const uint16_t MOTOR_STOP_TIME = 500; // in mS
uint8_t calibrate_pos[6] = {0,30,50,70,90,100};
uint16_t messwerte[5] = {30,50,70,90,100};
enum ShutterModes { SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE };
const char kShutterCommands[] PROGMEM = D_PRFX_SHUTTER "|"
D_CMND_SHUTTER_OPEN "|" D_CMND_SHUTTER_CLOSE "|" D_CMND_SHUTTER_STOP "|" D_CMND_SHUTTER_POSITION "|"
D_CMND_SHUTTER_OPENTIME "|" D_CMND_SHUTTER_CLOSETIME "|" D_CMND_SHUTTER_RELAY "|"
D_CMND_SHUTTER_SETHALFWAY "|" D_CMND_SHUTTER_SETCLOSE "|" D_CMND_SHUTTER_INVERT "|" D_CMND_SHUTTER_CLIBRATION "|"
D_CMND_SHUTTER_MOTORDELAY "|" D_CMND_SHUTTER_FREQUENCY;
void (* const ShutterCommand[])(void) PROGMEM = {
&CmndShutterOpen, &CmndShutterClose, &CmndShutterStop, &CmndShutterPosition,
&CmndShutterOpenTime, &CmndShutterCloseTime, &CmndShutterRelay,
&CmndShutterSetHalfway, &CmndShutterSetClose, &CmndShutterInvert, &CmndShutterCalibration , &CmndShutterMotorDelay,
&CmndShutterFrequency};
const char JSON_SHUTTER_POS[] PROGMEM = "\"" D_PRFX_SHUTTER "%d\":{\"Position\":%d,\"direction\":%d}";
#include
Ticker TickerShutter;
struct SHUTTER {
power_t mask = 0; // bit mask with 11 at the position of relays that belong to at least ONE shutter
power_t old_power = 0; // preserve old bitmask for power to extract the relay that changes.
power_t switched_relay = 0; // bitmatrix that contain the relays that was lastly changed.
uint32_t time[MAX_SHUTTERS]; // operating time of the shutter in 0.05sec
int32_t open_max[MAX_SHUTTERS]; // max value on maximum open calculated
int32_t target_position[MAX_SHUTTERS]; // position to go to
int32_t start_position[MAX_SHUTTERS]; // position before a movement is started. init at start
int32_t real_position[MAX_SHUTTERS]; // value between 0 and Shutter.open_max
uint16_t open_time[MAX_SHUTTERS]; // duration to open the shutter. 112 = 11.2sec
uint16_t close_time[MAX_SHUTTERS]; // duration to close the shutter. 112 = 11.2sec
uint16_t close_velocity[MAX_SHUTTERS]; // in relation to open velocity. higher value = faster
int8_t direction[MAX_SHUTTERS]; // 1 == UP , 0 == stop; -1 == down
uint8_t mode = 0; // operation mode definition. see enum type above SHT_OFF_OPEN__OFF_CLOSE, SHT_OFF_ON__OPEN_CLOSE, SHT_PULSE_OPEN__PULSE_CLOSE
uint8_t motordelay[MAX_SHUTTERS]; // initial motorstarttime in 0.05sec.
uint16_t pwm_frequency; // frequency of PWN for stepper motors
uint16_t max_pwm_frequency = 1000;
} Shutter;
void ShutterRtc50mS(void)
{
for (uint32_t i = 0; i < shutters_present; i++) {
Shutter.time[i]++;
}
}
int32_t ShutterPercentToRealPosition(uint8_t percent,uint8_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return percent <= 5 ? Settings.shuttercoeff[2][index] * percent : Settings.shuttercoeff[1][index] * percent + Settings.shuttercoeff[0][index];
} else {
uint32_t realpos;
// check against DIV 0
for (uint8_t j=0 ; j < 5 ; j++) {
if (Settings.shuttercoeff[j][index] == 0) {
AddLog_P2(LOG_LEVEL_ERROR, PSTR("SHT: RESET/INIT CALIBRATION MATRIX DIV 0"));
for (uint8_t k=0 ; k < 5 ; k++) {
Settings.shuttercoeff[k][index] = messwerte[k] * 1000 / messwerte[4];
}
}
}
for (uint8_t i=0 ; i < 5 ; i++) {
if (percent*10 > Settings.shuttercoeff[i][index]) {
realpos = Shutter.open_max[index] * calibrate_pos[i+1] / 100;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP1: %d, %% %d, coeff %d"), realpos, percent, Settings.shuttercoeff[i][index]);
} else {
if ( i == 0) {
realpos = percent * Shutter.open_max[index] * calibrate_pos[i+1] / Settings.shuttercoeff[i][index] / 10;
} else {
//uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realposition TEMP2: %d, %% %d, coeff %d"), addon, (calibrate_pos[i+1] - calibrate_pos[i]), (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]));
realpos += ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter.open_max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100;
}
break;
}
}
return realpos;
}
}
uint8_t ShutterRealToPercentPosition(int32_t realpos, uint8_t index)
{
if (Settings.shutter_set50percent[index] != 50) {
return Settings.shuttercoeff[2][index] * 5 > realpos ? realpos / Settings.shuttercoeff[2][index] : (realpos-Settings.shuttercoeff[0][index]) / Settings.shuttercoeff[1][index];
} else {
uint16_t realpercent;
for (uint8_t i=0 ; i < 5 ; i++) {
if (realpos > Shutter.open_max[index] * calibrate_pos[i+1] / 100) {
realpercent = Settings.shuttercoeff[i][index] /10;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP1: %d, %% %d, coeff %d"), realpercent, realpos, Shutter_Open_Max[index] * calibrate_pos[i+1] / 100);
} else {
if ( i == 0) {
realpercent = ( realpos - (Shutter.open_max[index] * calibrate_pos[i] / 100) ) * 10 * Settings.shuttercoeff[i][index] / calibrate_pos[i+1] / Shutter.open_max[index];
} else {
//uint16_t addon = ( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i])/ Shutter_Open_Max[index];
//uint16_t addon = ( percent*10 - Settings.shuttercoeff[i-1][index] ) * Shutter_Open_Max[index] * (calibrate_pos[i+1] - calibrate_pos[i]) / (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]) / 100;
//AddLog_P2(LOG_LEVEL_INFO, PSTR("Realpercent TEMP2: %d, delta %d, %% %d, coeff %d"), addon,( realpos - (Shutter_Open_Max[index] * calibrate_pos[i] / 100) ) , (calibrate_pos[i+1] - calibrate_pos[i])* Shutter_Open_Max[index]/100, (Settings.shuttercoeff[i][index] -Settings.shuttercoeff[i-1][index]));
realpercent += ( realpos - (Shutter.open_max[index] * calibrate_pos[i] / 100) ) * 10 * (Settings.shuttercoeff[i][index] - Settings.shuttercoeff[i-1][index]) / (calibrate_pos[i+1] - calibrate_pos[i]) / Shutter.open_max[index] ;
}
break;
}
}
return realpercent;
}
}
void ShutterInit(void)
{
shutters_present = 0;
Shutter.mask = 0;
//Initialize to get relay that changed
Shutter.old_power = power;
bool relay_in_interlock = false;
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Accuracy digits: %d"), Settings.shutter_accuracy);
for (uint32_t i = 0; i < MAX_SHUTTERS; i++) {
// upgrade to 0.1sec calculation base.
if ( Settings.shutter_accuracy == 0) {
Settings.shutter_closetime[i] = Settings.shutter_closetime[i] * 10;
Settings.shutter_opentime[i] = Settings.shutter_opentime[i] * 10;
}
// set startrelay to 1 on first init, but only to shutter 1. 90% usecase
Settings.shutter_startrelay[i] = (Settings.shutter_startrelay[i] == 0 && i == 0? 1 : Settings.shutter_startrelay[i]);
if (Settings.shutter_startrelay[i] && Settings.shutter_startrelay[i] <9) {
shutters_present++;
// Determine shutter types
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ;
for (uint32_t j = 0; j < MAX_INTERLOCKS * Settings.flag.interlock; j++) { // CMND_INTERLOCK - Enable/disable interlock
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Interlock state i=%d %d, flag %d, , shuttermask %d, maskedIL %d"),i, Settings.interlock[i], Settings.flag.interlock,Shutter.mask, Settings.interlock[i]&Shutter.mask);
if (Settings.interlock[j] && Settings.interlock[j] & Shutter.mask) {
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay in Interlock group"));
relay_in_interlock = true;
}
}
if (relay_in_interlock) {
if (Settings.pulse_timer[i] > 0) {
Shutter.mode = SHT_PULSE_OPEN__PULSE_CLOSE;
} else {
Shutter.mode = SHT_OFF_OPEN__OFF_CLOSE;
}
} else {
Shutter.mode = SHT_OFF_ON__OPEN_CLOSE;
if (pin[GPIO_PWM1 ]+i < 99) {
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+i, 50);
}
}
TickerShutter.attach_ms(50, ShutterRtc50mS );
// default the 50 percent should not have any impact without changing it. set to 60
Settings.shutter_set50percent[i] = Settings.shutter_set50percent[i] > 0 ? Settings.shutter_set50percent[i] : 50;
// use 10 sec. as default to allow everybody to play without deep initialize
Shutter.open_time[i] = Settings.shutter_opentime[i] > 0 ? Settings.shutter_opentime[i] : 100;
Shutter.close_time[i] = Settings.shutter_closetime[i] > 0 ? Settings.shutter_closetime[i] : 100;
// Update Calculation 20 because time interval is 0.05 sec
Shutter.open_max[i] = 200 * Shutter.open_time[i];
Shutter.close_velocity[i] = Shutter.open_max[i] / Shutter.close_time[i] / 2 ;
// calculate a ramp slope at the first 5 percent to compensate that shutters move with down part later than the upper part
if (Settings.shutter_set50percent[i] != 50) {
Settings.shuttercoeff[1][i] = Shutter.open_max[i] * (100 - Settings.shutter_set50percent[i] ) / 5000;
Settings.shuttercoeff[0][i] = Shutter.open_max[i] - (Settings.shuttercoeff[1][i] * 100);
Settings.shuttercoeff[2][i] = (Settings.shuttercoeff[0][i] + 5 * Settings.shuttercoeff[1][i]) / 5;
}
Shutter.mask |= 3 << (Settings.shutter_startrelay[i] -1) ;
Shutter.real_position[i] = ShutterPercentToRealPosition(Settings.shutter_position[i], i);
//Shutter.real_position[i] = Settings.shutter_position[i] <= 5 ? Settings.shuttercoeff[2][i] * Settings.shutter_position[i] : Settings.shuttercoeff[1][i] * Settings.shutter_position[i] + Settings.shuttercoeff[0,i];
Shutter.start_position[i] = Shutter.real_position[i];
Shutter.motordelay[i] = Settings.shutter_motordelay[i];
char shutter_open_chr[10];
dtostrfd((float)Shutter.open_time[i] / 10 , 1, shutter_open_chr);
char shutter_close_chr[10];
dtostrfd((float)Shutter.close_time[i] / 10, 1, shutter_close_chr);
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d (Relay:%d): Init. Pos: %d [%d %%], Open Vel.: 100 Close Vel.: %d , Max Way: %d, Opentime %s [s], Closetime %s [s], CoedffCalc: c0: %d, c1 %d, c2: %d, c3: %d, c4: %d, binmask %d, is inverted %d, shuttermode %d,motordelay %d"),
i, Settings.shutter_startrelay[i], Shutter.real_position[i], Settings.shutter_position[i], Shutter.close_velocity[i], Shutter.open_max[i], shutter_open_chr, shutter_close_chr,
Settings.shuttercoeff[0][i], Settings.shuttercoeff[1][i], Settings.shuttercoeff[2][i], Settings.shuttercoeff[3][i], Settings.shuttercoeff[4][i],
Shutter.mask, Settings.shutter_invert[i], Shutter.mode, Shutter.motordelay[i]);
} else {
// terminate loop at first INVALID shutter.
break;
}
Settings.shutter_accuracy = 1;
}
}
void ShutterUpdatePosition(void)
{
char scommand[CMDSZ];
char stopic[TOPSZ];
char stemp2[10];
for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) {
//char stemp1[20];
// frequency start at 0. Stepper will start moving with first change of the Speed
// Counter should be initiated to 0 to count movement.
// 0..1000 in step 100 = 10 steps with 0.05 sec = 0.5sec total ramp time from start to
// full speed.
if (pin[GPIO_PWM1]+i < 99 && Shutter.pwm_frequency != Shutter.max_pwm_frequency) {
Shutter.pwm_frequency += Shutter.max_pwm_frequency/20;
Shutter.pwm_frequency = (Shutter.pwm_frequency > Shutter.max_pwm_frequency ? Shutter.max_pwm_frequency : Shutter.pwm_frequency);
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+i, 50);
}
Shutter.real_position[i] = Shutter.start_position[i] + ( (Shutter.time[i] - Shutter.motordelay[i]) * (Shutter.direction[i] > 0 ? 100 : -Shutter.close_velocity[i]));
// avoid real position leaving the boundaries.
Shutter.real_position[i] = Shutter.real_position[i] < 0 ? 0 : (Shutter.real_position[i] > Shutter.open_max[i] ? Shutter.open_max[i] : Shutter.real_position[i]) ;
if (Shutter.real_position[i] * Shutter.direction[i] >= Shutter.target_position[i] * Shutter.direction[i] ) {
// calculate relay number responsible for current movement.
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Stop Condition detected: real: %d, Target: %d, direction: %d"),Shutter.real_position[i], Shutter.target_position[i],Shutter.direction[i]);
uint8_t cur_relay = Settings.shutter_startrelay[i] + (Shutter.direction[i] == 1 ? 0 : 1) ;
switch (Shutter.mode) {
case SHT_PULSE_OPEN__PULSE_CLOSE:
// we have a momentary switch here. Needs additional pulse on same relay after the end
if (SRC_PULSETIMER == last_source || SRC_SHUTTER == last_source || SRC_WEBGUI == last_source) {
ExecuteCommandPower(cur_relay, 1, SRC_SHUTTER);
} else {
last_source = SRC_SHUTTER;
}
break;
case SHT_OFF_ON__OPEN_CLOSE:
// This is a failsafe configuration. Relay1 ON/OFF Relay2 -1/1 direction
// Only allow PWM microstepping if PWM and COUNTER are defined.
// see wiki to connect PWM and COUNTER
if (pin[GPIO_PWM1 ]+i < 99 && pin[GPIO_CNTR1 ]+i < 99 ) {
int16_t missing_steps = ((Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) - RtcSettings.pulse_counter[i];
Shutter.pwm_frequency = 0;
//slow down for acurate position
analogWriteFreq(500);
analogWrite(pin[GPIO_PWM1]+i, 50);
//prepare for stop PWM
Shutter.motordelay[i] = -2 + Shutter.motordelay[i] + missing_steps/(Shutter.max_pwm_frequency/20);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Missing steps %d, adjust motordelay %d, counter %d, temp realpos %d"), missing_steps, Shutter.motordelay[i],RtcSettings.pulse_counter[i] ,Shutter.real_position[i]);
Settings.shutter_motordelay[i]=Shutter.motordelay[i];
analogWriteFreq(0);
while (RtcSettings.pulse_counter[i] < (uint32_t)(Shutter.target_position[i]-Shutter.start_position[i])*Shutter.direction[i]*Shutter.max_pwm_frequency/2000) {
delay(1);
}
analogWrite(pin[GPIO_PWM1]+i, 0);
Shutter.real_position[i] = ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency)+Shutter.start_position[i];
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT:Realpos %d, pulsecount %d, startpos %d, int32 %d"), Shutter.real_position[i],RtcSettings.pulse_counter[i], Shutter.start_position[i], ((int32_t)RtcSettings.pulse_counter[i]*Shutter.direction[i]*2000 / Shutter.max_pwm_frequency));
}
if ((1 << (Settings.shutter_startrelay[i]-1)) & power) {
ExecuteCommandPower(Settings.shutter_startrelay[i], 0, SRC_SHUTTER);
ExecuteCommandPower(Settings.shutter_startrelay[i]+1, 0, SRC_SHUTTER);
}
break;
case SHT_OFF_OPEN__OFF_CLOSE:
// avoid switching OFF a relay already OFF
if ((1 << (cur_relay-1)) & power) {
// Relay is on and need to be switched off.
ExecuteCommandPower(cur_relay, 0, SRC_SHUTTER);
}
break;
}
Settings.shutter_position[i] = ShutterRealToPercentPosition(Shutter.real_position[i], i);
dtostrfd((float)Shutter.time[i] / 20, 1, stemp2);
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Real Pos. %d, Stoppos: %ld, relay: %d, direction %d, pulsetimer: %d, motordelay %d, rtcshutter: %s [s]"), i, Shutter.real_position[i], Settings.shutter_position[i], cur_relay -1, Shutter.direction[i], Settings.pulse_timer[cur_relay -1], Shutter.motordelay[i],stemp2);
Shutter.start_position[i] = Shutter.real_position[i];
// sending MQTT result to broker
snprintf_P(scommand, sizeof(scommand),PSTR(D_SHUTTER "%d"), i+1);
GetTopic_P(stopic, STAT, mqtt_topic, scommand);
Response_P("%d", Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i]);
MqttPublish(stopic, Settings.flag.mqtt_power_retain); // CMND_POWERRETAIN
Shutter.direction[i] = 0;
uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i];
Response_P(PSTR("{"));
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, 0 /*Shutter.direction[i]*/);
ResponseJsonEnd();
MqttPublishPrefixTopic_P(RESULT_OR_TELE, mqtt_data);
XdrvRulesProcess();
}
}
}
}
bool ShutterState(uint8_t device)
{
device--;
device &= 3;
return (Settings.flag3.shutter_mode && // SetOption80 - Enable shutter support
(Shutter.mask & (1 << (Settings.shutter_startrelay[device]-1))) );
}
void ShutterStartInit(uint8_t index, uint8_t direction, int32_t target_pos)
{
Shutter.direction[index] = direction;
Shutter.target_position[index] = target_pos;
Shutter.start_position[index] = Shutter.real_position[index];
Shutter.time[index] = 0;
if (pin[GPIO_PWM1]+index < 99) {
Shutter.pwm_frequency = 0;
analogWriteFreq(Shutter.pwm_frequency);
analogWrite(pin[GPIO_PWM1]+index, 0);
// can be operated without counter, but then not that acurate.
if (pin[GPIO_CNTR1]+index < 99) {
RtcSettings.pulse_counter[index] = 0;
}
}
//AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter: %d from %d to %d in directin %d"), index, Shutter.start_position[index], Shutter.target_position[index], Shutter.direction[index]);
}
void ShutterDelayForMotorStop(void)
{
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Wait for Motorstop %d"), MOTOR_STOP_TIME);
delay(MOTOR_STOP_TIME);
}
void ShutterReportPosition(void)
{
uint16_t shutter_moving = 0;
for (uint32_t i = 0; i < shutters_present; i++) {
if (Shutter.direction[i] != 0) {
char stemp1[20];
char stemp2[10];
dtostrfd((float)Shutter.time[i] / 20, 2, stemp2);
shutter_moving = 1;
//Settings.shutter_position[i] = Settings.shuttercoeff[2][i] * 5 > Shutter.real_position[i] ? Shutter.real_position[i] / Settings.shuttercoeff[2][i] : (Shutter.real_position[i]-Settings.shuttercoeff[0,i]) / Settings.shuttercoeff[1][i];
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Shutter %d: Real Pos: %d, Target %d, source: %s, start-pos: %d %%, direction: %d, motordelay %d, rtcshutter: %s [s]"), i,Shutter.real_position[i], Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), Settings.shutter_position[i], Shutter.direction[i], Shutter.motordelay[i], stemp2 );
}
}
if (rules_flag.shutter_moving > shutter_moving) {
rules_flag.shutter_moved = 1;
} else {
rules_flag.shutter_moved = 0;
}
rules_flag.shutter_moving = shutter_moving;
//AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: rules_flag.shutter_moving: %d, moved %d"), rules_flag.shutter_moving, rules_flag.shutter_moved);
}
void ShutterRelayChanged(void)
{
// Shutter.switched_relay = binary relay that was recently changed and cause an Action
// powerstate_local = binary powermatrix and relays from shutter: 0..3
// relays_changed = bool if one of the relays that belong to the shutter changed not by shutter or pulsetimer
char stemp1[10];
for (uint32_t i = 0; i < shutters_present; i++) {
power_t powerstate_local = (power >> (Settings.shutter_startrelay[i] -1)) & 3;
//uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_IGNORE != last_source && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
uint8 manual_relays_changed = ((Shutter.switched_relay >> (Settings.shutter_startrelay[i] -1)) & 3) && SRC_SHUTTER != last_source && SRC_PULSETIMER != last_source ;
if (manual_relays_changed) {
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) {
switch (powerstate_local) {
case 1:
ShutterDelayForMotorStop();
ShutterStartInit(i, 1, Shutter.open_max[i]);
break;
case 3:
ShutterDelayForMotorStop();
ShutterStartInit(i, -1, 0);
break;
default:
Shutter.direction[i] = 0;
Shutter.target_position[i] = Shutter.real_position[i];
}
} else {
if (Shutter.direction[i] != 0 && (!powerstate_local || (powerstate_local && Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE))) {
Shutter.target_position[i] = Shutter.real_position[i];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Switch OFF motor. Target: %ld, source: %s, powerstate_local %ld, Shutter.switched_relay %d, manual change %d"), i, Shutter.target_position[i], GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource), powerstate_local,Shutter.switched_relay,manual_relays_changed);
} else {
last_source = SRC_SHUTTER; // avoid switch off in the next loop
if (powerstate_local == 2) { // testing on CLOSE relay, if ON
// close with relay two
ShutterDelayForMotorStop();
ShutterStartInit(i, -1, 0);
} else {
// opens with relay one
ShutterDelayForMotorStop();
ShutterStartInit(i, 1, Shutter.open_max[i]);
}
}
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Shutter %d: Target: %ld, powerstatelocal %d"), i, Shutter.target_position[i], powerstate_local);
}
}
}
}
void ShutterSetPosition(uint8_t device, uint8_t position)
{
char svalue[32]; // Command and number parameter
snprintf_P(svalue, sizeof(svalue), PSTR(D_PRFX_SHUTTER D_CMND_SHUTTER_POSITION "%d %d"), device, position);
ExecuteCommand(svalue, SRC_IGNORE);
}
/*********************************************************************************************\
* Commands
\*********************************************************************************************/
void CmndShutterOpen(void)
{
XdrvMailbox.payload = 100;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterClose(void)
{
XdrvMailbox.payload = 0;
XdrvMailbox.data_len = 0;
last_source = SRC_WEBGUI;
CmndShutterPosition();
}
void CmndShutterStop(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
uint32_t index = XdrvMailbox.index -1;
if (Shutter.direction[index] != 0) {
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Stop moving shutter %d: direction: %d"), XdrvMailbox.index, Shutter.direction[index]);
// set stop position 10 steps ahead (0.5sec to allow normal stop)
int32_t temp_realpos = Shutter.start_position[index] + ( (Shutter.time[index]+10) * (Shutter.direction[index] > 0 ? 100 : -Shutter.close_velocity[index]));
XdrvMailbox.payload = ShutterRealToPercentPosition(temp_realpos, index);
//XdrvMailbox.payload = Settings.shuttercoeff[2][index] * 5 > temp_realpos ? temp_realpos / Settings.shuttercoeff[2][index] : (temp_realpos-Settings.shuttercoeff[0,index]) / Settings.shuttercoeff[1][index];
last_source = SRC_WEBGUI;
CmndShutterPosition();
} else {
ResponseCmndDone();
}
}
}
void CmndShutterPosition(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
uint32_t index = XdrvMailbox.index -1;
//limit the payload
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Position in: payload %s (%d), payload %d, index %d, source %d"), XdrvMailbox.data , XdrvMailbox.data_len, XdrvMailbox.payload , XdrvMailbox.index, last_source );
if (XdrvMailbox.data_len > 1 && XdrvMailbox.payload <=0) {
UpperCase(XdrvMailbox.data, XdrvMailbox.data);
if (!strcmp(XdrvMailbox.data,"UP")) { CmndShutterOpen(); }
if (!strcmp(XdrvMailbox.data,"DOWN")) { CmndShutterClose(); }
if (!strcmp(XdrvMailbox.data,"STOP")) { CmndShutterStop(); }
return;
}
int8_t target_pos_percent = XdrvMailbox.payload < 0 ? 0 : (XdrvMailbox.payload > 100 ? 100 : XdrvMailbox.payload);
// webgui still send also on inverted shutter the native position.
target_pos_percent = Settings.shutter_invert[index] && SRC_WEBGUI != last_source ? 100 - target_pos_percent : target_pos_percent;
if (XdrvMailbox.payload != -99) {
//target_pos_percent = Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent;
Shutter.target_position[index] = ShutterPercentToRealPosition(target_pos_percent, index);
//Shutter.target_position[index] = XdrvMailbox.payload < 5 ? Settings.shuttercoeff[2][index] * XdrvMailbox.payload : Settings.shuttercoeff[1][index] * XdrvMailbox.payload + Settings.shuttercoeff[0,index];
AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: lastsource %d:, realpos %d, target %d, payload %d"), last_source, Shutter.real_position[index] ,Shutter.target_position[index],target_pos_percent);
}
if ( (target_pos_percent >= 0) && (target_pos_percent <= 100) && abs(Shutter.target_position[index] - Shutter.real_position[index] ) / Shutter.close_velocity[index] > 2) {
int8_t new_shutterdirection = Shutter.real_position[index] < Shutter.target_position[index] ? 1 : -1;
if (Shutter.direction[index] == -new_shutterdirection ) {
// direction need to be changed. on momentary switches first stop the Shutter
if (Shutter.mode == SHT_PULSE_OPEN__PULSE_CLOSE) {
// code for momentary shutters only small switch on to stop Shutter
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
delay(100);
} else {
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 1 : 0), 0, SRC_SHUTTER);
ShutterDelayForMotorStop();
}
}
if (Shutter.direction[index] != new_shutterdirection ) {
ShutterStartInit(index, new_shutterdirection, Shutter.target_position[index]);
if (Shutter.mode == SHT_OFF_ON__OPEN_CLOSE) {
ExecuteCommandPower(Settings.shutter_startrelay[index], 0, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay5 5s, xdrv %d"), XdrvMailbox.payload);
ShutterDelayForMotorStop();
// Code for shutters with circuit safe configuration, switch the direction Relay
ExecuteCommandPower(Settings.shutter_startrelay[index] +1, new_shutterdirection == 1 ? 0 : 1, SRC_SHUTTER);
// power on
ExecuteCommandPower(Settings.shutter_startrelay[index], 1, SRC_SHUTTER);
} else {
// now start the motor for the right direction, work for momentary and normal shutters.
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Start shutter in direction %d"), Shutter.direction[index]);
ExecuteCommandPower(Settings.shutter_startrelay[index] + (new_shutterdirection == 1 ? 0 : 1), 1, SRC_SHUTTER);
//AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SHT: Delay6 5s, xdrv %d"), XdrvMailbox.payload);
}
Shutter.switched_relay = 0;
}
} else {
target_pos_percent = ShutterRealToPercentPosition(Shutter.real_position[index], index);
}
XdrvMailbox.index = index +1; // Fix random index for ShutterClose
ResponseCmndIdxNumber(Settings.shutter_invert[index] ? 100 - target_pos_percent : target_pos_percent);
}
}
void CmndShutterOpenTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_opentime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_opentime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterCloseTime(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_closetime[XdrvMailbox.index -1] = (uint16_t)(10 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_closetime[XdrvMailbox.index -1]) / 10, 1, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterMotorDelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if (XdrvMailbox.data_len > 0) {
Settings.shutter_motordelay[XdrvMailbox.index -1] = (uint16_t)(20 * CharToFloat(XdrvMailbox.data));
ShutterInit();
}
char time_chr[10];
dtostrfd((float)(Settings.shutter_motordelay[XdrvMailbox.index -1]) / 20, 2, time_chr);
ResponseCmndIdxChar(time_chr);
}
}
void CmndShutterRelay(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 64)) {
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
if (XdrvMailbox.payload > 0) {
Shutter.mask |= 3 << (XdrvMailbox.payload - 1);
} else {
Shutter.mask ^= 3 << (Settings.shutter_startrelay[XdrvMailbox.index -1] - 1);
}
AddLog_P2(LOG_LEVEL_INFO, PSTR("SHT: Relay %d is %d"), XdrvMailbox.index, XdrvMailbox.payload);
Settings.shutter_startrelay[XdrvMailbox.index -1] = XdrvMailbox.payload;
ShutterInit();
// if payload is 0 to disable the relay there must be a reboot. Otherwhise does not work
}
ResponseCmndIdxNumber(Settings.shutter_startrelay[XdrvMailbox.index -1]);
}
}
void CmndShutterSetHalfway(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 100)) {
Settings.shutter_set50percent[XdrvMailbox.index -1] = Settings.shutter_invert[XdrvMailbox.index -1] ? 100 - XdrvMailbox.payload : XdrvMailbox.payload;
ShutterInit();
ResponseCmndIdxNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndIdxNumber(Settings.shutter_set50percent[XdrvMailbox.index -1]);
}
}
}
void CmndShutterFrequency(void)
{
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 10000)) {
Shutter.max_pwm_frequency = XdrvMailbox.payload;
ResponseCmndNumber(XdrvMailbox.payload); // ????
} else {
ResponseCmndNumber(Shutter.max_pwm_frequency);
}
}
void CmndShutterSetClose(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
Shutter.real_position[XdrvMailbox.index -1] = 0;
ShutterStartInit(XdrvMailbox.index -1, 0, 0);
Settings.shutter_position[XdrvMailbox.index -1] = 0;
ResponseCmndChar(D_CONFIGURATION_RESET);
}
}
void CmndShutterInvert(void)
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= shutters_present)) {
if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload <= 1)) {
Settings.shutter_invert[XdrvMailbox.index -1] = XdrvMailbox.payload;
}
ResponseCmndIdxNumber(Settings.shutter_invert[XdrvMailbox.index -1]);
}
}
void CmndShutterCalibration(void) // ????
{
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= MAX_SHUTTERS)) {
if (XdrvMailbox.data_len > 0) {
uint32_t i = 0;
char *str_ptr;
char* version_dup = strdup(XdrvMailbox.data); // Duplicate the version_str as strtok_r will modify it.
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, " ", &str_ptr); str && i < 5; str = strtok_r(nullptr, " ", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 1-255.
// and following value must be higher than previous one
if ((field <= 0) || (field > 255) || ( (i>0) && (field <= messwerte[i-1]) ) ) {
free(version_dup);
break;
}
messwerte[i] = field;
}
for (i=0 ; i < 5 ; i++) {
Settings.shuttercoeff[i][XdrvMailbox.index-1] = messwerte[i] * 1000 / messwerte[4];
AddLog_P2(LOG_LEVEL_INFO, PSTR("Settings.shuttercoeff: %d, i: %d, value: %d, messwert %d"), i,XdrvMailbox.index-1,Settings.shuttercoeff[i][XdrvMailbox.index-1], messwerte[i]);
}
ShutterInit();
ResponseCmndIdxChar(XdrvMailbox.data);
}
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xdrv27(uint8_t function)
{
bool result = false;
if (Settings.flag3.shutter_mode) { // SetOption80 - Enable shutter support
switch (function) {
case FUNC_PRE_INIT:
ShutterInit();
break;
case FUNC_EVERY_50_MSECOND:
ShutterUpdatePosition();
break;
case FUNC_EVERY_SECOND:
ShutterReportPosition();
break;
case FUNC_COMMAND:
result = DecodeCommand(kShutterCommands, ShutterCommand);
break;
case FUNC_JSON_APPEND:
for (uint32_t i = 0; i < shutters_present; i++) {
uint8_t position = Settings.shutter_invert[i] ? 100 - Settings.shutter_position[i]: Settings.shutter_position[i];
ResponseAppend_P(",");
ResponseAppend_P(JSON_SHUTTER_POS, i+1, position, Shutter.direction[i]);
#ifdef USE_DOMOTICZ
if ((0 == tele_period) && (0 == i)) {
DomoticzSensor(DZ_SHUTTER, position);
}
#endif // USE_DOMOTICZ
}
break;
case FUNC_SET_POWER:
char stemp1[10];
// extract the number of the relay that was switched and save for later in Update Position.
Shutter.switched_relay = power ^ Shutter.old_power;
Shutter.old_power = power;
AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("SHT: Switched relay: %d by %s"), Shutter.switched_relay,GetTextIndexed(stemp1, sizeof(stemp1), last_source, kCommandSource));
ShutterRelayChanged();
break;
}
}
return result;
}
#endif //USE_SHUTTER