/*MIT License Copyright (c) 2017 xlatb Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ #include #include "RA8876.h" #include uint8_t initdone; /* TODO font 0 x and y size with line,col cmd support for rotation fast picture write */ //void SHOW_STAGE(uint8_t stage) { // Serial.printf(">%d,\n", stage); // enum LoggingLevels {LOG_LEVEL_NONE, LOG_LEVEL_ERROR, LOG_LEVEL_INFO, LOG_LEVEL_DEBUG, LOG_LEVEL_DEBUG_MORE}; extern void AddLog(uint32_t loglevel, PGM_P formatP, ...); const uint16_t RA8876_colors[]={RA8876_BLACK,RA8876_WHITE,RA8876_RED,RA8876_GREEN,RA8876_BLUE,RA8876_CYAN,RA8876_MAGENTA,\ RA8876_YELLOW,RA8876_NAVY,RA8876_DARKGREEN,RA8876_DARKCYAN,RA8876_MAROON,RA8876_PURPLE,RA8876_OLIVE,\ RA8876_LIGHTGREY,RA8876_DARKGREY,RA8876_ORANGE,RA8876_GREENYELLOW,RA8876_PINK}; uint16_t RA8876::GetColorFromIndex(uint8_t index) { if (index>=sizeof(RA8876_colors)/2) index=0; return RA8876_colors[index]; } // Constructor when using software SPI. All output pins are configurable. RA8876::RA8876(int8_t cs,int8_t mosi,int8_t miso,int8_t sclk,int8_t bp) : Renderer(RA8876_TFTWIDTH, RA8876_TFTHEIGHT) { m_csPin = cs; _mosi = mosi; _miso = miso; _sclk = sclk; /* _bp = bp; if (_bp<99) { pinMode(_bp, OUTPUT); digitalWrite(_bp,HIGH); }*/ _hwspi = 1; } //#define RA8876_CS_LOW digitalWrite(m_csPin, LOW) //#define RA8876_CS_HIGH digitalWrite(m_csPin, HIGH) #ifndef ESP32 #define RA8876_CS_LOW GPOC=(1<> 8); } uint8_t RA8876::readReg(uint8_t reg) { writeCmd(reg); return readData(); } // Like readReg(), but does two successive register reads of a 16-bit value, low byte first. uint16_t RA8876::readReg16(uint8_t reg) { uint16_t v; writeCmd(reg); v = readData(); writeCmd(reg + 1); v |= readData() << 8; return v; } // Trigger a soft reset. Note that the data sheet section 19.2 says that this only resets the // "internal state machine", not any configuration registers. void RA8876::softReset(void) { SPI.beginTransaction(m_spiSettings); // Trigger soft reset writeReg(RA8876_REG_SRR, 0x01); delay(5); // Wait for status register to show "normal operation". uint8_t status; for (int i = 0; i < 250; i++) { delay(1); if (((status = readStatus()) & 0x02) == 0) break; } SPI.endTransaction(); return; } void RA8876::DisplayOnff(int8_t on) { uint8_t dpcr; SPI.beginTransaction(m_spiSettings); dpcr = readReg(RA8876_REG_DPCR); if (on) { dpcr |= 0x40; // Display on } else { dpcr &= 0x40^0xff; // Display off // backlight off writeReg(RA8876_REG_TCMPB0L,0); writeReg(RA8876_REG_TCMPB0H,0); } writeReg(RA8876_REG_DPCR, dpcr); SPI.endTransaction(); if (on) { dim(dimmer); } } void RA8876::dim10(uint8_t contrast, uint16_t contrast_gamma) { dim(contrast / 16); } // 0-15 void RA8876::dim(uint8_t contrast) { SPI.beginTransaction(m_spiSettings); dimmer=contrast; // pwm0 duty uint32_t duty=(contrast*1024)/15; writeReg(RA8876_REG_TCMPB0L,duty); writeReg(RA8876_REG_TCMPB0H,duty>>8); SPI.endTransaction(); } // pwm needed for backlight dimmer void RA8876::PWM_init(void) { SPI.beginTransaction(m_spiSettings); writeReg(RA8876_REG_PSCLR,3); uint8_t val=RA8876_PWM_TIMER_DIV4<<6|RA8876_PWM_TIMER_DIV4<<4|RA8876_XPWM1_OUTPUT_PWM_TIMER1<<2|RA8876_XPWM0_OUTPUT_PWM_TIMER0; writeReg(RA8876_REG_PMUXR,val); val=RA8876_PWM_TIMER1_INVERTER_ON<<6|RA8876_PWM_TIMER1_AUTO_RELOAD<<5|RA8876_PWM_TIMER1_START<<4|RA8876_PWM_TIMER0_DEAD_ZONE_DISABLE<<3| RA8876_PWM_TIMER0_INVERTER_OFF<<2|RA8876_PWM_TIMER0_AUTO_RELOAD<<1|RA8876_PWM_TIMER0_START; writeReg(RA8876_REG_PCFGR,val); uint16_t duty=0x00ff; // pwm0 duty for backlight writeReg(RA8876_REG_TCMPB0L,duty); writeReg(RA8876_REG_TCMPB0H,duty>>8); // pwm1 duty not needed duty=0x00ff; writeReg(RA8876_REG_TCMPB1L,duty); writeReg(RA8876_REG_TCMPB1H,duty>>8); // clocksperiod uint16_t clocks_per_period=1024; writeReg(RA8876_REG_TCNTB0L,clocks_per_period); writeReg(RA8876_REG_TCNTB0H,clocks_per_period>>8); writeReg(RA8876_REG_TCNTB1L,clocks_per_period); writeReg(RA8876_REG_TCNTB1H,clocks_per_period>>8); SPI.endTransaction(); } // Given a target frequency in kHz, finds PLL parameters k and n to reach as // close as possible to the target frequency without exceeding it. // The k parameter will be constrained to the range 1..kMax. // Returns true iff PLL params were found, even if not an exact match. bool RA8876::calcPllParams(uint32_t targetFreq, int kMax, PllParams *pll) { bool found = false; int foundk, foundn; uint32_t foundFreq; uint32_t foundError; // Amount lower than requested frequency // k of 0 (i.e. 2 ** 0 = 1) is possible, but not sure if it's a good idea. for (int testk = 1; testk <= kMax; testk++) { if (m_oscClock % (1 << testk)) continue; // Step size with this k would be fractional int testn = (targetFreq / (m_oscClock / (1 << testk))) - 1; if ((testn < 1) || (testn > 63)) continue; // Param n out of range for this k // Fvco constraint found in data sheet section 6.1.2 uint32_t fvco = m_oscClock * (testn + 1); if ((fvco < 100000) && (fvco > 600000)) continue; // Fvco out of range // Found some usable params, but perhaps at a lower frequency than requested. uint32_t freq = (m_oscClock * (testn + 1)) / (1 << testk); uint32_t error = targetFreq - freq; if ((!found) || (found && (foundError > error))) { found = true; foundk = testk; foundn = testn; foundFreq = freq; foundError = error; // No need to keep searching if the frequency match was exact if (foundError == 0) break; } } if (found) { pll->freq = foundFreq; pll->k = foundk; pll->n = foundn; } return found; } // Calculates the clock frequencies and their PLL parameters. bool RA8876::calcClocks(void) { // Data sheet section 5.2 gives max clocks: // memClock : 166 MHz // coreClock: 120 MHz (133MHz if not using internal font) // scanClock: 100 MHz // Mem clock target is the same as SDRAM speed, but capped at 166 MHz uint32_t memClock = m_sdramInfo->speed * 1000; if (memClock > 166000) memClock = 166000; if (!calcPllParams(memClock, 3, &m_memPll)) return false; // Core clock target will be the same as the mem clock, but capped to // 120 MHz, because that is the max frequency if we want to use the // internal font. uint32_t coreClock = m_memPll.freq; if (coreClock > 120000) coreClock = 120000; if (!calcPllParams(coreClock, 3, &m_corePll)) return false; // Scan clock target will be the display's dot clock, but capped at 100 MHz uint32_t scanClock = m_displayInfo->dotClock; if (scanClock > 100000) scanClock = 100000; if (!calcPllParams(scanClock, 7, &m_scanPll)) return false; //dumpClocks(); // Data sheet section 6.1.1 rules: // 1. Core clock must be less than or equal to mem clock if (m_corePll.freq > m_memPll.freq) return false; // 2. Core clock must be greater than half mem clock if ((m_corePll.freq * 2) <= m_memPll.freq) return false; // 3. Core clock must be greater than (scan clock * 1.5) if (m_corePll.freq <= (m_scanPll.freq + (m_scanPll.freq >> 1))) return false; return true; } // Dump clock info to serial monitor. /* void RA8876::dumpClocks(void) { Serial.println("\nMem\n---"); Serial.print("Requested kHz: "); Serial.println(m_sdramInfo->speed * 1000); Serial.print("Actual kHz : "); Serial.println(m_memPll.freq); Serial.print("PLL k : "); Serial.println(m_memPll.k); Serial.print("PLL n : "); Serial.println(m_memPll.n); Serial.println("\nCore\n----"); Serial.print("kHz : "); Serial.println(m_corePll.freq); Serial.print("PLL k : "); Serial.println(m_corePll.k); Serial.print("PLL n : "); Serial.println(m_corePll.n); Serial.println("\nScan\n----"); Serial.print("Requested kHz: "); Serial.println(m_displayInfo->dotClock); Serial.print("Actual kHz : "); Serial.println(m_scanPll.freq); Serial.print("PLL k : "); Serial.println(m_scanPll.k); Serial.print("PLL n : "); Serial.println(m_scanPll.n); // TODO: Frame rate? return; } */ bool RA8876::initPLL(void) { //Serial.println("init PLL"); SPI.beginTransaction(m_spiSettings); //Serial.print("DRAM_FREQ "); Serial.println(m_memPll.freq); //Serial.print("7: "); Serial.println(m_memPll.k << 1); //Serial.print("8: "); Serial.println(m_memPll.n); writeReg(RA8876_REG_MPLLC1, m_memPll.k << 1); writeReg(RA8876_REG_MPLLC2, m_memPll.n); //Serial.print("CORE_FREQ "); Serial.println(m_corePll.freq); //Serial.print("9: "); Serial.println(m_corePll.k << 1); //Serial.print("A: "); Serial.println(m_corePll.n); writeReg(RA8876_REG_SPLLC1, m_corePll.k << 1); writeReg(RA8876_REG_SPLLC2, m_corePll.n); // Per the data sheet, there are two divider fields for the scan clock, but the math seems // to work out if we treat k as a single 3-bit number in bits 3..1. //Serial.print("SCAN_FREQ "); Serial.println(m_scanPll.freq); //Serial.print("5: "); Serial.println(m_scanPll.k << 1); //Serial.print("6: "); Serial.println(m_scanPll.n); writeReg(RA8876_REG_PPLLC1, m_scanPll.k << 1); writeReg(RA8876_REG_PPLLC2, m_scanPll.n); // Toggle bit 7 of the CCR register to trigger a reconfiguration of the PLLs writeReg(RA8876_REG_CCR, 0x00); delay(2); writeReg(RA8876_REG_CCR, 0x80); delay(2); uint8_t ccr = readReg(RA8876_REG_CCR); SPI.endTransaction(); return (ccr & 0x80) ? true : false; } // Initialize SDRAM interface. bool RA8876::initMemory(SdramInfo *info) { //Serial.println("init memory"); uint32_t sdramRefreshRate; uint8_t sdrar = 0x00; uint8_t sdrmd = 0x00; // Refresh rate sdramRefreshRate = ((uint32_t) info->refresh * info->speed * 1000) >> info->rowBits; // Number of banks if (info->banks == 2) ; // NOP else if (info->banks == 4) sdrar |= 0x20; else return false; // Unsupported number of banks // Number of row bits if ((info->rowBits < 11) || (info->rowBits > 13)) return false; // Unsupported number of row bits else sdrar |= ((info->rowBits - 11) & 0x03) << 3; // Number of column bits if ((info->colBits < 8) || (info->colBits > 12)) return false; // Unsupported number of column bits else sdrar |= info->colBits & 0x03; // CAS latency if ((info->casLatency < 2) || (info->casLatency > 3)) return false; // Unsupported CAS latency else sdrmd |= info->casLatency & 0x03; SPI.beginTransaction(m_spiSettings); //Serial.print("SDRAR: "); Serial.println(sdrar); // Expected: 0x29 (41 decimal) writeReg(RA8876_REG_SDRAR, sdrar); //Serial.print("SDRMD: "); Serial.println(sdrmd); writeReg(RA8876_REG_SDRMD, sdrmd); //Serial.print("sdramRefreshRate: "); Serial.println(sdramRefreshRate); writeReg(RA8876_REG_SDR_REF_ITVL0, sdramRefreshRate & 0xFF); writeReg(RA8876_REG_SDR_REF_ITVL1, sdramRefreshRate >> 8); // Trigger SDRAM initialization writeReg(RA8876_REG_SDRCR, 0x01); // Wait for SDRAM to be ready uint8_t status; for (int i = 0; i < 250; i++) { delay(1); if ((status = readStatus()) & 0x40) break; } SPI.endTransaction(); //Serial.println(status); return (status & 0x40) ? true : false; } void RA8876::DisplayInit(int8_t p,int8_t size,int8_t rot,int8_t font) { setRotation(rot); setTextWrap(false); // Allow text to run off edges cp437(true); setTextFont(font&3); setTextSize(size&7); setTextColor(RA8876_WHITE,RA8876_BLACK); setCursor(0,0); fillScreen(RA8876_BLACK); setDrawMode(drawmode); PWM_init(); } bool RA8876::initDisplay() { lvgl_param.flushlines = 10; SPI.beginTransaction(m_spiSettings); // Set chip config register uint8_t ccr = readReg(RA8876_REG_CCR); ccr &= 0xE7; // 24-bit LCD output ccr &= 0xFE; // 8-bit host data bus writeReg(RA8876_REG_CCR, ccr); writeReg(RA8876_REG_MACR, 0x00); // Direct write, left-to-right-top-to-bottom memory writeReg(RA8876_REG_ICR, 0x00); // Graphics mode, memory is SDRAM uint8_t dpcr = readReg(RA8876_REG_DPCR); dpcr &= 0xFB; // Vertical scan top to bottom dpcr &= 0xF8; // Colour order RGB dpcr |= 0x80; // Panel fetches PDAT at PCLK falling edge writeReg(RA8876_REG_DPCR, dpcr); uint8_t pcsr = readReg(RA8876_REG_PCSR); pcsr |= 0x80; // XHSYNC polarity high pcsr |= 0x40; // XVSYNC polarity high pcsr &= 0xDF; // XDE polarity high writeReg(RA8876_REG_PCSR, pcsr); // Set display width writeReg(RA8876_REG_HDWR, (m_displayInfo->width / 8) - 1); writeReg(RA8876_REG_HDWFTR, (m_displayInfo->width % 8)); // Set display height writeReg(RA8876_REG_VDHR0, (m_displayInfo->height - 1) & 0xFF); writeReg(RA8876_REG_VDHR1, (m_displayInfo->height - 1) >> 8); // Set horizontal non-display (back porch) writeReg(RA8876_REG_HNDR, (m_displayInfo->hBackPorch / 8) - 1); writeReg(RA8876_REG_HNDFTR, (m_displayInfo->hBackPorch % 8)); // Set horizontal start position (front porch) writeReg(RA8876_REG_HSTR, ((m_displayInfo->hFrontPorch + 4) / 8) - 1); // Set HSYNC pulse width writeReg(RA8876_REG_HPWR, ((m_displayInfo->hPulseWidth + 4) / 8) - 1); // Set vertical non-display (back porch) writeReg(RA8876_REG_VNDR0, (m_displayInfo->vBackPorch - 1) & 0xFF); writeReg(RA8876_REG_VNDR1, (m_displayInfo->vBackPorch - 1) >> 8); // Set vertical start position (front porch) writeReg(RA8876_REG_VSTR, m_displayInfo->vFrontPorch - 1); // Set VSYNC pulse width writeReg(RA8876_REG_VPWR, m_displayInfo->vPulseWidth - 1); // Set main window to 16 bits per pixel writeReg(RA8876_REG_MPWCTR, 0x04); // PIP windows disabled, 16-bpp, enable sync signals // Set main window start address to 0 writeReg(RA8876_REG_MISA0, 0); writeReg(RA8876_REG_MISA1, 0); writeReg(RA8876_REG_MISA2, 0); writeReg(RA8876_REG_MISA3, 0); // Set main window image width writeReg(RA8876_REG_MIW0, m_width & 0xFF); writeReg(RA8876_REG_MIW1, m_width >> 8); // Set main window start coordinates writeReg(RA8876_REG_MWULX0, 0); writeReg(RA8876_REG_MWULX1, 0); writeReg(RA8876_REG_MWULY0, 0); writeReg(RA8876_REG_MWULY1, 0); // Set canvas start address writeReg(RA8876_REG_CVSSA0, 0); writeReg(RA8876_REG_CVSSA1, 0); writeReg(RA8876_REG_CVSSA2, 0); writeReg(RA8876_REG_CVSSA3, 0); // Set canvas width writeReg(RA8876_REG_CVS_IMWTH0, m_width & 0xFF); writeReg(RA8876_REG_CVS_IMWTH1, m_width >> 8); // Set active window start coordinates writeReg(RA8876_REG_AWUL_X0, 0); writeReg(RA8876_REG_AWUL_X1, 0); writeReg(RA8876_REG_AWUL_Y0, 0); writeReg(RA8876_REG_AWUL_Y1, 0); // Set active window dimensions writeReg(RA8876_REG_AW_WTH0, m_width & 0xFF); writeReg(RA8876_REG_AW_WTH1, m_width >> 8); writeReg(RA8876_REG_AW_HT0, m_height & 0xFF); writeReg(RA8876_REG_AW_HT1, m_height >> 8); // Set canvas addressing mode/colour depth uint8_t aw_color = 0x00; // 2d addressing mode if (m_depth == 16) aw_color |= 0x01; else if (m_depth == 24) aw_color |= 0x02; writeReg(RA8876_REG_AW_COLOR, aw_color); // Turn on display dpcr = readReg(RA8876_REG_DPCR); dpcr |= 0x40; // Display on writeReg(RA8876_REG_DPCR, dpcr); // TODO: Track backlight pin and turn on backlight SPI.endTransaction(); initdone = 1; return true; } void RA8876::setRotation(uint8_t m) { return; /* SPI.beginTransaction(m_spiSettings); rotation = m % 4; // can't be higher than 3 switch (rotation) { case 0: writeReg(RA8876_REG_MACR, 0x00); _width = RA8876_TFTWIDTH; _height = RA8876_TFTHEIGHT; break; case 1: writeReg(RA8876_REG_MACR, 0x02); _width = RA8876_TFTHEIGHT; _height = RA8876_TFTWIDTH; break; case 2: writeReg(RA8876_REG_MACR, 0x01); _width = RA8876_TFTWIDTH; _height = RA8876_TFTHEIGHT; break; case 3: writeReg(RA8876_REG_MACR, 0x03); _width = RA8876_TFTHEIGHT; _height = RA8876_TFTWIDTH; break; } m_width = _width; m_height = _height; SPI.endTransaction();*/ } SdramInfo defaultSdramInfo = { 120, // 120 MHz 3, // CAS latency 3 4, // 4 banks 12, // 12-bit row addresses 9, // 9-bit column addresses 64 // 64 millisecond refresh time }; DisplayInfo defaultDisplayInfo = { 1024, // Display width 600, // Display height 50000, // Pixel clock in kHz 160, // Horizontal front porch 160, // Horizontal back porch 70, // HSYNC pulse width 12, // Vertical front porch 23, // Vertical back porch 10 // VSYNC pulse width }; bool RA8876::begin(void) { m_sdramInfo = &defaultSdramInfo; m_displayInfo = &defaultDisplayInfo; m_width = m_displayInfo->width; m_height = m_displayInfo->height; m_depth = 16; m_oscClock = 10000; // 10000kHz or 10MHz textcolor = 0xFFFF; // White textbgcolor = 0; // black m_fontRomInfo.present = false; // No external font ROM chip // Set up chip select pin pinMode(m_csPin, OUTPUT); digitalWrite(m_csPin, HIGH); if (!calcClocks()) { //Serial.println("calcClocks failed"); return false; } #ifndef ESP32 SPI.begin(); #else SPI.begin(_sclk,_miso,_mosi , -1); #endif m_spiSettings = SPISettings(RA8876_SPI_SPEED, MSBFIRST, SPI_MODE3); #ifdef RA8876_DEBUG Serial.printf("RA8876 init\n"); #endif softReset(); if (!initPLL()) { //Serial.println("initPLL failed"); return false; } #ifdef RA8876_DEBUG Serial.printf("RA8876 init pll OK\n"); #endif if (!initMemory(m_sdramInfo)) { //Serial.println("initMemory failed"); return false; } #ifdef RA8876_DEBUG Serial.printf("RA8876 init sdram OK\n"); #endif if (!initDisplay()) { //Serial.println("initDisplay failed"); return false; } #ifdef RA8876_DEBUG Serial.printf("RA8876 init display OK\n"); #endif // Set default font selectInternalFont(RA8876_FONT_SIZE_16); setTextScale(1); #ifdef RA8876_DEBUG Serial.printf("RA8876 set scale OK\n"); #endif setRotation(0); clearScreen(0); #ifdef RA8876_DEBUG Serial.printf("RA8876 init complete\n"); #endif return true; } void RA8876::fillScreen(uint16_t color) { clearScreen(color); } // Show colour bars of 8 colours in repeating horizontal bars. // This does not alter video memory, but rather instructs the video controller to display // the pattern rather than the contents of memory. void RA8876::colorBarTest(bool enabled) { SPI.beginTransaction(m_spiSettings); uint8_t dpcr = readReg(RA8876_REG_DPCR); if (enabled) dpcr = dpcr | 0x20; else dpcr = dpcr & ~0x20; writeReg(RA8876_REG_DPCR, dpcr); SPI.endTransaction(); } void RA8876::drawLine(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) { drawTwoPointShape(x1, y1, x2, y2, color, RA8876_REG_DCR0, 0x80); }; void RA8876::drawRect(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) { drawTwoPointShape(x1, y1, x1+x2, y1+y2, color, RA8876_REG_DCR1, 0xA0); }; void RA8876::fillRect(int16_t x1, int16_t y1, int16_t x2, int16_t y2, uint16_t color) { drawTwoPointShape(x1, y1, x1+x2, y1+y2, color, RA8876_REG_DCR1, 0xE0); }; void RA8876::drawTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3, uint16_t color) { drawThreePointShape(x1, y1, x2, y2, x3, y3, color, RA8876_REG_DCR0, 0xA2); }; void RA8876::fillTriangle(int16_t x1, int16_t y1, int16_t x2, int16_t y2, int16_t x3, int16_t y3, uint16_t color) { drawThreePointShape(x1, y1, x2, y2, x3, y3, color, RA8876_REG_DCR0, 0xE2); }; void RA8876::drawCircle(int16_t x, int16_t y, int16_t radius, uint16_t color) { drawEllipseShape(x, y, radius, radius, color, 0x80); }; void RA8876::fillCircle(int16_t x, int16_t y, int16_t radius, uint16_t color) { drawEllipseShape(x, y, radius, radius, color, 0xC0); }; void RA8876::drawRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h, int16_t radius, uint16_t color) { drawThreePointShape1(x0, y0, x0+w, y0+h, radius, radius, color, RA8876_REG_DCR1, 0xB0); } void RA8876::fillRoundRect(int16_t x0, int16_t y0, int16_t w, int16_t h, int16_t radius, uint16_t color) { drawThreePointShape1(x0, y0, x0+w, y0+h, radius, radius, color, RA8876_REG_DCR1, 0xF0); } void RA8876::clearScreen(uint16_t color) { setCursor(0, 0); fillRect(0, 0, m_width, m_height, color); }; void RA8876::drawFastVLine(int16_t x, int16_t y, int16_t h, uint16_t color) { drawTwoPointShape(x, y, x, y+h, color, RA8876_REG_DCR1, 0xE0); } void RA8876::drawFastHLine(int16_t x, int16_t y, int16_t w, uint16_t color) { drawTwoPointShape(x, y, x+w, y, color, RA8876_REG_DCR1, 0xE0); } void RA8876::setTextSize(uint8_t s) { setTextScale(s, s); textsize_x=s; textsize_y=s; //Serial.printf("scale %d\n",s); } // Picture16bppBteMpuWriteColorExpansionWithChromaKey // PAGE1_START_ADDR,SCREEN_WIDTH, 50, 50+128+50+10, 128, 128,COLOR65K_WHITE,COLOR65K_BLACK,"sun.bin"); // ra8876lite.bteMpuWriteWithROP(s1_addr, s1_image_width, s1_x, s1_y, des_addr, des_image_width, des_x, des_y, width, height, rop_code); //dCardShowPicture16bppBteMpuWriteWithROP(PAGE1_START_ADDR, SCREEN_WIDTH, 50+128, 50, PAGE1_START_ADDR, SCREEN_WIDTH, 50+128, 50, // 128, 128,RA8876_BTE_ROP_CODE_6,"appli.bin"); /*bte_Source1_MemoryStartAddr(s1_addr); bte_Source1_ImageWidth(s1_image_width); bte_Source1_WindowStartXY(s1_x,s1_y); bte_DestinationMemoryStartAddr(des_addr); bte_DestinationImageWidth(des_image_width); bte_DestinationWindowStartXY(des_x,des_y); bte_WindowSize(width,height); lcdRegDataWrite(RA8876_BTE_CTRL1,rop_code<<4|RA8876_BTE_MPU_WRITE_WITH_ROP);//91h lcdRegDataWrite(RA8876_BTE_COLR,RA8876_S0_COLOR_DEPTH_16BPP<<5|RA8876_S1_COLOR_DEPTH_16BPP<<2|RA8876_DESTINATION_COLOR_DEPTH_16BPP);//92h lcdRegDataWrite(RA8876_BTE_CTRL0,RA8876_BTE_ENABLE<<4);//90h ramAccessPrepare(); // put picturess activeWindowXY(x,y); activeWindowWH(width,height); setPixelCursor(x,y); */ void RA8876::setAddrWindow(uint16_t x0, uint16_t y0, uint16_t x1, uint16_t y1) { uint16_t xs=x1-x0; uint16_t ys=y1-y0; cursor_x=x0; cursor_y=y0; addrw_x1=x0; addrw_x2=x1; uint8_t flag=0; if (!x0 && !y0 && !x1 && !y1) { x0=0; y0=0; x1=_width; y1=_height; flag=1; } if (x1>_width) x1=_width; if (y1>_height) y1=_height; SPI.beginTransaction(m_spiSettings); #if 1 // activeWindowXY(x,y); writeReg(RA8876_REG_AWUL_X0,x0);//56h writeReg(RA8876_REG_AWUL_X1,x0>>8);//57h writeReg(RA8876_REG_AWUL_Y0,y0);//58h writeReg(RA8876_REG_AWUL_Y1,y0>>8);//59h //activeWindowWH(width,height); writeReg(RA8876_REG_AW_WTH0,xs);//5ah writeReg(RA8876_REG_AW_WTH1,xs>>8);//5bh writeReg(RA8876_REG_AW_HT0,ys);//5ch writeReg(RA8876_REG_AW_HT1,ys>>8);//5dh //setPixelCursor(x,y); writeReg(RA8876_REG_CURH0,x0); //5fh writeReg(RA8876_REG_CURH1,x0>>8);//60h writeReg(RA8876_REG_CURV0,y0);//61h writeReg(RA8876_REG_CURV1,y0>>8);//62h //ramAccessPrepare(); #else // source address, page1=0 // bte_Source1_MemoryStartAddr uint32_t addr=0; writeReg(RA8876_REG_S1_STR0,addr);//9dh writeReg(RA8876_REG_S1_STR1,addr>>8);//9eh writeReg(RA8876_REG_S1_STR2,addr>>16);//9fh writeReg(RA8876_REG_S1_STR3,addr>>24);//a0h // screen width // bte_Source1_ImageWidth uint16_t width=_width; writeReg(RA8876_REG_S1_WTH0,width);//abh writeReg(RA8876_REG_S1_WTH1,width>>8);//ach // source window // bte_Source1_WindowStartXY writeReg(RA8876_REG_S1_X0,x0);//adh writeReg(RA8876_REG_S1_X1,x0>>8);//aeh writeReg(RA8876_REG_S1_Y0,y0);//afh writeReg(RA8876_REG_S1_Y1,y0>>8);//b0h // dest mem // bte_DestinationMemoryStartAddr writeReg(RA8876_REG_DT_STR0,addr);//a7h writeReg(RA8876_REG_DT_STR1,addr>>8);//a8h writeReg(RA8876_REG_DT_STR2,addr>>16);//a9h writeReg(RA8876_REG_DT_STR3,addr>>24);//aah // bte_DestinationImageWidth writeReg(RA8876_REG_DT_WTH0,width);//abh writeReg(RA8876_REG_DT_WTH1,width>>8);//ach //bte_DestinationWindowStartXY(des_x,des_y); writeReg(RA8876_REG_DT_X0,x0);//adh writeReg(RA8876_REG_DT_X1,x0>>8);//aeh writeReg(RA8876_REG_DT_Y0,y0);//afh writeReg(RA8876_REG_DT_Y1,y0>>8);//b0h // bte_WindowSize writeReg(RA8876_REG_BTE_WTH0,xs);//b1h writeReg(RA8876_REG_BTE_WTH1,xs>>8);//b2h writeReg(RA8876_REG_BTE_HIG0,ys);//b3h writeReg(RA8876_REG_BTE_HIG1,ys>>8);//b4h writeReg(RA8876_BTE_CTRL1,RA8876_BTE_ROP_CODE_12<<4|RA8876_BTE_MPU_WRITE_WITH_ROP);//91h writeReg(RA8876_BTE_COLR,RA8876_S0_COLOR_DEPTH_16BPP<<5|RA8876_S1_COLOR_DEPTH_16BPP<<2|RA8876_DESTINATION_COLOR_DEPTH_16BPP);//92h writeReg(RA8876_BTE_CTRL0,RA8876_BTE_ENABLE<<4);//90h #endif writeCmd(RA8876_REG_MRWDP); //04h(); //if (flag) SPI.endTransaction(); SPI.endTransaction(); } // pixel color is swapped in contrast to other controllers void RA8876::pushColors(uint16_t *data, uint16_t len, boolean not_swapped) { if (not_swapped == false) { // coming from LVGL #ifdef ESP32 SPI.beginTransaction(m_spiSettings); RA8876_CS_LOW SPI.write(RA8876_DATA_WRITE); if (lvgl_param.use_dma) { // will need swapping ! pushPixelsDMA(data, len); } else { SPI.writePixels(data, len * 2); } RA8876_CS_HIGH SPI.endTransaction(); #endif } else { // coming from displaytext SPI.beginTransaction(m_spiSettings); RA8876_CS_LOW SPI.transfer(RA8876_DATA_WRITE); #ifdef ESP32 SPI.writeBytes((uint8_t*)data, len * 2); #endif #ifdef ESP8266 while (len--) { uint16_t color = *data++; SPI.write(color&0xff); SPI.write(color>>8); } #endif RA8876_CS_HIGH SPI.endTransaction(); } } void RA8876::drawPixel(int16_t x, int16_t y, uint16_t color) { //Serial.println("drawPixel"); //Serial.println(readStatus()); SPI.beginTransaction(m_spiSettings); writeReg(RA8876_REG_CURH0, x & 0xFF); writeReg(RA8876_REG_CURH1, x >> 8); writeReg(RA8876_REG_CURV0, y & 0xFF); writeReg(RA8876_REG_CURV1, y >> 8); writeReg(RA8876_REG_MRWDP, color & 0xFF); writeReg(RA8876_REG_MRWDP, color >> 8); SPI.endTransaction(); } void RA8876::drawTwoPointShape(int x1, int y1, int x2, int y2, uint16_t color, uint8_t reg, uint8_t cmd) { //Serial.println("drawTwoPointShape"); SPI.beginTransaction(m_spiSettings); // First point writeReg(RA8876_REG_DLHSR0, x1 & 0xFF); writeReg(RA8876_REG_DLHSR1, x1 >> 8); writeReg(RA8876_REG_DLVSR0, y1 & 0xFF); writeReg(RA8876_REG_DLVSR1, y1 >> 8); // Second point writeReg(RA8876_REG_DLHER0, x2 & 0xFF); writeReg(RA8876_REG_DLHER1, x2 >> 8); writeReg(RA8876_REG_DLVER0, y2 & 0xFF); writeReg(RA8876_REG_DLVER1, y2 >> 8); // Colour writeReg(RA8876_REG_FGCR, color >> 11 << 3); writeReg(RA8876_REG_FGCG, ((color >> 5) & 0x3F) << 2); writeReg(RA8876_REG_FGCB, (color & 0x1F) << 3); // Draw writeReg(reg, cmd); // Start drawing // Wait for completion wait_ready(); SPI.endTransaction(); } // 1 us => 10 ms #define RA8876_TIMEOUT 10000 void RA8876::waitWriteFifo(void) { uint8_t status = readStatus(); uint32_t iter = 0; while (status & 0x80) { status = readStatus(); iter++; if (iter>RA8876_TIMEOUT) { // timeout, soft reset softReset(); SPI.beginTransaction(m_spiSettings); #ifdef RA8876_DEBUG Serial.printf("iter timeout fifo\n"); #endif return; } } }; void RA8876::waitTaskBusy(void) { //while (readStatus() & 0x08); wait_ready(); }; void RA8876::wait_ready(void) { uint8_t status = readStatus(); uint32_t iter = 0; while (status & 0x08) { status = readStatus(); iter++; if (iter>RA8876_TIMEOUT) { // timeout, soft reset softReset(); SPI.beginTransaction(m_spiSettings); #ifdef RA8876_DEBUG Serial.printf("iter timeout cmd\n"); #endif return; } } // got at max 1800 // Serial.printf("iter: %d\n",iter); } void RA8876::drawThreePointShape(int x1, int y1, int x2, int y2, int x3, int y3, uint16_t color, uint8_t reg, uint8_t cmd) { //Serial.println("drawThreePointShape"); SPI.beginTransaction(m_spiSettings); // First point writeReg(RA8876_REG_DLHSR0, x1 & 0xFF); writeReg(RA8876_REG_DLHSR1, x1 >> 8); writeReg(RA8876_REG_DLVSR0, y1 & 0xFF); writeReg(RA8876_REG_DLVSR1, y1 >> 8); // Second point writeReg(RA8876_REG_DLHER0, x2 & 0xFF); writeReg(RA8876_REG_DLHER1, x2 >> 8); writeReg(RA8876_REG_DLVER0, y2 & 0xFF); writeReg(RA8876_REG_DLVER1, y2 >> 8); // Third point writeReg(RA8876_REG_DTPH0, x3 & 0xFF); writeReg(RA8876_REG_DTPH1, x3 >> 8); writeReg(RA8876_REG_DTPV0, y3 & 0xFF); writeReg(RA8876_REG_DTPV1, y3 >> 8); // Colour writeReg(RA8876_REG_FGCR, color >> 11 << 3); writeReg(RA8876_REG_FGCG, ((color >> 5) & 0x3F) << 2); writeReg(RA8876_REG_FGCB, (color & 0x1F) << 3); // Draw writeReg(reg, cmd); // Start drawing // Wait for completion wait_ready(); SPI.endTransaction(); } void RA8876::drawThreePointShape1(int x1, int y1, int x2, int y2, int x3, int y3, uint16_t color, uint8_t reg, uint8_t cmd) { //Serial.println("drawThreePointShape"); SPI.beginTransaction(m_spiSettings); // First point writeReg(RA8876_REG_DLHSR0, x1 & 0xFF); writeReg(RA8876_REG_DLHSR1, x1 >> 8); writeReg(RA8876_REG_DLVSR0, y1 & 0xFF); writeReg(RA8876_REG_DLVSR1, y1 >> 8); // Second point writeReg(RA8876_REG_DLHER0, x2 & 0xFF); writeReg(RA8876_REG_DLHER1, x2 >> 8); writeReg(RA8876_REG_DLVER0, y2 & 0xFF); writeReg(RA8876_REG_DLVER1, y2 >> 8); // corner radius writeReg(RA8876_REG_ELL_A0, x3 & 0xFF); writeReg(RA8876_REG_ELL_A1, x3 >> 8); writeReg(RA8876_REG_ELL_B0, y3 & 0xFF); writeReg(RA8876_REG_ELL_B1, y3 >> 8); #define RA8876_REG_ELL_A0 0x77 // Draw ellipse major radius 0 #define RA8876_REG_ELL_A1 0x78 // Draw ellipse major radius 1 #define RA8876_REG_ELL_B0 0x79 // Draw ellipse minor radius 0 #define RA8876_REG_ELL_B1 0x7A // Draw ellipse minor radius 1 // Colour writeReg(RA8876_REG_FGCR, color >> 11 << 3); writeReg(RA8876_REG_FGCG, ((color >> 5) & 0x3F) << 2); writeReg(RA8876_REG_FGCB, (color & 0x1F) << 3); // Draw writeReg(reg, cmd); // Start drawing // Wait for completion wait_ready(); SPI.endTransaction(); } void RA8876::drawEllipseShape(int x, int y, int xrad, int yrad, uint16_t color, uint8_t cmd) { //Serial.println("drawEllipseShape"); SPI.beginTransaction(m_spiSettings); // First point writeReg16(RA8876_REG_DEHR0, x); writeReg16(RA8876_REG_DEVR0, y); // Radii writeReg16(RA8876_REG_ELL_A0, xrad); writeReg16(RA8876_REG_ELL_B0, yrad); // Colour writeReg(RA8876_REG_FGCR, color >> 11 << 3); writeReg(RA8876_REG_FGCG, ((color >> 5) & 0x3F) << 2); writeReg(RA8876_REG_FGCB, (color & 0x1F) << 3); // Draw writeReg(RA8876_REG_DCR1, cmd); // Start drawing // Wait for completion wait_ready(); SPI.endTransaction(); } void RA8876::setCursor(int16_t x, int16_t y) { SPI.beginTransaction(m_spiSettings); writeReg16(RA8876_REG_F_CURX0, x); writeReg16(RA8876_REG_F_CURY0, y); SPI.endTransaction(); //Serial.printf("curs %d:%d\n",x,y); cursor_x = x; cursor_y = y; } int RA8876::getCursorX(void) { SPI.beginTransaction(m_spiSettings); int x = readReg16(RA8876_REG_F_CURX0); SPI.endTransaction(); return x; } int RA8876::getCursorY(void) { SPI.beginTransaction(m_spiSettings); int y = readReg16(RA8876_REG_F_CURY0); SPI.endTransaction(); return y; } // Given a font encoding value, returns the corresponding bit pattern for // use by internal fonts. uint8_t RA8876::internalFontEncoding(enum FontEncoding enc) { uint8_t e; switch (enc) { case RA8876_FONT_ENCODING_8859_2: e = 0x01; break; case RA8876_FONT_ENCODING_8859_4: e = 0x02; break; case RA8876_FONT_ENCODING_8859_5: e = 0x03; break; default: e = 0x00; // ISO-8859-1 break; } return e; } void RA8876::setTextMode(void) { // Restore text colour textcolor=textcolor; writeReg(RA8876_REG_FGCR, textcolor >> 11 << 3); writeReg(RA8876_REG_FGCG, ((textcolor >> 5) & 0x3F) << 2); writeReg(RA8876_REG_FGCB, (textcolor & 0x1F) << 3); writeReg(RA8876_REG_BGCR, textbgcolor >> 11 << 3); writeReg(RA8876_REG_BGCG, ((textbgcolor >> 5) & 0x3F) << 2); writeReg(RA8876_REG_BGCB, (textbgcolor & 0x1F) << 3); waitTaskBusy(); // Enable text mode uint8_t icr = readReg(RA8876_REG_ICR); writeReg(RA8876_REG_ICR, icr | 0x04); SPI.endTransaction(); if (textcolor==textbgcolor) { setDrawMode_reg(1); } else { setDrawMode_reg(0); } SPI.beginTransaction(m_spiSettings); } void RA8876::setGraphicsMode(void) { waitTaskBusy(); // Disable text mode uint8_t icr = readReg(RA8876_REG_ICR); writeReg(RA8876_REG_ICR, icr & ~0x04); } void RA8876::selectInternalFont(enum FontSize size, enum FontEncoding enc) { m_fontSource = RA8876_FONT_SOURCE_INTERNAL; m_fontSize = size; m_fontFlags = 0; SPI.beginTransaction(m_spiSettings); writeReg(RA8876_REG_CCR0, 0x00 | ((size & 0x03) << 4) | internalFontEncoding(enc)); uint8_t ccr1 = readReg(RA8876_REG_CCR1); //ccr1 |= 0x40; // Transparent background ccr1 &=0x40^0xff; writeReg(RA8876_REG_CCR1, ccr1); SPI.endTransaction(); } void RA8876::setDrawMode(uint8_t mode) { drawmode=mode; setDrawMode_reg(mode); } //#define RA_FT5206_VENDID 0x11 #define RA_FT5206_VENDID 0x79 #define RA_FT5206U_CHIPID 0x64 #define RA_FT5316_CHIPID 0x0a #define RA_FT5206_VENDID_REG (0xA8) #define RA_FT5206_CHIPID_REG (0xA3) #define RA_FT5206_TOUCHES_REG (0x02) #define RA_FT5206_MODE_REG (0x00) #define RA_FT5206_address 0x38 int RA8876::_readByte(uint8_t reg, uint8_t nbytes, uint8_t *data) { _i2cPort->beginTransmission(RA_FT5206_address); _i2cPort->write(reg); _i2cPort->endTransmission(); _i2cPort->requestFrom(RA_FT5206_address, (size_t)nbytes); uint8_t index = 0; while (_i2cPort->available()) { data[index++] = _i2cPort->read(); } return 0; } int RA8876::_writeByte(uint8_t reg, uint8_t nbytes, uint8_t *data) { _i2cPort->beginTransmission(RA_FT5206_address); _i2cPort->write(reg); for (uint8_t i = 0; i < nbytes; i++) { _i2cPort->write(data[i]); } _i2cPort->endTransmission(); return 0; } bool RA8876::utouch_Init(char **name) { strcpy(ut_name, "FT5316"); *name = ut_name; _i2cPort = &Wire; uint8_t val; _readByte(RA_FT5206_VENDID_REG, 1, &val); //AddLog(LOG_LEVEL_INFO, PSTR("UTDBG %02x"), val); if (val != RA_FT5206_VENDID) { return false; } _readByte(RA_FT5206_CHIPID_REG, 1, &val); //AddLog(LOG_LEVEL_INFO, PSTR("UTDBG %02x"), val); if (val != RA_FT5316_CHIPID) { return false; } return true; } uint16_t RA8876::touched(void) { uint8_t data[16]; uint8_t val = 0; _readByte(RA_FT5206_MODE_REG, 1, &val); if (val) { val = 0; _writeByte(RA_FT5206_MODE_REG, 1, &val); } _readByte(RA_FT5206_MODE_REG, 16, data); if (data[2]) { ut_x = data[3] << 8; ut_x |= data[4]; ut_y = data[5] << 8; ut_y |= data[6]; ut_x &= 0xfff; ut_y &= 0xfff; } return data[2]; } int16_t RA8876::getPoint_x() { return ut_x; } int16_t RA8876::getPoint_y() { return ut_y; } void RA8876::TS_RotConvert(int16_t *x, int16_t *y) { int16_t temp; *x = *x * width() / 800; *y = *y * height() / 480; *x = width() - *x; *y = height() - *y; } void RA8876::setDrawMode_reg(uint8_t mode) { SPI.beginTransaction(m_spiSettings); uint8_t ccr1 = readReg(RA8876_REG_CCR1); if (mode) { ccr1 |= 0x40; // Transparent background } else { ccr1 &=0x40^0xff; // opaque background } writeReg(RA8876_REG_CCR1, ccr1); SPI.endTransaction(); } void RA8876::selectExternalFont(enum ExternalFontFamily family, enum FontSize size, enum FontEncoding enc, FontFlags flags) { m_fontSource = RA8876_FONT_SOURCE_EXT_ROM; m_fontSize = size; m_fontFlags = flags; SPI.beginTransaction(m_spiSettings); //Serial.print("CCR0: "); Serial.println(0x40 | ((size & 0x03) << 4), HEX); writeReg(RA8876_REG_CCR0, 0x40 | ((size & 0x03) << 4)); // Select external font ROM and size uint8_t ccr1 = readReg(RA8876_REG_CCR1); ccr1 |= 0x40; // Transparent background //Serial.print("CCR1: "); Serial.println(ccr1, HEX); writeReg(RA8876_REG_CCR1, ccr1); //Serial.print("GTFNT_CR: "); Serial.println((enc << 3) | (family & 0x03), HEX); writeReg(RA8876_REG_GTFNT_CR, (enc << 3) | (family & 0x03)); // Character encoding and family SPI.endTransaction(); } /* void RA8876::setTextColor(uint16_t color) { textcolor = color; textbgcolor = color; }; void RA8876::setTextColor(uint16_t c, uint16_t bg) { textcolor = c; textbgcolor=bg; } */ void RA8876::setTextScale(int scale) { setTextScale(scale, scale); }; int RA8876::getTextSizeY(void) { return ((m_fontSize + 2) * 8) * m_textScaleY; } void RA8876::setTextScale(int xScale, int yScale) { xScale = constrain(xScale, 1, 4); yScale = constrain(yScale, 1, 4); m_textScaleX = xScale; m_textScaleY = yScale; SPI.beginTransaction(m_spiSettings); uint8_t ccr1 = readReg(RA8876_REG_CCR1); ccr1 = (ccr1 & 0xF0) | ((xScale - 1) << 2) | (yScale - 1); //Serial.println(ccr1, HEX); writeReg(RA8876_REG_CCR1, ccr1); SPI.endTransaction(); } // Similar to write(), but does no special handling of control characters. void RA8876::putChars(const char *buffer, size_t size) { SPI.beginTransaction(m_spiSettings); setTextMode(); // Write characters writeCmd(RA8876_REG_MRWDP); for (unsigned int i = 0; i < size; i++) { waitWriteFifo(); writeData(buffer[i]); } setGraphicsMode(); SPI.endTransaction(); } void RA8876::putChars16(const uint16_t *buffer, unsigned int count) { SPI.beginTransaction(m_spiSettings); setTextMode(); // Write characters writeCmd(RA8876_REG_MRWDP); for (unsigned int i = 0; i < count; i++) { waitWriteFifo(); writeData(buffer[i] >> 8); waitWriteFifo(); writeData(buffer[i] & 0xFF); } setGraphicsMode(); SPI.endTransaction(); } extern uint8_t wr_redir; size_t RA8876::xwrite(uint8_t c) { return xwrite(&c, 1); }; //#define RA8876_DEBUG size_t RA8876::xwrite(const uint8_t *buffer, size_t size) { #ifdef RA8876_DEBUG char buff[128]; memcpy(buff,buffer,size); buff[size]=0; Serial.printf("write start: %s\n",buff); #endif SPI.beginTransaction(m_spiSettings); setTextMode(); writeCmd(RA8876_REG_MRWDP); // Set current register for writing to memory for (unsigned int i = 0; i < size; i++) { char c = buffer[i]; if (!c) continue; if (c == '\r') ; // Ignored else if (c == '\n') { SPI.endTransaction(); setCursor(0, getCursorY() + getTextSizeY()); SPI.beginTransaction(m_spiSettings); writeCmd(RA8876_REG_MRWDP); // Reset current register for writing to memory } else if ((m_fontFlags & RA8876_FONT_FLAG_XLAT_FULLWIDTH) && ((c >= 0x21) || (c <= 0x7F))) { // Translate ASCII to Unicode fullwidth form (for Chinese fonts that lack ASCII) uint16_t fwc = c - 0x21 + 0xFF01; waitWriteFifo(); writeData(fwc >> 8); waitWriteFifo(); writeData(fwc & 0xFF); } else { waitWriteFifo(); writeData(c); } } setGraphicsMode(); SPI.endTransaction(); #ifdef RA8876_DEBUG Serial.printf("write end:\n"); #endif return size; } void RA8876::FastString(uint16_t x,uint16_t y,uint16_t tcolor, const char* str) { setCursor(x,y); setTextColor(tcolor,textbgcolor); xwrite((uint8_t*)str,strlen(str)); } // ESP 32 DMA section , derived from TFT_eSPI #ifdef ESP32 /*************************************************************************************** ** Function name: initDMA ** Description: Initialise the DMA engine - returns true if init OK ***************************************************************************************/ bool RA8876::initDMA() { if (DMA_Enabled) return false; esp_err_t ret; spi_bus_config_t buscfg = { .mosi_io_num = _mosi, .miso_io_num = _miso, .sclk_io_num = _sclk, .quadwp_io_num = -1, .quadhd_io_num = -1, .max_transfer_sz = width() * height() * 2 + 8, // TFT screen size .flags = 0, .intr_flags = 0 }; spi_device_interface_config_t devcfg = { .command_bits = 0, .address_bits = 0, .dummy_bits = 0, .mode = SPI_MODE3, .duty_cycle_pos = 0, .cs_ena_pretrans = 0, .cs_ena_posttrans = 0, .clock_speed_hz = RA8876_SPI_SPEED, .input_delay_ns = 0, .spics_io_num = -1, .flags = SPI_DEVICE_NO_DUMMY, //0, .queue_size = 1, .pre_cb = 0, //dc_callback, //Callback to handle D/C line .post_cb = 0 }; ret = spi_bus_initialize(spi_host, &buscfg, 1); ESP_ERROR_CHECK(ret); ret = spi_bus_add_device(spi_host, &devcfg, &dmaHAL); ESP_ERROR_CHECK(ret); DMA_Enabled = true; spiBusyCheck = 0; return true; } /*************************************************************************************** ** Function name: deInitDMA ** Description: Disconnect the DMA engine from SPI ***************************************************************************************/ void RA8876::deInitDMA(void) { if (!DMA_Enabled) return; spi_bus_remove_device(dmaHAL); spi_bus_free(spi_host); DMA_Enabled = false; } /*************************************************************************************** ** Function name: dmaBusy ** Description: Check if DMA is busy ***************************************************************************************/ bool RA8876::dmaBusy(void) { if (!DMA_Enabled || !spiBusyCheck) return false; spi_transaction_t *rtrans; esp_err_t ret; uint8_t checks = spiBusyCheck; for (int i = 0; i < checks; ++i) { ret = spi_device_get_trans_result(dmaHAL, &rtrans, 0); if (ret == ESP_OK) spiBusyCheck--; } //Serial.print("spiBusyCheck=");Serial.println(spiBusyCheck); if (spiBusyCheck == 0) return false; return true; } /*************************************************************************************** ** Function name: dmaWait ** Description: Wait until DMA is over (blocking!) ***************************************************************************************/ void RA8876::dmaWait(void) { if (!DMA_Enabled || !spiBusyCheck) return; spi_transaction_t *rtrans; esp_err_t ret; for (int i = 0; i < spiBusyCheck; ++i) { ret = spi_device_get_trans_result(dmaHAL, &rtrans, portMAX_DELAY); assert(ret == ESP_OK); } spiBusyCheck = 0; } /*************************************************************************************** ** Function name: pushPixelsDMA ** Description: Push pixels to TFT (len must be less than 32767) ***************************************************************************************/ // This will byte swap the original image if setSwapBytes(true) was called by sketch. void RA8876::pushPixelsDMA(uint16_t* image, uint32_t len) { if ((len == 0) || (!DMA_Enabled)) return; dmaWait(); esp_err_t ret; memset(&trans, 0, sizeof(spi_transaction_t)); trans.user = (void *)1; trans.tx_buffer = image; //finally send the line data trans.length = len * 16; //Data length, in bits trans.flags = 0; //SPI_TRANS_USE_TXDATA flag ret = spi_device_queue_trans(dmaHAL, &trans, portMAX_DELAY); assert(ret == ESP_OK); spiBusyCheck++; } #endif // ESP32