/* xnrg_05_pzem_ac.ino - PZEM-014,016 Modbus AC energy sensor support for Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_PZEM_AC /*********************************************************************************************\ * PZEM-004T V3 - AC 220V 10/100A Energy * PZEM-014 - AC 220V 10A Energy * PZEM-016 - AC 220V 100A Energy * * Based on: * PZEM-014,016 docs https://pan.baidu.com/s/1B0MdMgURyjtO1oQa2lavKw password ytkv * * Hardware Serial will be selected if GPIO1 = [62 PZEM0XX Tx] and GPIO3 = [98 PZEM016 Rx] \*********************************************************************************************/ #define XNRG_05 5 const uint8_t PZEM_AC_DEVICE_ADDRESS = 0x01; // PZEM default address const uint32_t PZEM_AC_STABILIZE = 30; // Number of seconds to stabilize configuration #include TasmotaModbus *PzemAcModbus; struct PZEMAC { float energy = 0; float last_energy = 0; uint8_t send_retry = 0; uint8_t phase = 0; uint8_t address = 0; uint8_t address_step = ADDR_IDLE; } PzemAc; void PzemAcEverySecond(void) { bool data_ready = PzemAcModbus->ReceiveReady(); if (data_ready) { uint8_t buffer[30]; // At least 5 + (2 * 10) = 25 uint8_t registers = 10; if (ADDR_RECEIVE == PzemAc.address_step) { registers = 2; // Need 1 byte extra as response is F8 06 00 02 00 01 FD A3 PzemAc.address_step--; } uint8_t error = PzemAcModbus->ReceiveBuffer(buffer, registers); AddLogBuffer(LOG_LEVEL_DEBUG_MORE, buffer, PzemAcModbus->ReceiveCount()); if (error) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("PAC: PzemAc %d error %d"), PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, error); } else { Energy.data_valid[PzemAc.phase] = 0; if (10 == registers) { // 0 1 2 3 4 5 6 7 8 9 = ModBus register // 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 = Buffer index // 01 04 14 08 D1 00 6C 00 00 00 F4 00 00 00 26 00 00 01 F4 00 64 00 00 51 34 // Id Cc Sz Volt- Current---- Power------ Energy----- Frequ PFact Alarm Crc-- Energy.voltage[PzemAc.phase] = (float)((buffer[3] << 8) + buffer[4]) / 10.0; // 6553.0 V Energy.current[PzemAc.phase] = (float)((buffer[7] << 24) + (buffer[8] << 16) + (buffer[5] << 8) + buffer[6]) / 1000.0; // 4294967.000 A Energy.active_power[PzemAc.phase] = (float)((buffer[11] << 24) + (buffer[12] << 16) + (buffer[9] << 8) + buffer[10]) / 10.0; // 429496729.0 W Energy.frequency[PzemAc.phase] = (float)((buffer[17] << 8) + buffer[18]) / 10.0; // 50.0 Hz Energy.power_factor[PzemAc.phase] = (float)((buffer[19] << 8) + buffer[20]) / 100.0; // 1.00 PzemAc.energy += (float)((buffer[15] << 24) + (buffer[16] << 16) + (buffer[13] << 8) + buffer[14]); // 4294967295 Wh if (PzemAc.phase == Energy.phase_count -1) { if (PzemAc.energy > PzemAc.last_energy) { // Handle missed phase if (uptime > PZEM_AC_STABILIZE) { EnergyUpdateTotal(PzemAc.energy, false); } PzemAc.last_energy = PzemAc.energy; } PzemAc.energy = 0; } } } } if (0 == PzemAc.send_retry || data_ready) { if (0 == PzemAc.phase) { PzemAc.phase = Energy.phase_count -1; } else { PzemAc.phase--; } PzemAc.send_retry = ENERGY_WATCHDOG; if (ADDR_SEND == PzemAc.address_step) { PzemAcModbus->Send(0xF8, 0x06, 0x0002, (uint16_t)PzemAc.address); PzemAc.address_step--; } else { PzemAcModbus->Send(PZEM_AC_DEVICE_ADDRESS + PzemAc.phase, 0x04, 0, 10); } } else { PzemAc.send_retry--; if ((Energy.phase_count > 1) && (0 == PzemAc.send_retry) && (uptime < PZEM_AC_STABILIZE)) { Energy.phase_count--; // Decrement phases if no response after retry within 30 seconds after restart } } } void PzemAcSnsInit(void) { PzemAcModbus = new TasmotaModbus(pin[GPIO_PZEM016_RX], pin[GPIO_PZEM0XX_TX]); uint8_t result = PzemAcModbus->Begin(9600); if (result) { if (2 == result) { ClaimSerial(); } Energy.phase_count = 3; // Start off with three phases PzemAc.phase = 0; } else { energy_flg = ENERGY_NONE; } } void PzemAcDrvInit(void) { if ((pin[GPIO_PZEM016_RX] < 99) && (pin[GPIO_PZEM0XX_TX] < 99)) { energy_flg = XNRG_05; } } bool PzemAcCommand(void) { bool serviced = true; if (CMND_MODULEADDRESS == Energy.command_code) { PzemAc.address = XdrvMailbox.payload; // Valid addresses are 1, 2 and 3 PzemAc.address_step = ADDR_SEND; } else serviced = false; // Unknown command return serviced; } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg05(uint8_t function) { bool result = false; switch (function) { case FUNC_ENERGY_EVERY_SECOND: if (uptime > 4) { PzemAcEverySecond(); } // Fix start up issue #5875 break; case FUNC_COMMAND: result = PzemAcCommand(); break; case FUNC_INIT: PzemAcSnsInit(); break; case FUNC_PRE_INIT: PzemAcDrvInit(); break; } return result; } #endif // USE_PZEM_AC #endif // USE_ENERGY_SENSOR