/* xdrv_03_energy.ino - Energy sensor support for Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR /*********************************************************************************************\ * Energy \*********************************************************************************************/ #define XDRV_03 3 #define XSNS_03 3 //#define USE_ENERGY_MARGIN_DETECTION // #define USE_ENERGY_POWER_LIMIT #define ENERGY_NONE 0 #define ENERGY_WATCHDOG 4 // Allow up to 4 seconds before deciding no valid data present #include #define D_CMND_POWERCAL "PowerCal" #define D_CMND_VOLTAGECAL "VoltageCal" #define D_CMND_CURRENTCAL "CurrentCal" #define D_CMND_TARIFF "Tariff" #define D_CMND_MODULEADDRESS "ModuleAddress" enum EnergyCommands { CMND_POWERCAL, CMND_VOLTAGECAL, CMND_CURRENTCAL, CMND_POWERSET, CMND_VOLTAGESET, CMND_CURRENTSET, CMND_FREQUENCYSET, CMND_MODULEADDRESS }; const char kEnergyCommands[] PROGMEM = "|" // No prefix D_CMND_POWERCAL "|" D_CMND_VOLTAGECAL "|" D_CMND_CURRENTCAL "|" D_CMND_POWERSET "|" D_CMND_VOLTAGESET "|" D_CMND_CURRENTSET "|" D_CMND_FREQUENCYSET "|" D_CMND_MODULEADDRESS "|" #ifdef USE_ENERGY_MARGIN_DETECTION D_CMND_POWERDELTA "|" D_CMND_POWERLOW "|" D_CMND_POWERHIGH "|" D_CMND_VOLTAGELOW "|" D_CMND_VOLTAGEHIGH "|" D_CMND_CURRENTLOW "|" D_CMND_CURRENTHIGH "|" #ifdef USE_ENERGY_POWER_LIMIT D_CMND_MAXENERGY "|" D_CMND_MAXENERGYSTART "|" D_CMND_MAXPOWER "|" D_CMND_MAXPOWERHOLD "|" D_CMND_MAXPOWERWINDOW "|" D_CMND_SAFEPOWER "|" D_CMND_SAFEPOWERHOLD "|" D_CMND_SAFEPOWERWINDOW "|" #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION D_CMND_ENERGYRESET "|" D_CMND_TARIFF ; void (* const EnergyCommand[])(void) PROGMEM = { &CmndPowerCal, &CmndVoltageCal, &CmndCurrentCal, &CmndPowerSet, &CmndVoltageSet, &CmndCurrentSet, &CmndFrequencySet, &CmndModuleAddress, #ifdef USE_ENERGY_MARGIN_DETECTION &CmndPowerDelta, &CmndPowerLow, &CmndPowerHigh, &CmndVoltageLow, &CmndVoltageHigh, &CmndCurrentLow, &CmndCurrentHigh, #ifdef USE_ENERGY_POWER_LIMIT &CmndMaxEnergy, &CmndMaxEnergyStart, &CmndMaxPower, &CmndMaxPowerHold, &CmndMaxPowerWindow, &CmndSafePower, &CmndSafePowerHold, &CmndSafePowerWindow, #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION &CmndEnergyReset, &CmndTariff }; const char kEnergyPhases[] PROGMEM = "|%s / %s|%s / %s / %s||[%s,%s]|[%s,%s,%s]"; struct ENERGY { float voltage[3] = { 0, 0, 0 }; // 123.1 V float current[3] = { 0, 0, 0 }; // 123.123 A float active_power[3] = { 0, 0, 0 }; // 123.1 W float apparent_power[3] = { NAN, NAN, NAN }; // 123.1 VA float reactive_power[3] = { NAN, NAN, NAN }; // 123.1 VAr float power_factor[3] = { NAN, NAN, NAN }; // 0.12 float frequency[3] = { NAN, NAN, NAN }; // 123.1 Hz float start_energy = 0; // 12345.12345 kWh total previous float daily = 0; // 123.123 kWh float total = 0; // 12345.12345 kWh total energy float export_active = NAN; // 123.123 KWh unsigned long kWhtoday_delta = 0; // 1212312345 Wh 10^-5 (deca micro Watt hours) - Overflows to Energy.kWhtoday (HLW and CSE only) unsigned long kWhtoday_offset = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily unsigned long kWhtoday; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily unsigned long period = 0; // 12312312 Wh * 10^-2 (deca milli Watt hours) - 5764 = 0.05764 kWh = 0.058 kWh = Energy.daily uint8_t fifth_second = 0; uint8_t command_code = 0; uint8_t data_valid[3] = { 0, 0, 0 }; uint8_t phase_count = 1; // Number of phases active bool voltage_common = false; // Use single voltage and frequency bool voltage_available = true; // Enable if voltage is measured bool current_available = true; // Enable if current is measured bool type_dc = false; bool power_on = true; #ifdef USE_ENERGY_MARGIN_DETECTION uint16_t power_history[3] = { 0 }; uint8_t power_steady_counter = 8; // Allow for power on stabilization bool power_delta = false; bool min_power_flag = false; bool max_power_flag = false; bool min_voltage_flag = false; bool max_voltage_flag = false; bool min_current_flag = false; bool max_current_flag = false; #ifdef USE_ENERGY_POWER_LIMIT uint16_t mplh_counter = 0; uint16_t mplw_counter = 0; uint8_t mplr_counter = 0; uint8_t max_energy_state = 0; #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION } Energy; Ticker ticker_energy; /********************************************************************************************/ bool EnergyTariff1Active() // Off-Peak hours { uint8_t dst = 0; if (IsDst() && (Settings.tariff[0][1] != Settings.tariff[1][1])) { dst = 1; } if (Settings.tariff[0][dst] != Settings.tariff[1][dst]) { if (Settings.flag3.energy_weekend && ((RtcTime.day_of_week == 1) || // CMND_TARIFF (RtcTime.day_of_week == 7))) { return true; } uint32_t minutes = MinutesPastMidnight(); if (Settings.tariff[0][dst] > Settings.tariff[1][dst]) { // {"Tariff":{"Off-Peak":{"STD":"22:00","DST":"23:00"},"Standard":{"STD":"06:00","DST":"07:00"},"Weekend":"OFF"}} return ((minutes >= Settings.tariff[0][dst]) || (minutes < Settings.tariff[1][dst])); } else { // {"Tariff":{"Off-Peak":{"STD":"00:29","DST":"01:29"},"Standard":{"STD":"07:29","DST":"08:29"},"Weekend":"OFF"}} return ((minutes >= Settings.tariff[0][dst]) && (minutes < Settings.tariff[1][dst])); } } else { return false; } } void EnergyUpdateToday(void) { if (Energy.kWhtoday_delta > 1000) { unsigned long delta = Energy.kWhtoday_delta / 1000; Energy.kWhtoday_delta -= (delta * 1000); Energy.kWhtoday += delta; } RtcSettings.energy_kWhtoday = Energy.kWhtoday_offset + Energy.kWhtoday; Energy.daily = (float)(RtcSettings.energy_kWhtoday) / 100000; Energy.total = (float)(RtcSettings.energy_kWhtotal + RtcSettings.energy_kWhtoday) / 100000; if (RtcTime.valid){ // We calc the difference only if we have a valid RTC time. uint32_t energy_diff = (uint32_t)(Energy.total * 100000) - RtcSettings.energy_usage.last_usage_kWhtotal; RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total * 100000); uint32_t return_diff = 0; if (!isnan(Energy.export_active)) { return_diff = (uint32_t)(Energy.export_active * 100000) - RtcSettings.energy_usage.last_return_kWhtotal; RtcSettings.energy_usage.last_return_kWhtotal = (uint32_t)(Energy.export_active * 100000); } if (EnergyTariff1Active()) { // Tarrif1 = Off-Peak RtcSettings.energy_usage.usage1_kWhtotal += energy_diff; RtcSettings.energy_usage.return1_kWhtotal += return_diff; } else { RtcSettings.energy_usage.usage2_kWhtotal += energy_diff; RtcSettings.energy_usage.return2_kWhtotal += return_diff; } } } void EnergyUpdateTotal(float value, bool kwh) { // char energy_total_chr[FLOATSZ]; // dtostrfd(value, 4, energy_total_chr); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total %s %sWh"), energy_total_chr, (kwh) ? "k" : ""); uint32_t multiplier = (kwh) ? 100000 : 100; // kWh or Wh to deca milli Wh if (0 == Energy.start_energy || (value < Energy.start_energy)) { Energy.start_energy = value; // Init after restart and handle roll-over if any } else if (value != Energy.start_energy) { Energy.kWhtoday = (unsigned long)((value - Energy.start_energy) * multiplier); } if ((Energy.total < (value - 0.01)) && // We subtract a little offset to avoid continuous updates Settings.flag3.hardware_energy_total) { // SetOption72 - Enable hardware energy total counter as reference (#6561) RtcSettings.energy_kWhtotal = (unsigned long)((value * multiplier) - Energy.kWhtoday_offset - Energy.kWhtoday); Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal; Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday_offset + Energy.kWhtoday) / 100000; Settings.energy_kWhtotal_time = (!Energy.kWhtoday_offset) ? LocalTime() : Midnight(); // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("NRG: Energy Total updated with hardware value")); } EnergyUpdateToday(); } /*********************************************************************************************/ void Energy200ms(void) { Energy.power_on = (power != 0) | Settings.flag.no_power_on_check; // SetOption21 - Show voltage even if powered off Energy.fifth_second++; if (5 == Energy.fifth_second) { Energy.fifth_second = 0; XnrgCall(FUNC_ENERGY_EVERY_SECOND); if (RtcTime.valid) { if (LocalTime() == Midnight()) { Settings.energy_kWhyesterday = RtcSettings.energy_kWhtoday; RtcSettings.energy_kWhtotal += RtcSettings.energy_kWhtoday; Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal; Energy.kWhtoday = 0; Energy.kWhtoday_offset = 0; RtcSettings.energy_kWhtoday = 0; Energy.start_energy = 0; Energy.kWhtoday_delta = 0; Energy.period = Energy.kWhtoday; EnergyUpdateToday(); #if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT) Energy.max_energy_state = 3; #endif // USE_ENERGY_POWER_LIMIT } #if defined(USE_ENERGY_MARGIN_DETECTION) && defined(USE_ENERGY_POWER_LIMIT) if ((RtcTime.hour == Settings.energy_max_energy_start) && (3 == Energy.max_energy_state )) { Energy.max_energy_state = 0; } #endif // USE_ENERGY_POWER_LIMIT } } XnrgCall(FUNC_EVERY_200_MSECOND); } void EnergySaveState(void) { Settings.energy_kWhdoy = (RtcTime.valid) ? RtcTime.day_of_year : 0; Settings.energy_kWhtoday = RtcSettings.energy_kWhtoday; Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal; Settings.energy_usage = RtcSettings.energy_usage; } #ifdef USE_ENERGY_MARGIN_DETECTION bool EnergyMargin(bool type, uint16_t margin, uint16_t value, bool &flag, bool &save_flag) { bool change; if (!margin) return false; change = save_flag; if (type) { flag = (value > margin); } else { flag = (value < margin); } save_flag = flag; return (change != save_flag); } void EnergyMarginCheck(void) { if (Energy.power_steady_counter) { Energy.power_steady_counter--; return; } uint16_t energy_power_u = (uint16_t)(Energy.active_power[0]); if (Settings.energy_power_delta) { uint16_t delta = abs(Energy.power_history[0] - energy_power_u); uint16_t min_power = (Energy.power_history[0] > energy_power_u) ? energy_power_u : Energy.power_history[0]; DEBUG_DRIVER_LOG(PSTR("NRG: Delta %d, Power %d"), delta, min_power); if ((delta > 0) && (min_power > 0)) { // Fix divide by 0 exception (#6741) if (((Settings.energy_power_delta < 101) && (((delta * 100) / min_power) > Settings.energy_power_delta)) || // 1..100 = Percentage ((Settings.energy_power_delta > 100) && (delta > (Settings.energy_power_delta -100)))) { // 101..32000 = Absolute Energy.power_delta = true; Energy.power_history[1] = Energy.active_power[0]; // We only want one report so reset history Energy.power_history[2] = Energy.active_power[0]; } } } Energy.power_history[0] = Energy.power_history[1]; // Shift in history every second allowing power changes to settle for up to three seconds Energy.power_history[1] = Energy.power_history[2]; Energy.power_history[2] = energy_power_u; if (Energy.power_on && (Settings.energy_min_power || Settings.energy_max_power || Settings.energy_min_voltage || Settings.energy_max_voltage || Settings.energy_min_current || Settings.energy_max_current)) { uint16_t energy_voltage_u = (uint16_t)(Energy.voltage[0]); uint16_t energy_current_u = (uint16_t)(Energy.current[0] * 1000); DEBUG_DRIVER_LOG(PSTR("NRG: W %d, U %d, I %d"), energy_power_u, energy_voltage_u, energy_current_u); Response_P(PSTR("{")); bool flag; bool jsonflg = false; if (EnergyMargin(false, Settings.energy_min_power, energy_power_u, flag, Energy.min_power_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings.energy_max_power, energy_power_u, flag, Energy.max_power_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_POWERHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Settings.energy_min_voltage, energy_voltage_u, flag, Energy.min_voltage_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGELOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings.energy_max_voltage, energy_voltage_u, flag, Energy.max_voltage_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_VOLTAGEHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(false, Settings.energy_min_current, energy_current_u, flag, Energy.min_current_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTLOW "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (EnergyMargin(true, Settings.energy_max_current, energy_current_u, flag, Energy.max_current_flag)) { ResponseAppend_P(PSTR("%s\"" D_CMND_CURRENTHIGH "\":\"%s\""), (jsonflg)?",":"", GetStateText(flag)); jsonflg = true; } if (jsonflg) { ResponseJsonEnd(); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_MARGINS), MQTT_TELE_RETAIN); EnergyMqttShow(); } } #ifdef USE_ENERGY_POWER_LIMIT // Max Power if (Settings.energy_max_power_limit) { if (Energy.active_power[0] > Settings.energy_max_power_limit) { if (!Energy.mplh_counter) { Energy.mplh_counter = Settings.energy_max_power_limit_hold; } else { Energy.mplh_counter--; if (!Energy.mplh_counter) { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHED "\":%d}"), energy_power_u); MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); SetAllPower(POWER_ALL_OFF, SRC_MAXPOWER); if (!Energy.mplr_counter) { Energy.mplr_counter = Settings.param[P_MAX_POWER_RETRY] +1; } Energy.mplw_counter = Settings.energy_max_power_limit_window; } } } else if (power && (energy_power_u <= Settings.energy_max_power_limit)) { Energy.mplh_counter = 0; Energy.mplr_counter = 0; Energy.mplw_counter = 0; } if (!power) { if (Energy.mplw_counter) { Energy.mplw_counter--; } else { if (Energy.mplr_counter) { Energy.mplr_counter--; if (Energy.mplr_counter) { ResponseTime_P(PSTR(",\"" D_JSON_POWERMONITOR "\":\"%s\"}"), GetStateText(1)); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_POWERMONITOR)); RestorePower(true, SRC_MAXPOWER); } else { ResponseTime_P(PSTR(",\"" D_JSON_MAXPOWERREACHEDRETRY "\":\"%s\"}"), GetStateText(0)); MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); } } } } } // Max Energy if (Settings.energy_max_energy) { uint16_t energy_daily_u = (uint16_t)(Energy.daily * 1000); if (!Energy.max_energy_state && (RtcTime.hour == Settings.energy_max_energy_start)) { Energy.max_energy_state = 1; ResponseTime_P(PSTR(",\"" D_JSON_ENERGYMONITOR "\":\"%s\"}"), GetStateText(1)); MqttPublishPrefixTopic_P(RESULT_OR_STAT, PSTR(D_JSON_ENERGYMONITOR)); RestorePower(true, SRC_MAXENERGY); } else if ((1 == Energy.max_energy_state ) && (energy_daily_u >= Settings.energy_max_energy)) { Energy.max_energy_state = 2; char stemp[FLOATSZ]; dtostrfd(Energy.daily, 3, stemp); ResponseTime_P(PSTR(",\"" D_JSON_MAXENERGYREACHED "\":%s}"), stemp); MqttPublishPrefixTopic_P(STAT, S_RSLT_WARNING); EnergyMqttShow(); SetAllPower(POWER_ALL_OFF, SRC_MAXENERGY); } } #endif // USE_ENERGY_POWER_LIMIT if (Energy.power_delta) { EnergyMqttShow(); } } void EnergyMqttShow(void) { // {"Time":"2017-12-16T11:48:55","ENERGY":{"Total":0.212,"Yesterday":0.000,"Today":0.014,"Period":2.0,"Power":22.0,"Factor":1.00,"Voltage":213.6,"Current":0.100}} int tele_period_save = tele_period; tele_period = 2; mqtt_data[0] = '\0'; ResponseAppendTime(); EnergyShow(true); tele_period = tele_period_save; ResponseJsonEnd(); MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); // CMND_SENSORRETAIN Energy.power_delta = false; } #endif // USE_ENERGY_MARGIN_DETECTION void EnergyEverySecond() { // Overtemp check if (global_update) { if (power && (global_temperature != 9999) && (global_temperature > Settings.param[P_OVER_TEMP])) { // Device overtemp, turn off relays SetAllPower(POWER_ALL_OFF, SRC_OVERTEMP); } } // Invalid data reset uint32_t data_valid = Energy.phase_count; for (uint32_t i = 0; i < Energy.phase_count; i++) { if (Energy.data_valid[i] <= ENERGY_WATCHDOG) { Energy.data_valid[i]++; if (Energy.data_valid[i] > ENERGY_WATCHDOG) { // Reset energy registers Energy.voltage[i] = 0; Energy.current[i] = 0; Energy.active_power[i] = 0; if (!isnan(Energy.apparent_power[i])) { Energy.apparent_power[i] = 0; } if (!isnan(Energy.reactive_power[i])) { Energy.reactive_power[i] = 0; } if (!isnan(Energy.frequency[i])) { Energy.frequency[i] = 0; } if (!isnan(Energy.power_factor[i])) { Energy.power_factor[i] = 0; } data_valid--; } } } if (!data_valid) { if (!isnan(Energy.export_active)) { Energy.export_active = 0; } Energy.start_energy = 0; XnrgCall(FUNC_ENERGY_RESET); } #ifdef USE_ENERGY_MARGIN_DETECTION EnergyMarginCheck(); #endif // USE_ENERGY_MARGIN_DETECTION } /*********************************************************************************************\ * Commands \*********************************************************************************************/ void EnergyCommandCalResponse(uint32_t nvalue) { snprintf_P(XdrvMailbox.command, CMDSZ, PSTR("%sCal"), XdrvMailbox.command); ResponseCmndNumber(nvalue); } void CmndEnergyReset(void) { if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 3)) { char *p; unsigned long lnum = strtoul(XdrvMailbox.data, &p, 10); if (p != XdrvMailbox.data) { switch (XdrvMailbox.index) { case 1: // Reset Energy Today Energy.kWhtoday_offset = lnum *100; Energy.kWhtoday = 0; Energy.kWhtoday_delta = 0; Energy.start_energy = 0; Energy.period = Energy.kWhtoday_offset; Settings.energy_kWhtoday = Energy.kWhtoday_offset; RtcSettings.energy_kWhtoday = Energy.kWhtoday_offset; Energy.daily = (float)Energy.kWhtoday_offset / 100000; if (!RtcSettings.energy_kWhtotal && !Energy.kWhtoday_offset) { Settings.energy_kWhtotal_time = LocalTime(); } break; case 2: // Reset Energy Yesterday Settings.energy_kWhyesterday = lnum *100; break; case 3: // Reset Energy Total RtcSettings.energy_kWhtotal = lnum *100; Settings.energy_kWhtotal = RtcSettings.energy_kWhtotal; // Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday_offset + Energy.kWhtoday) / 100000; Settings.energy_kWhtotal_time = (!Energy.kWhtoday_offset) ? LocalTime() : Midnight(); RtcSettings.energy_usage.last_usage_kWhtotal = (uint32_t)(Energy.total * 1000); break; } } } else if ((XdrvMailbox.index > 3) && (XdrvMailbox.index <= 5)) { char *p; char *str = strtok_r(XdrvMailbox.data, ", ", &p); int32_t position = -1; uint32_t values[2]; while ((str != nullptr) && (position < 1)) { uint32_t value = strtoul(str, nullptr, 10); position++; values[position] = value *100; str = strtok_r(nullptr, ", ", &p); } switch (XdrvMailbox.index) { case 4: // Reset energy_usage.usage totals if (position > -1) { RtcSettings.energy_usage.usage1_kWhtotal = values[0]; } if (position > 0) { RtcSettings.energy_usage.usage2_kWhtotal = values[1]; } Settings.energy_usage.usage1_kWhtotal = RtcSettings.energy_usage.usage1_kWhtotal; Settings.energy_usage.usage2_kWhtotal = RtcSettings.energy_usage.usage2_kWhtotal; break; case 5: // Reset energy_usage.return totals if (position > -1) { RtcSettings.energy_usage.return1_kWhtotal = values[0]; } if (position > 0) { RtcSettings.energy_usage.return2_kWhtotal = values[1]; } Settings.energy_usage.return1_kWhtotal = RtcSettings.energy_usage.return1_kWhtotal; Settings.energy_usage.return2_kWhtotal = RtcSettings.energy_usage.return2_kWhtotal; break; } } Energy.total = (float)(RtcSettings.energy_kWhtotal + Energy.kWhtoday_offset + Energy.kWhtoday) / 100000; char energy_total_chr[FLOATSZ]; dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr); char energy_daily_chr[FLOATSZ]; dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr); char energy_yesterday_chr[FLOATSZ]; dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr); char energy_usage1_chr[FLOATSZ]; dtostrfd((float)Settings.energy_usage.usage1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_usage1_chr); char energy_usage2_chr[FLOATSZ]; dtostrfd((float)Settings.energy_usage.usage2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_usage2_chr); char energy_return1_chr[FLOATSZ]; dtostrfd((float)Settings.energy_usage.return1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_return1_chr); char energy_return2_chr[FLOATSZ]; dtostrfd((float)Settings.energy_usage.return2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_return2_chr); Response_P(PSTR("{\"%s\":{\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s,\"" D_JSON_USAGE "\":[%s,%s],\"" D_JSON_EXPORT "\":[%s,%s]}}"), XdrvMailbox.command, energy_total_chr, energy_yesterday_chr, energy_daily_chr, energy_usage1_chr, energy_usage2_chr, energy_return1_chr, energy_return2_chr); } void CmndTariff(void) { // Tariff1 22:00,23:00 - Tariff1 start hour for Standard Time and Daylight Savings Time // Tariff2 6:00,7:00 - Tariff2 start hour for Standard Time and Daylight Savings Time // Tariffx 1320, 1380 = minutes and also 22:00, 23:00 // Tariffx 22, 23 = hours and also 22:00, 23:00 // Tariff9 0/1 if ((XdrvMailbox.index > 0) && (XdrvMailbox.index <= 2)) { uint32_t tariff = XdrvMailbox.index -1; uint32_t time_type = 0; char *p; char *str = strtok_r(XdrvMailbox.data, ", ", &p); // 23:15, 22:30 while ((str != nullptr) && (time_type < 2)) { char *q; uint32_t value = strtol(str, &q, 10); // 23 or 22 Settings.tariff[tariff][time_type] = value; if (value < 24) { // Below 24 is hours Settings.tariff[tariff][time_type] *= 60; // Multiply hours by 60 minutes char *minute = strtok_r(nullptr, ":", &q); if (minute) { value = strtol(minute, nullptr, 10); // 15 or 30 if (value > 59) { value = 59; } Settings.tariff[tariff][time_type] += value; } } if (Settings.tariff[tariff][time_type] > 1439) { Settings.tariff[tariff][time_type] = 1439; // Max is 23:59 } str = strtok_r(nullptr, ", ", &p); time_type++; } } else if (XdrvMailbox.index == 9) { Settings.flag3.energy_weekend = XdrvMailbox.payload & 1; // CMND_TARIFF } Response_P(PSTR("{\"%s\":{\"Off-Peak\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Standard\":{\"STD\":\"%s\",\"DST\":\"%s\"},\"Weekend\":\"%s\"}}"), XdrvMailbox.command, GetMinuteTime(Settings.tariff[0][0]).c_str(),GetMinuteTime(Settings.tariff[0][1]).c_str(), GetMinuteTime(Settings.tariff[1][0]).c_str(),GetMinuteTime(Settings.tariff[1][1]).c_str(), GetStateText(Settings.flag3.energy_weekend)); // CMND_TARIFF } void CmndPowerCal(void) { Energy.command_code = CMND_POWERCAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) { Settings.energy_power_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_power_calibration); } } void CmndVoltageCal(void) { Energy.command_code = CMND_VOLTAGECAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) { Settings.energy_voltage_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_voltage_calibration); } } void CmndCurrentCal(void) { Energy.command_code = CMND_CURRENTCAL; if (XnrgCall(FUNC_COMMAND)) { // microseconds if ((XdrvMailbox.payload > 999) && (XdrvMailbox.payload < 32001)) { Settings.energy_current_calibration = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_current_calibration); } } void CmndPowerSet(void) { Energy.command_code = CMND_POWERSET; if (XnrgCall(FUNC_COMMAND)) { // Watt EnergyCommandCalResponse(Settings.energy_power_calibration); } } void CmndVoltageSet(void) { Energy.command_code = CMND_VOLTAGESET; if (XnrgCall(FUNC_COMMAND)) { // Volt EnergyCommandCalResponse(Settings.energy_voltage_calibration); } } void CmndCurrentSet(void) { Energy.command_code = CMND_CURRENTSET; if (XnrgCall(FUNC_COMMAND)) { // milliAmpere EnergyCommandCalResponse(Settings.energy_current_calibration); } } void CmndFrequencySet(void) { Energy.command_code = CMND_FREQUENCYSET; if (XnrgCall(FUNC_COMMAND)) { // Hz EnergyCommandCalResponse(Settings.energy_frequency_calibration); } } void CmndModuleAddress(void) { if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload < 4) && (1 == Energy.phase_count)) { Energy.command_code = CMND_MODULEADDRESS; if (XnrgCall(FUNC_COMMAND)) { // Module address ResponseCmndDone(); } } } #ifdef USE_ENERGY_MARGIN_DETECTION void CmndPowerDelta(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 32000)) { Settings.energy_power_delta = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_power_delta); } void CmndPowerLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_min_power = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_min_power); } void CmndPowerHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power); } void CmndVoltageLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) { Settings.energy_min_voltage = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_min_voltage); } void CmndVoltageHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 501)) { Settings.energy_max_voltage = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_voltage); } void CmndCurrentLow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) { Settings.energy_min_current = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_min_current); } void CmndCurrentHigh(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 16001)) { Settings.energy_max_current = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_current); } #ifdef USE_ENERGY_POWER_LIMIT void CmndMaxPower(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power_limit = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_limit); } void CmndMaxPowerHold(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power_limit_hold = (1 == XdrvMailbox.payload) ? MAX_POWER_HOLD : XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_limit_hold); } void CmndMaxPowerWindow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power_limit_window = (1 == XdrvMailbox.payload) ? MAX_POWER_WINDOW : XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_limit_window); } void CmndSafePower(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power_safe_limit = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_safe_limit); } void CmndSafePowerHold(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_power_safe_limit_hold = (1 == XdrvMailbox.payload) ? SAFE_POWER_HOLD : XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_safe_limit_hold); } void CmndSafePowerWindow(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 1440)) { Settings.energy_max_power_safe_limit_window = (1 == XdrvMailbox.payload) ? SAFE_POWER_WINDOW : XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_power_safe_limit_window); } void CmndMaxEnergy(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 3601)) { Settings.energy_max_energy = XdrvMailbox.payload; Energy.max_energy_state = 3; } ResponseCmndNumber(Settings.energy_max_energy); } void CmndMaxEnergyStart(void) { if ((XdrvMailbox.payload >= 0) && (XdrvMailbox.payload < 24)) { Settings.energy_max_energy_start = XdrvMailbox.payload; } ResponseCmndNumber(Settings.energy_max_energy_start); } #endif // USE_ENERGY_POWER_LIMIT #endif // USE_ENERGY_MARGIN_DETECTION void EnergyDrvInit(void) { energy_flg = ENERGY_NONE; XnrgCall(FUNC_PRE_INIT); // Find first energy driver } void EnergySnsInit(void) { XnrgCall(FUNC_INIT); if (energy_flg) { if (RtcSettingsValid()) { Energy.kWhtoday_offset = RtcSettings.energy_kWhtoday; } else if (RtcTime.day_of_year == Settings.energy_kWhdoy) { Energy.kWhtoday_offset = Settings.energy_kWhtoday; } else { Energy.kWhtoday_offset = 0; } Energy.kWhtoday = 0; Energy.kWhtoday_delta = 0; Energy.period = Energy.kWhtoday_offset; EnergyUpdateToday(); ticker_energy.attach_ms(200, Energy200ms); } } #ifdef USE_WEBSERVER const char HTTP_ENERGY_SNS1[] PROGMEM = "{s}" D_POWERUSAGE_APPARENT "{m}%s " D_UNIT_VA "{e}" "{s}" D_POWERUSAGE_REACTIVE "{m}%s " D_UNIT_VAR "{e}" "{s}" D_POWER_FACTOR "{m}%s{e}"; const char HTTP_ENERGY_SNS2[] PROGMEM = "{s}" D_ENERGY_TODAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}" D_ENERGY_YESTERDAY "{m}%s " D_UNIT_KILOWATTHOUR "{e}" "{s}" D_ENERGY_TOTAL "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; // {s} = , {m} = , {e} = const char HTTP_ENERGY_SNS3[] PROGMEM = "{s}" D_EXPORT_ACTIVE "{m}%s " D_UNIT_KILOWATTHOUR "{e}"; #endif // USE_WEBSERVER char* EnergyFormatIndex(char* result, char* input, bool json, uint32_t index, bool single = false) { char layout[16]; GetTextIndexed(layout, sizeof(layout), (index -1) + (3 * json), kEnergyPhases); switch (index) { case 2: snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ); // Dirty break; case 3: snprintf_P(result, FLOATSZ *3, layout, input, input + FLOATSZ, input + FLOATSZ + FLOATSZ); // Even dirtier break; default: snprintf_P(result, FLOATSZ *3, input); } return result; } char* EnergyFormat(char* result, char* input, bool json, bool single = false) { uint8_t index = (single) ? 1 : Energy.phase_count; // 1,2,3 return EnergyFormatIndex(result, input, json, index, single); } void EnergyShow(bool json) { for (uint32_t i = 0; i < Energy.phase_count; i++) { if (Energy.voltage_common) { Energy.voltage[i] = Energy.voltage[0]; } } float power_factor_knx = Energy.power_factor[0]; char apparent_power_chr[Energy.phase_count][FLOATSZ]; char reactive_power_chr[Energy.phase_count][FLOATSZ]; char power_factor_chr[Energy.phase_count][FLOATSZ]; char frequency_chr[Energy.phase_count][FLOATSZ]; if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { for (uint32_t i = 0; i < Energy.phase_count; i++) { float apparent_power = Energy.apparent_power[i]; if (isnan(apparent_power)) { apparent_power = Energy.voltage[i] * Energy.current[i]; } if (apparent_power < Energy.active_power[i]) { // Should be impossible Energy.active_power[i] = apparent_power; } float power_factor = Energy.power_factor[i]; if (isnan(power_factor)) { power_factor = (Energy.active_power[i] && apparent_power) ? Energy.active_power[i] / apparent_power : 0; if (power_factor > 1) { power_factor = 1; } } if (0 == i) { power_factor_knx = power_factor; } float reactive_power = Energy.reactive_power[i]; if (isnan(reactive_power)) { reactive_power = 0; uint32_t difference = ((uint32_t)(apparent_power * 100) - (uint32_t)(Energy.active_power[i] * 100)) / 10; if ((Energy.current[i] > 0.005) && ((difference > 15) || (difference > (uint32_t)(apparent_power * 100 / 1000)))) { // calculating reactive power only if current is greater than 0.005A and // difference between active and apparent power is greater than 1.5W or 1% reactive_power = (float)(RoundSqrtInt((uint32_t)(apparent_power * apparent_power * 100) - (uint32_t)(Energy.active_power[i] * Energy.active_power[i] * 100))) / 10; } } dtostrfd(apparent_power, Settings.flag2.wattage_resolution, apparent_power_chr[i]); dtostrfd(reactive_power, Settings.flag2.wattage_resolution, reactive_power_chr[i]); dtostrfd(power_factor, 2, power_factor_chr[i]); } } for (uint32_t i = 0; i < Energy.phase_count; i++) { float frequency = Energy.frequency[i]; if (isnan(Energy.frequency[i])) { frequency = 0; } dtostrfd(frequency, Settings.flag2.frequency_resolution, frequency_chr[i]); } } char voltage_chr[Energy.phase_count][FLOATSZ]; char current_chr[Energy.phase_count][FLOATSZ]; char active_power_chr[Energy.phase_count][FLOATSZ]; for (uint32_t i = 0; i < Energy.phase_count; i++) { dtostrfd(Energy.voltage[i], Settings.flag2.voltage_resolution, voltage_chr[i]); dtostrfd(Energy.current[i], Settings.flag2.current_resolution, current_chr[i]); dtostrfd(Energy.active_power[i], Settings.flag2.wattage_resolution, active_power_chr[i]); } char energy_daily_chr[FLOATSZ]; dtostrfd(Energy.daily, Settings.flag2.energy_resolution, energy_daily_chr); char energy_yesterday_chr[FLOATSZ]; dtostrfd((float)Settings.energy_kWhyesterday / 100000, Settings.flag2.energy_resolution, energy_yesterday_chr); char energy_total_chr[3][FLOATSZ]; dtostrfd(Energy.total, Settings.flag2.energy_resolution, energy_total_chr[0]); char export_active_chr[3][FLOATSZ]; dtostrfd(Energy.export_active, Settings.flag2.energy_resolution, export_active_chr[0]); uint8_t energy_total_fields = 1; if (Settings.tariff[0][0] != Settings.tariff[1][0]) { dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_total_chr[1]); // Tariff1 dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100000, Settings.flag2.energy_resolution, energy_total_chr[2]); // Tariff2 dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100000, Settings.flag2.energy_resolution, export_active_chr[1]); // Tariff1 dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100000, Settings.flag2.energy_resolution, export_active_chr[2]); // Tariff2 energy_total_fields = 3; } char value_chr[FLOATSZ *3]; // Used by EnergyFormatIndex char value2_chr[FLOATSZ *3]; char value3_chr[FLOATSZ *3]; if (json) { bool show_energy_period = (0 == tele_period); ResponseAppend_P(PSTR(",\"" D_RSLT_ENERGY "\":{\"" D_JSON_TOTAL_START_TIME "\":\"%s\",\"" D_JSON_TOTAL "\":%s,\"" D_JSON_YESTERDAY "\":%s,\"" D_JSON_TODAY "\":%s"), GetDateAndTime(DT_ENERGY).c_str(), EnergyFormatIndex(value_chr, energy_total_chr[0], json, energy_total_fields), energy_yesterday_chr, energy_daily_chr); if (!isnan(Energy.export_active)) { ResponseAppend_P(PSTR(",\"" D_JSON_EXPORT_ACTIVE "\":%s"), EnergyFormatIndex(value_chr, export_active_chr[0], json, energy_total_fields)); } if (show_energy_period) { float energy = 0; if (Energy.period) { energy = (float)(RtcSettings.energy_kWhtoday - Energy.period) / 100; } Energy.period = RtcSettings.energy_kWhtoday; char energy_period_chr[FLOATSZ]; dtostrfd(energy, Settings.flag2.wattage_resolution, energy_period_chr); ResponseAppend_P(PSTR(",\"" D_JSON_PERIOD "\":%s"), energy_period_chr); } ResponseAppend_P(PSTR(",\"" D_JSON_POWERUSAGE "\":%s"), EnergyFormat(value_chr, active_power_chr[0], json)); if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_APPARENT_POWERUSAGE "\":%s,\"" D_JSON_REACTIVE_POWERUSAGE "\":%s,\"" D_JSON_POWERFACTOR "\":%s"), EnergyFormat(value_chr, apparent_power_chr[0], json), EnergyFormat(value2_chr, reactive_power_chr[0], json), EnergyFormat(value3_chr, power_factor_chr[0], json)); } if (!isnan(Energy.frequency[0])) { ResponseAppend_P(PSTR(",\"" D_JSON_FREQUENCY "\":%s"), EnergyFormat(value_chr, frequency_chr[0], json, Energy.voltage_common)); } } if (Energy.voltage_available) { ResponseAppend_P(PSTR(",\"" D_JSON_VOLTAGE "\":%s"), EnergyFormat(value_chr, voltage_chr[0], json, Energy.voltage_common)); } if (Energy.current_available) { ResponseAppend_P(PSTR(",\"" D_JSON_CURRENT "\":%s"), EnergyFormat(value_chr, current_chr[0], json)); } XnrgCall(FUNC_JSON_APPEND); ResponseJsonEnd(); #ifdef USE_DOMOTICZ if (show_energy_period) { // Only send if telemetry dtostrfd(Energy.total * 1000, 1, energy_total_chr[0]); DomoticzSensorPowerEnergy((int)Energy.active_power[0], energy_total_chr[0]); // PowerUsage, EnergyToday dtostrfd((float)RtcSettings.energy_usage.usage1_kWhtotal / 100, 1, energy_total_chr[1]); // Tariff1 dtostrfd((float)RtcSettings.energy_usage.usage2_kWhtotal / 100, 1, energy_total_chr[2]); // Tariff2 dtostrfd((float)RtcSettings.energy_usage.return1_kWhtotal / 100, 1, export_active_chr[1]); dtostrfd((float)RtcSettings.energy_usage.return2_kWhtotal / 100, 1, export_active_chr[2]); DomoticzSensorP1SmartMeter(energy_total_chr[1], energy_total_chr[2], export_active_chr[1], export_active_chr[2], (int)Energy.active_power[0]); if (Energy.voltage_available) { DomoticzSensor(DZ_VOLTAGE, voltage_chr[0]); // Voltage } if (Energy.current_available) { DomoticzSensor(DZ_CURRENT, current_chr[0]); // Current } } #endif // USE_DOMOTICZ #ifdef USE_KNX if (show_energy_period) { if (Energy.voltage_available) { KnxSensor(KNX_ENERGY_VOLTAGE, Energy.voltage[0]); } if (Energy.current_available) { KnxSensor(KNX_ENERGY_CURRENT, Energy.current[0]); } KnxSensor(KNX_ENERGY_POWER, Energy.active_power[0]); if (!Energy.type_dc) { KnxSensor(KNX_ENERGY_POWERFACTOR, power_factor_knx); } KnxSensor(KNX_ENERGY_DAILY, Energy.daily); KnxSensor(KNX_ENERGY_TOTAL, Energy.total); KnxSensor(KNX_ENERGY_START, Energy.start_energy); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { if (Energy.voltage_available) { WSContentSend_PD(PSTR("{s}" D_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"), EnergyFormat(value_chr, voltage_chr[0], json, Energy.voltage_common)); } if (Energy.current_available) { WSContentSend_PD(PSTR("{s}" D_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"), EnergyFormat(value_chr, current_chr[0], json)); } WSContentSend_PD(PSTR("{s}" D_POWERUSAGE "{m}%s " D_UNIT_WATT "{e}"), EnergyFormat(value_chr, active_power_chr[0], json)); if (!Energy.type_dc) { if (Energy.current_available && Energy.voltage_available) { WSContentSend_PD(HTTP_ENERGY_SNS1, EnergyFormat(value_chr, apparent_power_chr[0], json), EnergyFormat(value2_chr, reactive_power_chr[0], json), EnergyFormat(value3_chr, power_factor_chr[0], json)); } if (!isnan(Energy.frequency[0])) { WSContentSend_PD(PSTR("{s}" D_FREQUENCY "{m}%s " D_UNIT_HERTZ "{e}"), EnergyFormat(value_chr, frequency_chr[0], json, Energy.voltage_common)); } } WSContentSend_PD(HTTP_ENERGY_SNS2, energy_daily_chr, energy_yesterday_chr, energy_total_chr[0]); if (!isnan(Energy.export_active)) { WSContentSend_PD(HTTP_ENERGY_SNS3, export_active_chr[0]); } XnrgCall(FUNC_WEB_SENSOR); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv03(uint8_t function) { bool result = false; if (FUNC_PRE_INIT == function) { EnergyDrvInit(); } else if (energy_flg) { switch (function) { case FUNC_LOOP: XnrgCall(FUNC_LOOP); break; case FUNC_EVERY_250_MSECOND: XnrgCall(FUNC_EVERY_250_MSECOND); break; case FUNC_SERIAL: result = XnrgCall(FUNC_SERIAL); break; #ifdef USE_ENERGY_MARGIN_DETECTION case FUNC_SET_POWER: Energy.power_steady_counter = 2; break; #endif // USE_ENERGY_MARGIN_DETECTION case FUNC_COMMAND: result = DecodeCommand(kEnergyCommands, EnergyCommand); break; } } return result; } bool Xsns03(uint8_t function) { bool result = false; if (energy_flg) { switch (function) { case FUNC_EVERY_SECOND: EnergyEverySecond(); break; case FUNC_JSON_APPEND: EnergyShow(true); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: EnergyShow(false); break; #endif // USE_WEBSERVER case FUNC_SAVE_BEFORE_RESTART: EnergySaveState(); break; case FUNC_INIT: EnergySnsInit(); break; } } return result; } #endif // USE_ENERGY_SENSOR