/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #define XDRV_23 23 const uint32_t ZIGBEE_BUFFER_SIZE = 256; // Max ZNP frame is SOF+LEN+CMD1+CMD2+250+FCS = 255 const uint8_t ZIGBEE_SOF = 0xFE; const uint8_t ZIGBEE_SOF_ALT = 0xFF; #include TasmotaSerial *ZigbeeSerial = nullptr; const char kZbCommands[] PROGMEM = D_PRFX_ZB "|" // prefix D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN "|" D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|" D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_READ "|" D_CMND_ZIGBEEZNPRECEIVE "|" D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND "|" D_CMND_ZIGBEE_PING ; const char kZigbeeCommands[] PROGMEM = D_PRFX_ZIGBEE "|" // legacy prefix -- deprecated D_CMND_ZIGBEEZNPSEND "|" D_CMND_ZIGBEE_PERMITJOIN "|" D_CMND_ZIGBEE_STATUS "|" D_CMND_ZIGBEE_RESET "|" D_CMND_ZIGBEE_SEND "|" D_CMND_ZIGBEE_PROBE "|" D_CMND_ZIGBEE_READ "|" D_CMND_ZIGBEEZNPRECEIVE "|" D_CMND_ZIGBEE_FORGET "|" D_CMND_ZIGBEE_SAVE "|" D_CMND_ZIGBEE_NAME "|" D_CMND_ZIGBEE_BIND "|" D_CMND_ZIGBEE_PING ; void (* const ZigbeeCommand[])(void) PROGMEM = { &CmndZbZNPSend, &CmndZbPermitJoin, &CmndZbStatus, &CmndZbReset, &CmndZbSend, &CmndZbProbe, &CmndZbRead, &CmndZbZNPReceive, &CmndZbForget, &CmndZbSave, &CmndZbName, &CmndZbBind, &CmndZbPing, }; int32_t ZigbeeProcessInput(class SBuffer &buf) { if (!zigbee.state_machine) { return -1; } // if state machine is stopped, send 'ignore' message // apply the receive filter, acts as 'startsWith()' bool recv_filter_match = true; bool recv_prefix_match = false; // do the first 2 bytes match the response if ((zigbee.recv_filter) && (zigbee.recv_filter_len > 0)) { if (zigbee.recv_filter_len >= 2) { recv_prefix_match = false; if ( (pgm_read_byte(&zigbee.recv_filter[0]) == buf.get8(0)) && (pgm_read_byte(&zigbee.recv_filter[1]) == buf.get8(1)) ) { recv_prefix_match = true; } } for (uint32_t i = 0; i < zigbee.recv_filter_len; i++) { if (pgm_read_byte(&zigbee.recv_filter[i]) != buf.get8(i)) { recv_filter_match = false; break; } } //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "ZbProcessInput: recv_prefix_match = %d, recv_filter_match = %d"), recv_prefix_match, recv_filter_match); } // if there is a recv_callback, call it now int32_t res = -1; // default to ok // res = 0 - proceed to next state // res > 0 - proceed to the specified state // res = -1 - silently ignore the message // res <= -2 - move to error state // pre-compute the suggested value if ((zigbee.recv_filter) && (zigbee.recv_filter_len > 0)) { if (!recv_prefix_match) { res = -1; // ignore } else { // recv_prefix_match if (recv_filter_match) { res = 0; // ok } else { if (zigbee.recv_until) { res = -1; // ignore until full match } else { res = -2; // error, because message is expected but wrong value } } } } else { // we don't have any filter, ignore message by default res = -1; } if (recv_prefix_match) { if (zigbee.recv_func) { res = (*zigbee.recv_func)(res, buf); } } if (-1 == res) { // if frame was ignored up to now if (zigbee.recv_unexpected) { res = (*zigbee.recv_unexpected)(res, buf); } } AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "ZbProcessInput: res = %d"), res); // change state accordingly if (0 == res) { // if ok, continue execution zigbee.state_waiting = false; } else if (res > 0) { ZigbeeGotoLabel(res); // if >0 then go to specified label } else if (-1 == res) { // -1 means ignore message // just do nothing } else { // any other negative value means error ZigbeeGotoLabel(zigbee.on_error_goto); } } void ZigbeeInput(void) { static uint32_t zigbee_polling_window = 0; static uint8_t fcs = ZIGBEE_SOF; static uint32_t zigbee_frame_len = 5; // minimal zigbee frame lenght, will be updated when buf[1] is read // Receive only valid ZNP frames: // 00 - SOF = 0xFE // 01 - Length of Data Field - 0..250 // 02 - CMD1 - first byte of command // 03 - CMD2 - second byte of command // 04..FD - Data Field // FE (or last) - FCS Checksum while (ZigbeeSerial->available()) { yield(); uint8_t zigbee_in_byte = ZigbeeSerial->read(); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZbInput byte=%d len=%d"), zigbee_in_byte, zigbee_buffer->len()); if (0 == zigbee_buffer->len()) { // make sure all variables are correctly initialized zigbee_frame_len = 5; fcs = ZIGBEE_SOF; // there is a rare race condition when an interrupt occurs when receiving the first byte // in this case the first bit (lsb) is missed and Tasmota receives 0xFF instead of 0xFE // We forgive this mistake, and next bytes are automatically resynchronized if (ZIGBEE_SOF_ALT == zigbee_in_byte) { AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbInput forgiven first byte %02X (only for statistics)"), zigbee_in_byte); zigbee_in_byte = ZIGBEE_SOF; } } if ((0 == zigbee_buffer->len()) && (ZIGBEE_SOF != zigbee_in_byte)) { // waiting for SOF (Start Of Frame) byte, discard anything else AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbInput discarding byte %02X"), zigbee_in_byte); continue; // discard } if (zigbee_buffer->len() < zigbee_frame_len) { zigbee_buffer->add8(zigbee_in_byte); zigbee_polling_window = millis(); // Wait for more data fcs ^= zigbee_in_byte; } if (zigbee_buffer->len() >= zigbee_frame_len) { zigbee_polling_window = 0; // Publish now break; } // recalculate frame length if (02 == zigbee_buffer->len()) { // We just received the Lenght byte uint8_t len_byte = zigbee_buffer->get8(1); if (len_byte > 250) len_byte = 250; // ZNP spec says len is 250 max zigbee_frame_len = len_byte + 5; // SOF + LEN + CMD1 + CMD2 + FCS = 5 bytes overhead } } if (zigbee_buffer->len() && (millis() > (zigbee_polling_window + ZIGBEE_POLLING))) { char hex_char[(zigbee_buffer->len() * 2) + 2]; ToHex_P((unsigned char*)zigbee_buffer->getBuffer(), zigbee_buffer->len(), hex_char, sizeof(hex_char)); AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "Bytes follow_read_metric = %0d"), ZigbeeSerial->getLoopReadMetric()); // buffer received, now check integrity if (zigbee_buffer->len() != zigbee_frame_len) { // Len is not correct, log and reject frame AddLog_P2(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received frame of wrong size %s, len %d, expected %d"), hex_char, zigbee_buffer->len(), zigbee_frame_len); } else if (0x00 != fcs) { // FCS is wrong, packet is corrupt, log and reject frame AddLog_P2(LOG_LEVEL_INFO, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received bad FCS frame %s, %d"), hex_char, fcs); } else { // frame is correct //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_JSON_ZIGBEEZNPRECEIVED ": received correct frame %s"), hex_char); SBuffer znp_buffer = zigbee_buffer->subBuffer(2, zigbee_frame_len - 3); // remove SOF, LEN and FCS ToHex_P((unsigned char*)znp_buffer.getBuffer(), znp_buffer.len(), hex_char, sizeof(hex_char)); Response_P(PSTR("{\"" D_JSON_ZIGBEEZNPRECEIVED "\":\"%s\"}"), hex_char); if (Settings.flag3.tuya_serial_mqtt_publish) { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR)); XdrvRulesProcess(); } else { AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "%s"), mqtt_data); } // now process the message ZigbeeProcessInput(znp_buffer); } zigbee_buffer->setLen(0); // empty buffer } } /********************************************************************************************/ void ZigbeeInit(void) { zigbee.active = false; if ((pin[GPIO_ZIGBEE_RX] < 99) && (pin[GPIO_ZIGBEE_TX] < 99)) { AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR(D_LOG_ZIGBEE "GPIOs Rx:%d Tx:%d"), pin[GPIO_ZIGBEE_RX], pin[GPIO_ZIGBEE_TX]); // if seriallog_level is 0, we allow GPIO 13/15 to switch to Hardware Serial ZigbeeSerial = new TasmotaSerial(pin[GPIO_ZIGBEE_RX], pin[GPIO_ZIGBEE_TX], seriallog_level ? 1 : 2, 0, 256); // set a receive buffer of 256 bytes ZigbeeSerial->begin(115200); if (ZigbeeSerial->hardwareSerial()) { ClaimSerial(); uint32_t aligned_buffer = ((uint32_t)serial_in_buffer + 3) & ~3; zigbee_buffer = new PreAllocatedSBuffer(sizeof(serial_in_buffer) - 3, (char*) aligned_buffer); } else { zigbee_buffer = new SBuffer(ZIGBEE_BUFFER_SIZE); } zigbee.active = true; zigbee.init_phase = true; // start the state machine zigbee.state_machine = true; // start the state machine ZigbeeSerial->flush(); } } /*********************************************************************************************\ * Commands \*********************************************************************************************/ uint32_t strToUInt(const JsonVariant &val) { // if the string starts with 0x, it is considered Hex, otherwise it is an int if (val.is()) { return val.as(); } else { if (val.is()) { String sval = val.as(); return strtoull(sval.c_str(), nullptr, 0); } } return 0; // couldn't parse anything } const unsigned char ZIGBEE_FACTORY_RESET[] PROGMEM = { Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 /* len */, 0x01 /* STARTOPT_CLEAR_CONFIG */}; //"2605030101"; // Z_SREQ | Z_SAPI, SAPI_WRITE_CONFIGURATION, CONF_STARTUP_OPTION, 0x01 len, 0x01 STARTOPT_CLEAR_CONFIG // Do a factory reset of the CC2530 void CmndZbReset(void) { if (ZigbeeSerial) { switch (XdrvMailbox.payload) { case 1: ZigbeeZNPSend(ZIGBEE_FACTORY_RESET, sizeof(ZIGBEE_FACTORY_RESET)); eraseZigbeeDevices(); restart_flag = 2; ResponseCmndChar(D_JSON_ZIGBEE_CC2530 " " D_JSON_RESET_AND_RESTARTING); break; default: ResponseCmndChar(D_JSON_ONE_TO_RESET); } } } void CmndZbZNPSendOrReceive(bool send) { if (ZigbeeSerial && (XdrvMailbox.data_len > 0)) { uint8_t code; char *codes = RemoveSpace(XdrvMailbox.data); int32_t size = strlen(XdrvMailbox.data); SBuffer buf((size+1)/2); while (size > 1) { char stemp[3]; strlcpy(stemp, codes, sizeof(stemp)); code = strtol(stemp, nullptr, 16); buf.add8(code); size -= 2; codes += 2; } if (send) { ZigbeeZNPSend(buf.getBuffer(), buf.len()); } else { ZigbeeProcessInput(buf); } } ResponseCmndDone(); } // For debug purposes only, simulates a message received void CmndZbZNPReceive(void) { CmndZbZNPSendOrReceive(false); } void CmndZbZNPSend(void) { CmndZbZNPSendOrReceive(true); } void ZigbeeZNPSend(const uint8_t *msg, size_t len) { if ((len < 2) || (len > 252)) { // abort, message cannot be less than 2 bytes for CMD1 and CMD2 AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_JSON_ZIGBEEZNPSENT ": bad message len %d"), len); return; } uint8_t data_len = len - 2; // removing CMD1 and CMD2 if (ZigbeeSerial) { uint8_t fcs = data_len; ZigbeeSerial->write(ZIGBEE_SOF); // 0xFE //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend SOF %02X"), ZIGBEE_SOF); ZigbeeSerial->write(data_len); //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend LEN %02X"), data_len); for (uint32_t i = 0; i < len; i++) { uint8_t b = pgm_read_byte(msg + i); ZigbeeSerial->write(b); fcs ^= b; //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend byt %02X"), b); } ZigbeeSerial->write(fcs); // finally send fcs checksum byte //AddLog_P2(LOG_LEVEL_DEBUG_MORE, PSTR("ZNPSend FCS %02X"), fcs); } // Now send a MQTT message to report the sent message char hex_char[(len * 2) + 2]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZNPSENT " %s"), ToHex_P(msg, len, hex_char, sizeof(hex_char))); } void ZigbeeZCLSend(uint16_t dtsAddr, uint16_t clusterId, uint8_t endpoint, uint8_t cmdId, bool clusterSpecific, const uint8_t *msg, size_t len, bool needResponse, uint8_t transacId) { SBuffer buf(25+len); buf.add8(Z_SREQ | Z_AF); // 24 buf.add8(AF_DATA_REQUEST); // 01 buf.add16(dtsAddr); buf.add8(endpoint); // dest endpoint buf.add8(0x01); // source endpoint buf.add16(clusterId); buf.add8(transacId); // transacId buf.add8(0x30); // 30 options buf.add8(0x1E); // 1E radius buf.add8(3 + len); buf.add8((needResponse ? 0x00 : 0x10) | (clusterSpecific ? 0x01 : 0x00)); // Frame Control Field buf.add8(transacId); // Transaction Sequance Number buf.add8(cmdId); if (len > 0) { buf.addBuffer(msg, len); // add the payload } ZigbeeZNPSend(buf.getBuffer(), buf.len()); } void zigbeeZCLSendStr(uint16_t dstAddr, uint8_t endpoint, bool clusterSpecific, uint16_t cluster, uint8_t cmd, const char *param) { size_t size = param ? strlen(param) : 0; SBuffer buf((size+2)/2); // actual bytes buffer for data if (param) { while (*param) { uint8_t code = parseHex_P(¶m, 2); buf.add8(code); } } if (0 == endpoint) { // endpoint is not specified, let's try to find it from shortAddr endpoint = zigbee_devices.findClusterEndpointIn(dstAddr, cluster); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint); } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: dstAddr 0x%04X, cluster 0x%04X, endpoint 0x%02X, cmd 0x%02X, data %s"), dstAddr, cluster, endpoint, cmd, param); if (0 == endpoint) { AddLog_P2(LOG_LEVEL_INFO, PSTR("ZbSend: unspecified endpoint")); return; } // everything is good, we can send the command ZigbeeZCLSend(dstAddr, cluster, endpoint, cmd, clusterSpecific, buf.getBuffer(), buf.len(), false, zigbee_devices.getNextSeqNumber(dstAddr)); // now set the timer, if any, to read back the state later if (clusterSpecific) { zigbeeSetCommandTimer(dstAddr, cluster, endpoint); } ResponseCmndDone(); } void CmndZbSend(void) { // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":1} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"3"} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"0xFF"} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":null} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":false} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":true} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Power":"true"} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"ShutterClose":null} } // ZigbeeSend { "devicse":"0x1234", "endpoint":"0x03", "send":{"Power":1} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"1,2"} } // ZigbeeSend { "device":"0x1234", "endpoint":"0x03", "send":{"Color":"0x1122,0xFFEE"} } if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } DynamicJsonBuffer jsonBuf; JsonObject &json = jsonBuf.parseObject(XdrvMailbox.data); if (!json.success()) { ResponseCmndChar(D_JSON_INVALID_JSON); return; } // params static char delim[] = ", "; // delimiters for parameters uint16_t device = 0xFFFF; // 0xFFFF is broadcast, so considered valid uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint // Command elements uint16_t cluster = 0; uint8_t cmd = 0; String cmd_str = ""; // the actual low-level command, either specified or computed // parse JSON const JsonVariant &val_device = getCaseInsensitive(json, PSTR("Device")); if (nullptr != &val_device) { device = zigbee_devices.parseDeviceParam(val_device.as()); if (0xFFFF == device) { ResponseCmndChar("Invalid parameter"); return; } } if ((nullptr == &val_device) || (0x000 == device)) { ResponseCmndChar("Unknown device"); return; } const JsonVariant &val_endpoint = getCaseInsensitive(json, PSTR("Endpoint")); if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); } const JsonVariant &val_cmd = getCaseInsensitive(json, PSTR("Send")); if (nullptr != &val_cmd) { // probe the type of the argument // If JSON object, it's high level commands // If String, it's a low level command if (val_cmd.is()) { // we have a high-level command JsonObject &cmd_obj = val_cmd.as(); int32_t cmd_size = cmd_obj.size(); if (cmd_size > 1) { Response_P(PSTR("Only 1 command allowed (%d)"), cmd_size); return; } else if (1 == cmd_size) { // We have exactly 1 command, parse it JsonObject::iterator it = cmd_obj.begin(); // just get the first key/value String key = it->key; JsonVariant& value = it->value; uint32_t x = 0, y = 0, z = 0; uint16_t cmd_var; const __FlashStringHelper* tasmota_cmd = zigbeeFindCommand(key.c_str(), &cluster, &cmd_var); if (tasmota_cmd) { cmd_str = tasmota_cmd; } else { Response_P(PSTR("Unrecognized zigbee command: %s"), key.c_str()); return; } // parse the JSON value, depending on its type fill in x,y,z if (value.is()) { x = value.as() ? 1 : 0; } else if (value.is()) { x = value.as(); } else { // if non-bool or non-int, trying char* const char *s_const = value.as(); if (s_const != nullptr) { char s[strlen(s_const)+1]; strcpy(s, s_const); if ((nullptr != s) && (0x00 != *s)) { // ignore any null or empty string, could represent 'null' json value char *sval = strtok(s, delim); if (sval) { x = ZigbeeAliasOrNumber(sval); sval = strtok(nullptr, delim); if (sval) { y = ZigbeeAliasOrNumber(sval); sval = strtok(nullptr, delim); if (sval) { z = ZigbeeAliasOrNumber(sval); } } } } } } //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_template = %s"), cmd_str.c_str()); if (0xFF == cmd_var) { // if command number is a variable, replace it with x cmd = x; x = y; // and shift other variables y = z; } else { cmd = cmd_var; // or simply copy the cmd number } cmd_str = zigbeeCmdAddParams(cmd_str.c_str(), x, y, z); // fill in parameters //AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: command_final = %s"), cmd_str.c_str()); } else { // we have zero command, pass through until last error for missing command } } else if (val_cmd.is()) { // low-level command cmd_str = val_cmd.as(); } else { // we have an unsupported command type, just ignore it and fallback to missing command } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbCmd_actual: ZigbeeZCLSend {\"device\":\"0x%04X\",\"endpoint\":%d,\"send\":\"%04X!%02X/%s\"}"), device, endpoint, cluster, cmd, cmd_str.c_str()); zigbeeZCLSendStr(device, endpoint, true, cluster, cmd, cmd_str.c_str()); } else { Response_P(PSTR("Missing zigbee 'Send'")); return; } } ZBM(ZBS_BIND_REQ, Z_SREQ | Z_ZDO, ZDO_BIND_REQ, 0,0, // dstAddr - 16 bits, device to send the bind to 0,0,0,0,0,0,0,0, // srcAddr - 64 bits, IEEE binding source 0x00, // source endpoint 0x00, 0x00, // cluster 0x03, // DstAddrMode - 0x03 = ADDRESS_64_BIT 0,0,0,0,0,0,0,0, // dstAddr - 64 bits, IEEE binding destination, i.e. coordinator 0x01 // dstEndpoint - 0x01 for coordinator ) void CmndZbBind(void) { // ZbBind { "device":"0x1234", "endpoint":1, "cluster":6 } // local endpoint is always 1, IEEE addresses are calculated if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } DynamicJsonBuffer jsonBuf; JsonObject &json = jsonBuf.parseObject(XdrvMailbox.data); if (!json.success()) { ResponseCmndChar(D_JSON_INVALID_JSON); return; } // params // static char delim[] = ", "; // delimiters for parameters uint16_t device = 0xFFFF; // 0xFFFF is broadcast, so considered valid uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint uint16_t cluster = 0; // 0xFFFF is invalid uint32_t group = 0xFFFFFFFF; // 16 bits values, otherwise 0xFFFFFFFF is unspecified const JsonVariant &val_device = getCaseInsensitive(json, PSTR("Device")); if (nullptr != &val_device) { device = zigbee_devices.parseDeviceParam(val_device.as()); if (0xFFFF == device) { ResponseCmndChar("Invalid parameter"); return; } } if ((nullptr == &val_device) || (0x000 == device)) { ResponseCmndChar("Unknown device"); return; } const JsonVariant &val_endpoint = getCaseInsensitive(json, PSTR("Endpoint")); if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); } const JsonVariant &val_cluster = getCaseInsensitive(json, PSTR("Cluster")); if (nullptr != &val_cluster) { cluster = strToUInt(val_cluster); } // TODO compute endpoint from cluster SBuffer buf(sizeof(ZBS_BIND_REQ)); buf.add8(Z_SREQ | Z_ZDO); buf.add8(ZDO_BIND_REQ); buf.add16(device); buf.add64(zigbee_devices.getDeviceLongAddr(device)); buf.add8(endpoint); buf.add16(cluster); buf.add8(0x03); // DstAddrMode - 0x03 = ADDRESS_64_BIT buf.add64(localIEEEAddr); // coordinatore IEEE address buf.add8(0x01); // local endpoint = 1 ZigbeeZNPSend(buf.getBuffer(), buf.len()); ResponseCmndDone(); } // Probe a specific device to get its endpoints and supported clusters void CmndZbProbe(void) { CmndZbProbeOrPing(true); } void CmndZbProbeOrPing(boolean probe) { if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data); if (0x0000 == shortaddr) { ResponseCmndChar("Unknown device"); return; } if (0xFFFF == shortaddr) { ResponseCmndChar("Invalid parameter"); return; } // everything is good, we can send the command Z_SendIEEEAddrReq(shortaddr); if (probe) { Z_SendActiveEpReq(shortaddr); } ResponseCmndDone(); } // Ping a device, actually a simplified version of ZbProbe void CmndZbPing(void) { CmndZbProbeOrPing(false); } // Specify, read or erase a Friendly Name void CmndZbName(void) { // Syntax is: // ZigbeeName , - assign a friendly name // ZigbeeName - display the current friendly name // ZigbeeName , - remove friendly name // // Where can be: short_addr, long_addr, device_index, friendly_name if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } // check if parameters contain a comma ',' char *p; char *str = strtok_r(XdrvMailbox.data, ", ", &p); // parse first part, uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data, true); // in case of short_addr, it must be already registered if (0x0000 == shortaddr) { ResponseCmndChar("Unknown device"); return; } if (0xFFFF == shortaddr) { ResponseCmndChar("Invalid parameter"); return; } if (p == nullptr) { const String * friendlyName = zigbee_devices.getFriendlyName(shortaddr); Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), shortaddr, friendlyName ? friendlyName->c_str() : ""); } else { zigbee_devices.setFriendlyName(shortaddr, p); Response_P(PSTR("{\"0x%04X\":{\"" D_JSON_ZIGBEE_NAME "\":\"%s\"}}"), shortaddr, p); } } // Remove an old Zigbee device from the list of known devices, use ZigbeeStatus to know all registered devices void CmndZbForget(void) { if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data); if (0x0000 == shortaddr) { ResponseCmndChar("Unknown device"); return; } if (0xFFFF == shortaddr) { ResponseCmndChar("Invalid parameter"); return; } // everything is good, we can send the command if (zigbee_devices.removeDevice(shortaddr)) { ResponseCmndDone(); } else { ResponseCmndChar("Unknown device"); } } // Save Zigbee information to flash void CmndZbSave(void) { if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } saveZigbeeDevices(); ResponseCmndDone(); } // Send an attribute read command to a device, specifying cluster and list of attributes void CmndZbRead(void) { // ZigbeeRead {"Device":"0xF289","Cluster":0,"Endpoint":3,"Attr":5} // ZigbeeRead {"Device":"0xF289","Cluster":"0x0000","Endpoint":"0x0003","Attr":"0x0005"} // ZigbeeRead {"Device":"0xF289","Cluster":0,"Endpoint":3,"Attr":[5,6,7,4]} if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } DynamicJsonBuffer jsonBuf; JsonObject &json = jsonBuf.parseObject(XdrvMailbox.data); if (!json.success()) { ResponseCmndChar(D_JSON_INVALID_JSON); return; } // params uint16_t device = 0xFFFF; // 0xFFFF is braodcast, so considered valid uint16_t cluster = 0x0000; // default to general cluster uint8_t endpoint = 0x00; // 0x00 is invalid for the dst endpoint size_t attrs_len = 0; uint8_t* attrs = nullptr; // empty string is valid const JsonVariant &val_device = getCaseInsensitive(json, PSTR("Device")); if (nullptr != &val_device) { device = zigbee_devices.parseDeviceParam(val_device.as()); if (0xFFFF == device) { ResponseCmndChar("Invalid parameter"); return; } } if ((nullptr == &val_device) || (0x000 == device)) { ResponseCmndChar("Unknown device"); return; } const JsonVariant &val_cluster = getCaseInsensitive(json, PSTR("Cluster")); if (nullptr != &val_cluster) { cluster = strToUInt(val_cluster); } const JsonVariant &val_endpoint = getCaseInsensitive(json, PSTR("Endpoint")); if (nullptr != &val_endpoint) { endpoint = strToUInt(val_endpoint); } const JsonVariant &val_attr = getCaseInsensitive(json, PSTR("Read")); if (nullptr != &val_attr) { uint16_t val = strToUInt(val_attr); if (val_attr.is()) { JsonArray& attr_arr = val_attr; attrs_len = attr_arr.size() * 2; attrs = new uint8_t[attrs_len]; uint32_t i = 0; for (auto value : attr_arr) { uint16_t val = strToUInt(value); attrs[i++] = val & 0xFF; attrs[i++] = val >> 8; } } else { attrs_len = 2; attrs = new uint8_t[attrs_len]; attrs[0] = val & 0xFF; // little endian attrs[1] = val >> 8; } } if (0 == endpoint) { // try to compute the endpoint endpoint = zigbee_devices.findClusterEndpointIn(device, cluster); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("ZbSend: guessing endpoint 0x%02X"), endpoint); } if ((0 != endpoint) && (attrs_len > 0)) { ZigbeeZCLSend(device, cluster, endpoint, ZCL_READ_ATTRIBUTES, false, attrs, attrs_len, true /* we do want a response */, zigbee_devices.getNextSeqNumber(device)); ResponseCmndDone(); } else { ResponseCmndChar("Missing parameters"); } if (attrs) { delete[] attrs; } } // Allow or Deny pairing of new Zigbee devices void CmndZbPermitJoin(void) { if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } uint32_t payload = XdrvMailbox.payload; if (payload < 0) { payload = 0; } if ((99 != payload) && (payload > 1)) { payload = 1; } if (1 == payload) { ZigbeeGotoLabel(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_60); } else if (99 == payload){ ZigbeeGotoLabel(ZIGBEE_LABEL_PERMIT_JOIN_OPEN_XX); } else { ZigbeeGotoLabel(ZIGBEE_LABEL_PERMIT_JOIN_CLOSE); } ResponseCmndDone(); } void CmndZbStatus(void) { if (ZigbeeSerial) { if (zigbee.init_phase) { ResponseCmndChar(D_ZIGBEE_NOT_STARTED); return; } uint16_t shortaddr = zigbee_devices.parseDeviceParam(XdrvMailbox.data); if (0xFFFF == shortaddr) { ResponseCmndChar("Invalid parameter"); return; } if (XdrvMailbox.payload > 0) { if (0x0000 == shortaddr) { ResponseCmndChar("Unknown device"); return; } } String dump = zigbee_devices.dump(XdrvMailbox.index, shortaddr); Response_P(PSTR("{\"%s%d\":%s}"), XdrvMailbox.command, XdrvMailbox.index, dump.c_str()); } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv23(uint8_t function) { bool result = false; if (zigbee.active) { switch (function) { case FUNC_EVERY_50_MSECOND: if (!zigbee.init_phase) { zigbee_devices.runTimer(); } break; case FUNC_LOOP: if (ZigbeeSerial) { ZigbeeInput(); } if (zigbee.state_machine) { //ZigbeeStateMachine(); ZigbeeStateMachine_Run(); } break; case FUNC_PRE_INIT: ZigbeeInit(); break; case FUNC_COMMAND: result = DecodeCommand(kZbCommands, ZigbeeCommand); result = result || DecodeCommand(kZigbeeCommands, ZigbeeCommand); // deprecated break; } } return result; } #endif // USE_ZIGBEE