/* xnrg_06_pzem_dc.ino - PZEM-003,017 Modbus DC energy sensor support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_PZEM_DC /*********************************************************************************************\ * PZEM-003 - DC 300V 10A Energy * PZEM-017 - DC 300V 50A - 300A Energy * * Based on: * PZEM-003,017 docs Https://pan.baidu.com/s/1V9bDWj3RK2u6_fbBJ3GtqQ password rq37 * * Hardware Serial will be selected if GPIO1 = [62 PZEM0XX Tx] and GPIO3 = [99 PZEM017 Rx] \*********************************************************************************************/ #define XNRG_06 6 const uint8_t PZEM_DC_DEVICE_ADDRESS = 0x01; // PZEM default address const uint32_t PZEM_DC_STABILIZE = 30; // Number of seconds to stabilize configuration #include TasmotaModbus *PzemDcModbus; struct PZEMDC { float energy = 0; float last_energy = 0; uint8_t send_retry = 0; uint8_t channel = 0; uint8_t address = 0; uint8_t address_step = ADDR_IDLE; } PzemDc; void PzemDcEverySecond(void) { bool data_ready = PzemDcModbus->ReceiveReady(); if (data_ready) { uint8_t buffer[26]; // At least 5 + (2 * 8) = 21 uint8_t registers = 8; if (ADDR_RECEIVE == PzemDc.address_step) { registers = 2; // Need 1 byte extra as response is F8 06 00 02 00 01 FD A3 PzemDc.address_step--; } uint8_t error = PzemDcModbus->ReceiveBuffer(buffer, registers); AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, PzemDcModbus->ReceiveCount()); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PDC: PzemDc %d error %d"), PZEM_DC_DEVICE_ADDRESS + PzemDc.channel, error); } else { Energy.data_valid[PzemDc.channel] = 0; if (8 == registers) { // 0 1 2 3 4 5 6 7 = ModBus register // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 = Buffer index // 01 04 10 05 40 00 0A 00 0D 00 00 00 02 00 00 00 00 00 00 D6 29 // Id Cc Sz Volt- Curre Power------ Energy----- HiAlm LoAlm Crc-- Energy.voltage[PzemDc.channel] = (float)((buffer[3] << 8) + buffer[4]) / 100.0; // 655.00 V Energy.current[PzemDc.channel] = (float)((buffer[5] << 8) + buffer[6]) / 100.0; // 655.00 A Energy.active_power[PzemDc.channel] = (float)((buffer[9] << 24) + (buffer[10] << 16) + (buffer[7] << 8) + buffer[8]) / 10.0; // 429496729.0 W PzemDc.energy += (float)((buffer[13] << 24) + (buffer[14] << 16) + (buffer[11] << 8) + buffer[12]); // 4294967295 Wh if (PzemDc.channel == Energy.phase_count -1) { if (PzemDc.energy > PzemDc.last_energy) { // Handle missed channel if (uptime > PZEM_DC_STABILIZE) { EnergyUpdateTotal(PzemDc.energy, false); } PzemDc.last_energy = PzemDc.energy; } PzemDc.energy = 0; } } } } if (0 == PzemDc.send_retry || data_ready) { if (0 == PzemDc.channel) { PzemDc.channel = Energy.phase_count -1; } else { PzemDc.channel--; } PzemDc.send_retry = ENERGY_WATCHDOG; if (ADDR_SEND == PzemDc.address_step) { PzemDcModbus->Send(0xF8, 0x06, 0x0002, (uint16_t)PzemDc.address); PzemDc.address_step--; } else { PzemDcModbus->Send(PZEM_DC_DEVICE_ADDRESS + PzemDc.channel, 0x04, 0, 8); } } else { PzemDc.send_retry--; if ((Energy.phase_count > 1) && (0 == PzemDc.send_retry) && (uptime < PZEM_DC_STABILIZE)) { Energy.phase_count--; // Decrement channels if no response after retry within 30 seconds after restart } } } void PzemDcSnsInit(void) { PzemDcModbus = new TasmotaModbus(pin[GPIO_PZEM017_RX], pin[GPIO_PZEM0XX_TX]); uint8_t result = PzemDcModbus->Begin(9600, 2); // Uses two stop bits!! if (result) { if (2 == result) { ClaimSerial(); } Energy.type_dc = true; Energy.phase_count = 3; // Start off with three channels PzemDc.channel = 0; } else { energy_flg = ENERGY_NONE; } } void PzemDcDrvInit(void) { if ((pin[GPIO_PZEM017_RX] < 99) && (pin[GPIO_PZEM0XX_TX] < 99)) { energy_flg = XNRG_06; } } bool PzemDcCommand(void) { bool serviced = true; if (CMND_MODULEADDRESS == Energy.command_code) { PzemDc.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3 PzemDc.address_step = ADDR_SEND; } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg06(uint8_t function) { bool result = false; switch (function) { case FUNC_ENERGY_EVERY_SECOND: if (uptime > 4) { PzemDcEverySecond(); } // Fix start up issue #5875 break; case FUNC_COMMAND: result = PzemDcCommand(); break; case FUNC_INIT: PzemDcSnsInit(); break; case FUNC_PRE_INIT: PzemDcDrvInit(); break; } return result; } #endif // USE_PZEM_DC #endif // USE_ENERGY_SENSOR