/* support_esp.ino - ESP specific code for Tasmota Copyright (C) 2021 Theo Arends / Jörg Schüler-Maroldt This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ /*********************************************************************************************\ * ESP8266 and ESP32 specific code * * At the end the common Tasmota calls are provided \*********************************************************************************************/ /*********************************************************************************************\ * ESP8266 Support \*********************************************************************************************/ #ifdef ESP8266 extern "C" { extern struct rst_info resetInfo; } uint32_t ESP_ResetInfoReason(void) { return resetInfo.reason; } String ESP_getResetReason(void) { return ESP.getResetReason(); } uint32_t ESP_getChipId(void) { return ESP.getChipId(); } uint32_t ESP_getFreeSketchSpace(void) { return ESP.getFreeSketchSpace(); } uint32_t ESP_getSketchSize(void) { return ESP.getSketchSize(); } uint32_t ESP_getFreeHeap(void) { return ESP.getFreeHeap(); } uint32_t ESP_getFlashChipId(void) { return ESP.getFlashChipId(); } uint32_t ESP_getFlashChipRealSize(void) { return ESP.getFlashChipRealSize(); } void ESP_Restart(void) { // ESP.restart(); // This results in exception 3 on restarts on core 2.3.0 ESP.reset(); } uint32_t FlashWriteStartSector(void) { return (ESP.getSketchSize() / SPI_FLASH_SEC_SIZE) + 2; // Stay on the safe side } uint32_t FlashWriteMaxSector(void) { return (((uint32_t)&_FS_start - 0x40200000) / SPI_FLASH_SEC_SIZE) - 2; } uint8_t* FlashDirectAccess(void) { return (uint8_t*)(0x40200000 + (FlashWriteStartSector() * SPI_FLASH_SEC_SIZE)); } void *special_malloc(uint32_t size) { return malloc(size); } void *special_realloc(void *ptr, size_t size) { return realloc(ptr, size); } void *special_calloc(size_t num, size_t size) { return calloc(num, size); } String GetDeviceHardware(void) { // esptool.py get_efuses uint32_t efuse1 = *(uint32_t*)(0x3FF00050); uint32_t efuse2 = *(uint32_t*)(0x3FF00054); // uint32_t efuse3 = *(uint32_t*)(0x3FF00058); // uint32_t efuse4 = *(uint32_t*)(0x3FF0005C); if (((efuse1 & (1 << 4)) || (efuse2 & (1 << 16))) && (ESP.getFlashChipRealSize() < 1048577)) { // ESP8285 can only have 1M flash return F("ESP8285"); } return F("ESP8266EX"); } String GetDeviceHardwareRevision(void) { // No known revisions for ESP8266/85 return GetDeviceHardware(); } #endif /*********************************************************************************************\ * ESP32 Support \*********************************************************************************************/ #ifdef ESP32 #include "bootloader_flash.h" #include "soc/soc.h" #include "soc/spi_reg.h" // ESP32_ARCH contains the name of the architecture (used by autoconf) #if CONFIG_IDF_TARGET_ESP32 #ifdef CORE32SOLO1 #define ESP32_ARCH "esp32solo1" #else #define ESP32_ARCH "esp32" #endif #elif CONFIG_IDF_TARGET_ESP32S2 #define ESP32_ARCH "esp32s2" #elif CONFIG_IDF_TARGET_ESP32S3 #define ESP32_ARCH "esp32s3" #elif CONFIG_IDF_TARGET_ESP32C3 #define ESP32_ARCH "esp32c3" #else #define ESP32_ARCH "" #endif // Handle 20k of NVM #include // See libraries\ESP32\examples\ResetReason.ino #if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+ #if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4 #include "esp32/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2 #include "esp32s2/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32S3 // ESP32-S3 #include "esp32s3/rom/rtc.h" #elif CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3 #include "esp32c3/rom/rtc.h" #else #error Target CONFIG_IDF_TARGET is not supported #endif #else // ESP32 Before IDF 4.0 #include "rom/rtc.h" #endif // Set the Stacksize for Arduino core. Default is 8192, some builds may need a bigger one size_t getArduinoLoopTaskStackSize(void) { return SET_ESP32_STACK_SIZE; } #include bool NvmLoad(const char *sNvsName, const char *sName, void *pSettings, unsigned nSettingsLen) { nvs_handle_t handle; esp_err_t result = nvs_open(sNvsName, NVS_READONLY, &handle); if (result != ESP_OK) { AddLog(LOG_LEVEL_DEBUG, PSTR("NVS: Error %d"), result); return false; } size_t size = nSettingsLen; nvs_get_blob(handle, sName, pSettings, &size); nvs_close(handle); return true; } void NvmSave(const char *sNvsName, const char *sName, const void *pSettings, unsigned nSettingsLen) { #ifdef USE_WEBCAM WcInterrupt(0); // Stop stream if active to fix TG1WDT_SYS_RESET #endif nvs_handle_t handle; esp_err_t result = nvs_open(sNvsName, NVS_READWRITE, &handle); if (result != ESP_OK) { AddLog(LOG_LEVEL_DEBUG, PSTR("NVS: Error %d"), result); } else { nvs_set_blob(handle, sName, pSettings, nSettingsLen); nvs_commit(handle); nvs_close(handle); } #ifdef USE_WEBCAM WcInterrupt(1); #endif } int32_t NvmErase(const char *sNvsName) { nvs_handle_t handle; int32_t result = nvs_open(sNvsName, NVS_READWRITE, &handle); if (ESP_OK == result) { result = nvs_erase_all(handle); } if (ESP_OK == result) { result = nvs_commit(handle); } nvs_close(handle); return result; } void SettingsErase(uint8_t type) { // SDK and Tasmota data is held in default NVS partition // Tasmota data is held also in file /.settings on default filesystem // cal_data - SDK PHY calibration data as documented in esp_phy_init.h // qpc - Tasmota Quick Power Cycle state // main - Tasmota Settings data int32_t r1, r2, r3 = 0; switch (type) { case 0: // Reset 2 = Erase all flash from program end to end of physical flash case 2: // Reset 5, 6 = Erase all flash from program end to end of physical flash excluding filesystem // nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc. r1 = NvmErase("qpc"); r2 = NvmErase("main"); #ifdef USE_UFILESYS r3 = TfsDeleteFile(TASM_FILE_SETTINGS); #endif AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3); break; case 1: // Reset 3 = SDK parameter area case 4: // WIFI_FORCE_RF_CAL_ERASE = SDK parameter area r1 = esp_phy_erase_cal_data_in_nvs(); // r1 = NvmErase("cal_data"); AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " PHY data (%d)"), r1); break; case 3: // QPC Reached = QPC, Tasmota and SDK parameter area (0x0F3xxx - 0x0FFFFF) // nvs_flash_erase(); // Erase RTC, PHY, sta.mac, ap.sndchan, ap.mac, Tasmota etc. r1 = NvmErase("qpc"); r2 = NvmErase("main"); // r3 = esp_phy_erase_cal_data_in_nvs(); // r3 = NvmErase("cal_data"); // AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota (%d,%d) and PHY data (%d)"), r1, r2, r3); #ifdef USE_UFILESYS r3 = TfsDeleteFile(TASM_FILE_SETTINGS); #endif AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_ERASE " Tasmota data (%d,%d,%d)"), r1, r2, r3); break; } } uint32_t SettingsRead(void *data, size_t size) { #ifdef USE_UFILESYS if (TfsLoadFile(TASM_FILE_SETTINGS, (uint8_t*)data, size)) { return 2; } #endif if (NvmLoad("main", "Settings", data, size)) { return 1; }; return 0; } void SettingsWrite(const void *pSettings, unsigned nSettingsLen) { #ifdef USE_UFILESYS TfsSaveFile(TASM_FILE_SETTINGS, (const uint8_t*)pSettings, nSettingsLen); #endif NvmSave("main", "Settings", pSettings, nSettingsLen); } void QPCRead(void *pSettings, unsigned nSettingsLen) { NvmLoad("qpc", "pcreg", pSettings, nSettingsLen); } void QPCWrite(const void *pSettings, unsigned nSettingsLen) { NvmSave("qpc", "pcreg", pSettings, nSettingsLen); } bool OtaFactoryRead(void) { uint32_t pOtaLoader; NvmLoad("otal", "otal", &pOtaLoader, sizeof(pOtaLoader)); return pOtaLoader; } void OtaFactoryWrite(bool value) { uint32_t pOtaLoader = value; NvmSave("otal", "otal", &pOtaLoader, sizeof(pOtaLoader)); } void NvsInfo(void) { nvs_stats_t nvs_stats; nvs_get_stats(NULL, &nvs_stats); AddLog(LOG_LEVEL_INFO, PSTR("NVS: Used %d/%d entries, NameSpaces %d"), nvs_stats.used_entries, nvs_stats.total_entries, nvs_stats.namespace_count); } // // Flash memory mapping // // See Esp.cpp #include "Esp.h" #include "esp_spi_flash.h" #include #include #include #include extern "C" { #include "esp_ota_ops.h" #include "esp_image_format.h" } #include "esp_system.h" #if ESP_IDF_VERSION_MAJOR > 3 // IDF 4+ #if CONFIG_IDF_TARGET_ESP32 // ESP32/PICO-D4 #include "esp32/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S2 // ESP32-S2 #include "esp32s2/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32S3 // ESP32-S3 #include "esp32s3/rom/spi_flash.h" #elif CONFIG_IDF_TARGET_ESP32C3 // ESP32-C3 #include "esp32c3/rom/spi_flash.h" #else #error Target CONFIG_IDF_TARGET is not supported #endif #else // ESP32 Before IDF 4.0 #include "rom/spi_flash.h" #endif uint32_t EspProgramSize(const char *label) { const esp_partition_t *part = esp_partition_find_first(ESP_PARTITION_TYPE_APP, ESP_PARTITION_SUBTYPE_ANY, label); if (!part) { return 0; } const esp_partition_pos_t part_pos = { .offset = part->address, .size = part->size, }; esp_image_metadata_t data; data.start_addr = part_pos.offset; esp_image_verify(ESP_IMAGE_VERIFY, &part_pos, &data); return data.image_len; } bool EspSingleOtaPartition(void) { return (1 == esp_ota_get_app_partition_count()); } uint32_t EspRunningFactoryPartition(void) { const esp_partition_t *cur_part = esp_ota_get_running_partition(); // return (cur_part->type == 0 && cur_part->subtype == 0); if (cur_part->type == 0 && cur_part->subtype == 0) { return cur_part->size; } return 0; } void EspPrepRestartToSafeBoot(void) { const esp_partition_t *otadata_partition = esp_partition_find_first(ESP_PARTITION_TYPE_DATA, ESP_PARTITION_SUBTYPE_DATA_OTA, NULL); if (otadata_partition) { esp_partition_erase_range(otadata_partition, 0, SPI_FLASH_SEC_SIZE * 2); } } bool EspPrepSwitchPartition(uint32_t state) { bool valid = EspSingleOtaPartition(); if (valid) { bool running_factory = EspRunningFactoryPartition(); switch (state) { case 0: // Off = safeboot if (!running_factory) { EspPrepRestartToSafeBoot(); } else { valid = false; } break; case 1: // On = ota0 if (running_factory) { const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); esp_ota_set_boot_partition(partition); } else { valid = false; } break; case 2: // Toggle if (!running_factory) { EspPrepRestartToSafeBoot(); } else { const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); esp_ota_set_boot_partition(partition); } } } return valid; } uint32_t EspFlashBaseAddress(void) { if (EspSingleOtaPartition()) { // Only one partition so start at end of sketch const esp_partition_t *running = esp_ota_get_running_partition(); if (!running) { return 0; } return running->address + ESP_getSketchSize(); } else { // Select other partition const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } return partition->address; // For tasmota 0x00010000 or 0x00200000 } } uint32_t EspFlashBaseEndAddress(void) { const esp_partition_t* partition = (EspSingleOtaPartition()) ? esp_ota_get_running_partition() : esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } return partition->address + partition->size; // For tasmota 0x00200000 or 0x003F0000 } uint8_t* EspFlashMmap(uint32_t address) { static spi_flash_mmap_handle_t handle = 0; if (handle) { spi_flash_munmap(handle); handle = 0; } const uint8_t* data; int32_t err = spi_flash_mmap(address, 5 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&data, &handle); /* AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Spi_flash_map %d"), err); spi_flash_mmap_dump(); */ return (uint8_t*)data; } /* int32_t EspPartitionMmap(uint32_t action) { static spi_flash_mmap_handle_t handle; int32_t err = 0; if (1 == action) { const esp_partition_t *partition = esp_ota_get_running_partition(); // const esp_partition_t* partition = esp_ota_get_next_update_partition(nullptr); if (!partition) { return 0; } err = esp_partition_mmap(partition, 0, 4 * SPI_FLASH_MMU_PAGE_SIZE, SPI_FLASH_MMAP_DATA, (const void **)&TasmotaGlobal_mmap_data, &handle); AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Partition start 0x%08X, Partition end 0x%08X, Mmap data 0x%08X"), partition->address, partition->size, TasmotaGlobal_mmap_data); } else { spi_flash_munmap(handle); handle = 0; } return err; } */ // // ESP32 specific // #include "soc/soc.h" #include "soc/rtc_cntl_reg.h" void DisableBrownout(void) { // https://github.com/espressif/arduino-esp32/issues/863#issuecomment-347179737 WRITE_PERI_REG(RTC_CNTL_BROWN_OUT_REG, 0); // Disable brownout detector } // // ESP32 Alternatives // String ESP32GetResetReason(uint32_t cpu_no) { // tools\sdk\include\esp32\rom\rtc.h // tools\sdk\esp32\include\esp_rom\include\esp32c3\rom\rtc.h // tools\sdk\esp32\include\esp_rom\include\esp32s2\rom\rtc.h switch (rtc_get_reset_reason(cpu_no)) { // ESP32 ESP32-S / ESP32-C case 1 : return F("Vbat power on reset"); // 1 POWERON_RESET POWERON_RESET case 3 : return F("Software reset digital core"); // 3 SW_RESET RTC_SW_SYS_RESET case 4 : return F("Legacy watch dog reset digital core"); // 4 OWDT_RESET - case 5 : return F("Deep Sleep reset digital core"); // 5 DEEPSLEEP_RESET DEEPSLEEP_RESET case 6 : return F("Reset by SLC module, reset digital core"); // 6 SDIO_RESET case 7 : return F("Timer Group0 Watch dog reset digital core"); // 7 TG0WDT_SYS_RESET case 8 : return F("Timer Group1 Watch dog reset digital core"); // 8 TG1WDT_SYS_RESET case 9 : return F("RTC Watch dog Reset digital core"); // 9 RTCWDT_SYS_RESET case 10 : return F("Instrusion tested to reset CPU"); // 10 INTRUSION_RESET case 11 : return F("Time Group0 reset CPU"); // 11 TGWDT_CPU_RESET TG0WDT_CPU_RESET case 12 : return F("Software reset CPU"); // 12 SW_CPU_RESET RTC_SW_CPU_RESET case 13 : return F("RTC Watch dog Reset CPU"); // 13 RTCWDT_CPU_RESET case 14 : return F("or APP CPU, reseted by PRO CPU"); // 14 EXT_CPU_RESET - case 15 : return F("Reset when the vdd voltage is not stable"); // 15 RTCWDT_BROWN_OUT_RESET case 16 : return F("RTC Watch dog reset digital core and rtc module"); // 16 RTCWDT_RTC_RESET case 17 : return F("Time Group1 reset CPU"); // 17 - TG1WDT_CPU_RESET case 18 : return F("Super watchdog reset digital core and rtc module"); // 18 - SUPER_WDT_RESET case 19 : return F("Glitch reset digital core and rtc module"); // 19 - GLITCH_RTC_RESET case 20 : return F("Efuse reset digital core"); // 20 EFUSE_RESET case 21 : return F("Usb uart reset digital core"); // 21 USB_UART_CHIP_RESET case 22 : return F("Usb jtag reset digital core"); // 22 USB_JTAG_CHIP_RESET case 23 : return F("Power glitch reset digital core and rtc module"); // 23 POWER_GLITCH_RESET } return F("No meaning"); // 0 and undefined } String ESP_getResetReason(void) { return ESP32GetResetReason(0); // CPU 0 } uint32_t ESP_ResetInfoReason(void) { RESET_REASON reason = rtc_get_reset_reason(0); if (1 == reason) { return REASON_DEFAULT_RST; } // POWERON_RESET if (12 == reason) { return REASON_SOFT_RESTART; } // SW_CPU_RESET / RTC_SW_CPU_RESET if (5 == reason) { return REASON_DEEP_SLEEP_AWAKE; } // DEEPSLEEP_RESET if (3 == reason) { return REASON_EXT_SYS_RST; } // SW_RESET / RTC_SW_SYS_RESET return -1; //no "official error code", but should work with the current code base } uint32_t ESP_getChipId(void) { uint32_t id = 0; for (uint32_t i = 0; i < 17; i = i +8) { id |= ((ESP.getEfuseMac() >> (40 - i)) & 0xff) << i; } return id; } uint32_t ESP_getSketchSize(void) { static uint32_t sketchsize = 0; if (!sketchsize) { sketchsize = ESP.getSketchSize(); // This takes almost 2 seconds on an ESP32 } return sketchsize; } uint32_t ESP_getFreeSketchSpace(void) { if (EspSingleOtaPartition()) { uint32_t size = EspRunningFactoryPartition(); if (!size) { size = ESP.getFreeSketchSpace(); } return size - ESP_getSketchSize(); } return ESP.getFreeSketchSpace(); } uint32_t ESP_getFreeHeap(void) { // ESP_getFreeHeap() returns also IRAM which we don't use return heap_caps_get_free_size(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); } uint32_t ESP_getMaxAllocHeap(void) { // arduino returns IRAM but we want only DRAM uint32_t free_block_size = heap_caps_get_largest_free_block(MALLOC_CAP_INTERNAL | MALLOC_CAP_8BIT); if (free_block_size > 100) { free_block_size -= 100; } return free_block_size; } int32_t ESP_getHeapFragmentation(void) { int32_t free_maxmem = 100 - (int32_t)(ESP_getMaxAllocHeap() * 100 / ESP_getFreeHeap()); if (free_maxmem < 0) { free_maxmem = 0; } return free_maxmem; } uint32_t ESP_getFlashChipId(void) { // uint32_t id = bootloader_read_flash_id(); uint32_t id = g_rom_flashchip.device_id; id = ((id & 0xff) << 16) | ((id >> 16) & 0xff) | (id & 0xff00); return id; } uint32_t ESP_getFlashChipRealSize(void) { uint32_t id = (ESP_getFlashChipId() >> 16) & 0xFF; return 2 << (id - 1); } void ESP_Restart(void) { ESP.restart(); } uint32_t FlashWriteStartSector(void) { // Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage uint32_t aligned_address = ((EspFlashBaseAddress() + (2 * SPI_FLASH_MMU_PAGE_SIZE)) / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE; return aligned_address / SPI_FLASH_SEC_SIZE; } uint32_t FlashWriteMaxSector(void) { // Needs to be on SPI_FLASH_MMU_PAGE_SIZE (= 0x10000) alignment for mmap usage uint32_t aligned_end_address = (EspFlashBaseEndAddress() / SPI_FLASH_MMU_PAGE_SIZE) * SPI_FLASH_MMU_PAGE_SIZE; return aligned_end_address / SPI_FLASH_SEC_SIZE; } uint8_t* FlashDirectAccess(void) { uint32_t address = FlashWriteStartSector() * SPI_FLASH_SEC_SIZE; uint8_t* data = EspFlashMmap(address); /* AddLog(LOG_LEVEL_DEBUG, PSTR("DBG: Flash start address 0x%08X, Mmap address 0x%08X"), address, data); uint8_t buf[32]; memcpy(buf, data, sizeof(buf)); AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&buf, 32); */ return data; } extern "C" { bool esp_spiram_is_initialized(void); } // this function is a replacement for `psramFound()`. // `psramFound()` can return true even if no PSRAM is actually installed // This new version also checks `esp_spiram_is_initialized` to know if the PSRAM is initialized bool FoundPSRAM(void) { #if CONFIG_IDF_TARGET_ESP32C3 return psramFound(); #else return psramFound() && esp_spiram_is_initialized(); #endif } // new function to check whether PSRAM is present and supported (i.e. required pacthes are present) bool UsePSRAM(void) { static bool can_use_psram = CanUsePSRAM(); return FoundPSRAM() && can_use_psram; } void *special_malloc(uint32_t size) { if (UsePSRAM()) { return heap_caps_malloc(size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); } else { return malloc(size); } } void *special_realloc(void *ptr, size_t size) { if (UsePSRAM()) { return heap_caps_realloc(ptr, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); } else { return realloc(ptr, size); } } void *special_calloc(size_t num, size_t size) { if (UsePSRAM()) { return heap_caps_calloc(num, size, MALLOC_CAP_SPIRAM | MALLOC_CAP_8BIT); } else { return calloc(num, size); } } // Variants for IRAM heap, which need all accesses to be 32 bits aligned void *special_malloc32(uint32_t size) { return heap_caps_malloc(size, MALLOC_CAP_32BIT); } float CpuTemperature(void) { #ifdef CONFIG_IDF_TARGET_ESP32 return (float)temperatureRead(); // In Celsius /* // These jumps are not stable either. Sometimes it jumps to 77.3 float t = (float)temperatureRead(); // In Celsius if (t > 81) { t = t - 27.2; } // Fix temp jump observed on some ESP32 like DualR3 return t; */ #else // Currently (20210801) repeated calls to temperatureRead() on ESP32C3 and ESP32S2 result in IDF error messages static float t = NAN; if (isnan(t)) { t = (float)temperatureRead(); // In Celsius } return t; #endif } /* #ifdef __cplusplus extern "C" { #endif uint8_t temprature_sens_read(); #ifdef __cplusplus } #endif #ifdef CONFIG_IDF_TARGET_ESP32 uint8_t temprature_sens_read(); float CpuTemperature(void) { uint8_t t = temprature_sens_read(); AddLog(LOG_LEVEL_DEBUG, PSTR("TMP: value %d"), t); return (t - 32) / 1.8; } #else float CpuTemperature(void) { // Currently (20210801) repeated calls to temperatureRead() on ESP32C3 and ESP32S2 result in IDF error messages static float t = NAN; if (isnan(t)) { t = (float)temperatureRead(); // In Celsius } return t; } #endif */ /* #if CONFIG_IDF_TARGET_ESP32S2 #include "esp32s2/esp_efuse.h" #elif CONFIG_IDF_TARGET_ESP32S3 #include "esp32s3/esp_efuse.h" #elif CONFIG_IDF_TARGET_ESP32C3 #include "esp32c3/esp_efuse.h" #endif */ // #include "esp_chip_info.h" String GetDeviceHardware(void) { // https://www.espressif.com/en/products/socs /* Source: esp-idf esp_system.h and esptool typedef enum { CHIP_ESP32 = 1, //!< ESP32 CHIP_ESP32S2 = 2, //!< ESP32-S2 CHIP_ESP32S3 = 9, //!< ESP32-S3 CHIP_ESP32C3 = 5, //!< ESP32-C3 CHIP_ESP32H2 = 6, //!< ESP32-H2 CHIP_ESP32C2 = 12, //!< ESP32-C2 } esp_chip_model_t; // Chip feature flags, used in esp_chip_info_t #define CHIP_FEATURE_EMB_FLASH BIT(0) //!< Chip has embedded flash memory #define CHIP_FEATURE_WIFI_BGN BIT(1) //!< Chip has 2.4GHz WiFi #define CHIP_FEATURE_BLE BIT(4) //!< Chip has Bluetooth LE #define CHIP_FEATURE_BT BIT(5) //!< Chip has Bluetooth Classic #define CHIP_FEATURE_IEEE802154 BIT(6) //!< Chip has IEEE 802.15.4 #define CHIP_FEATURE_EMB_PSRAM BIT(7) //!< Chip has embedded psram // The structure represents information about the chip typedef struct { esp_chip_model_t model; //!< chip model, one of esp_chip_model_t uint32_t features; //!< bit mask of CHIP_FEATURE_x feature flags uint8_t cores; //!< number of CPU cores uint8_t revision; //!< chip revision number } esp_chip_info_t; */ esp_chip_info_t chip_info; esp_chip_info(&chip_info); uint32_t chip_model = chip_info.model; uint32_t chip_revision = chip_info.revision; // uint32_t chip_revision = ESP.getChipRevision(); bool rev3 = (3 == chip_revision); // bool single_core = (1 == ESP.getChipCores()); bool single_core = (1 == chip_info.cores); if (chip_model < 2) { // ESP32 #ifdef CONFIG_IDF_TARGET_ESP32 /* esptool: def get_pkg_version(self): word3 = self.read_efuse(3) pkg_version = (word3 >> 9) & 0x07 pkg_version += ((word3 >> 2) & 0x1) << 3 return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_version = chip_ver & 0x7; // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver); switch (pkg_version) { case 0: if (single_core) { return F("ESP32-S0WDQ6"); } // Max 240MHz, Single core, QFN 6*6 else if (rev3) { return F("ESP32-D0WDQ6-V3"); } // Max 240MHz, Dual core, QFN 6*6 else { return F("ESP32-D0WDQ6"); } // Max 240MHz, Dual core, QFN 6*6 case 1: if (single_core) { return F("ESP32-S0WD"); } // Max 160MHz, Single core, QFN 5*5, ESP32-SOLO-1, ESP32-DevKitC else if (rev3) { return F("ESP32-D0WD-V3"); } // Max 240MHz, Dual core, QFN 5*5, ESP32-WROOM-32E, ESP32_WROVER-E, ESP32-DevKitC else { return F("ESP32-D0WD"); } // Max 240MHz, Dual core, QFN 5*5, ESP32-WROOM-32D, ESP32_WROVER-B, ESP32-DevKitC case 2: return F("ESP32-D2WD"); // Max 160MHz, Dual core, QFN 5*5, 2MB embedded flash case 3: if (single_core) { return F("ESP32-S0WD-OEM"); } // Max 160MHz, Single core, QFN 5*5, Xiaomi Yeelight else { return F("ESP32-D0WD-OEM"); } // Max 240MHz, Dual core, QFN 5*5 case 4: return F("ESP32-U4WDH"); // Max 160MHz, Single core, QFN 5*5, 4MB embedded flash, ESP32-MINI-1, ESP32-DevKitM-1 case 5: if (rev3) { return F("ESP32-PICO-V3"); } // Max 240MHz, Dual core, LGA 7*7, ESP32-PICO-V3-ZERO, ESP32-PICO-V3-ZERO-DevKit else { return F("ESP32-PICO-D4"); } // Max 240MHz, Dual core, LGA 7*7, 4MB embedded flash, ESP32-PICO-KIT case 6: return F("ESP32-PICO-V3-02"); // Max 240MHz, Dual core, LGA 7*7, 8MB embedded flash, 2MB embedded PSRAM, ESP32-PICO-MINI-02, ESP32-PICO-DevKitM-2 case 7: return F("ESP32-D0WDR2-V3"); // Max 240MHz, Dual core, QFN 5*5, ESP32-WROOM-32E, ESP32_WROVER-E, ESP32-DevKitC } #endif // CONFIG_IDF_TARGET_ESP32 return F("ESP32"); } else if (2 == chip_model) { // ESP32-S2 #ifdef CONFIG_IDF_TARGET_ESP32S2 /* esptool: def get_flash_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version def get_psram_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 28) & 0x0F return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_FLASH_VERSION); uint32_t psram_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PSRAM_VERSION); uint32_t pkg_version = (chip_ver & 0xF) + ((psram_ver & 0xF) * 100); // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver); switch (pkg_version) { case 0: return F("ESP32-S2"); // Max 240MHz, Single core, QFN 7*7, ESP32-S2-WROOM, ESP32-S2-WROVER, ESP32-S2-Saola-1, ESP32-S2-Kaluga-1 case 1: return F("ESP32-S2FH2"); // Max 240MHz, Single core, QFN 7*7, 2MB embedded flash, ESP32-S2-MINI-1, ESP32-S2-DevKitM-1 case 2: return F("ESP32-S2FH4"); // Max 240MHz, Single core, QFN 7*7, 4MB embedded flash case 3: return F("ESP32-S2FN4R2"); // Max 240MHz, Single core, QFN 7*7, 4MB embedded flash, 2MB embedded PSRAM, , ESP32-S2-MINI-1U, ESP32-S2-DevKitM-1U case 100: return F("ESP32-S2R2"); case 102: return F("ESP32-S2FNR2"); // Max 240MHz, Single core, QFN 7*7, 4MB embedded flash, 2MB embedded PSRAM, , Lolin S2 mini } #endif // CONFIG_IDF_TARGET_ESP32S2 return F("ESP32-S2"); } else if (9 == chip_model) { // ESP32-S3 #ifdef CONFIG_IDF_TARGET_ESP32S3 // no variants for now #endif // CONFIG_IDF_TARGET_ESP32S3 return F("ESP32-S3"); // Max 240MHz, Dual core, QFN 7*7, ESP32-S3-WROOM-1, ESP32-S3-DevKitC-1 } else if (5 == chip_model) { // ESP32-C3 #ifdef CONFIG_IDF_TARGET_ESP32C3 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); uint32_t pkg_version = chip_ver & 0x7; // uint32_t pkg_version = esp_efuse_get_pkg_ver(); // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver); switch (pkg_version) { case 0: return F("ESP32-C3"); // Max 160MHz, Single core, QFN 5*5, ESP32-C3-WROOM-02, ESP32-C3-DevKitC-02 case 1: return F("ESP32-C3FH4"); // Max 160MHz, Single core, QFN 5*5, 4MB embedded flash, ESP32-C3-MINI-1, ESP32-C3-DevKitM-1 } #endif // CONFIG_IDF_TARGET_ESP32C3 return F("ESP32-C3"); } else if (6 == chip_model) { // ESP32-S3(beta3) return F("ESP32-S3"); } else if (7 == chip_model) { // ESP32-C6(beta) #ifdef CONFIG_IDF_TARGET_ESP32C6 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); uint32_t pkg_version = chip_ver & 0x7; // uint32_t pkg_version = esp_efuse_get_pkg_ver(); // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver); switch (pkg_version) { case 0: return F("ESP32-C6"); } #endif // CONFIG_IDF_TARGET_ESP32C6 return F("ESP32-C6"); } else if (10 == chip_model) { // ESP32-H2 #ifdef CONFIG_IDF_TARGET_ESP32H2 /* esptool: def get_pkg_version(self): num_word = 3 block1_addr = self.EFUSE_BASE + 0x044 word3 = self.read_reg(block1_addr + (4 * num_word)) pkg_version = (word3 >> 21) & 0x0F return pkg_version */ uint32_t chip_ver = REG_GET_FIELD(EFUSE_RD_MAC_SPI_SYS_3_REG, EFUSE_PKG_VERSION); uint32_t pkg_version = chip_ver & 0x7; // uint32_t pkg_version = esp_efuse_get_pkg_ver(); // AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("HDW: ESP32 Model %d, Revision %d, Core %d, Package %d"), chip_info.model, chip_revision, chip_info.cores, chip_ver); switch (pkg_version) { case 0: return F("ESP32-H2"); } #endif // CONFIG_IDF_TARGET_ESP32H2 return F("ESP32-H2"); } return F("ESP32"); } String GetDeviceHardwareRevision(void) { // ESP32-S2 // ESP32-D0WDQ6 rev.1 // ESP32-C3 rev.2 // ESP32-C3 rev.3 String result = GetDeviceHardware(); // ESP32-C3 esp_chip_info_t chip_info; esp_chip_info(&chip_info); char revision[10] = { 0 }; if (chip_info.revision) { snprintf_P(revision, sizeof(revision), PSTR(" rev.%d"), chip_info.revision); } result += revision; // ESP32-C3 rev.3 return result; } /* * ESP32 v1 and v2 needs some special patches to use PSRAM. * Standard Tasmota 32 do not include those patches. * If using ESP32 v1, please add: `-mfix-esp32-psram-cache-issue -lc-psram-workaround -lm-psram-workaround` * * This function returns true if the chip supports PSRAM natively (v3) or if the * patches are present. */ bool CanUsePSRAM(void) { if (!FoundPSRAM()) return false; #ifdef HAS_PSRAM_FIX return true; #endif #ifdef CONFIG_IDF_TARGET_ESP32 esp_chip_info_t chip_info; esp_chip_info(&chip_info); if ((CHIP_ESP32 == chip_info.model) && (chip_info.revision < 3)) { return false; } #if ESP_IDF_VERSION_MAJOR < 4 uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_version = chip_ver & 0x7; if ((CHIP_ESP32 == chip_info.model) && (pkg_version >= 6)) { return false; // support for embedded PSRAM of ESP32-PICO-V3-02 requires esp-idf 4.4 } #endif // ESP_IDF_VERSION_MAJOR < 4 #endif // CONFIG_IDF_TARGET_ESP32 return true; } #endif // ESP32 /*********************************************************************************************\ * ESP Support \*********************************************************************************************/ uint32_t ESP_getFreeHeap1024(void) { return ESP_getFreeHeap() / 1024; } /* float ESP_getFreeHeap1024(void) { return ((float)ESP_getFreeHeap()) / 1024; } */ const char kFlashModes[] PROGMEM = "QIO|QOUT|DIO|DOUT|Fast|Slow"; /* typedef enum { FM_QIO = 0x00, FM_QOUT = 0x01, FM_DIO = 0x02, FM_DOUT = 0x03, FM_FAST_READ = 0x04, FM_SLOW_READ = 0x05, FM_UNKNOWN = 0xff } FlashMode_t; */ String ESP_getFlashChipMode(void) { #if ESP8266 uint32_t flash_mode = ESP.getFlashChipMode(); #else #if CONFIG_IDF_TARGET_ESP32S2 const uint32_t spi_ctrl = REG_READ(PERIPHS_SPI_FLASH_CTRL); #else const uint32_t spi_ctrl = REG_READ(SPI_CTRL_REG(0)); #endif uint32_t flash_mode; /* Not all of the following constants are already defined in older versions of spi_reg.h, so do it manually for now*/ if (spi_ctrl & BIT(24)) { //SPI_FREAD_QIO flash_mode = 0; } else if (spi_ctrl & BIT(20)) { //SPI_FREAD_QUAD flash_mode = 1; } else if (spi_ctrl & BIT(23)) { //SPI_FREAD_DIO flash_mode = 2; } else if (spi_ctrl & BIT(14)) { // SPI_FREAD_DUAL flash_mode = 3; } else if (spi_ctrl & BIT(13)) { //SPI_FASTRD_MODE flash_mode = 4; } else { flash_mode = 5; } #endif if (flash_mode > 5) { flash_mode = 3; } char stemp[6]; return GetTextIndexed(stemp, sizeof(stemp), flash_mode, kFlashModes); } /*********************************************************************************************\ * High entropy hardware random generator * Thanks to DigitalAlchemist \*********************************************************************************************/ // Based on code from https://raw.githubusercontent.com/espressif/esp-idf/master/components/esp32/hw_random.c uint32_t HwRandom(void) { #if ESP8266 // https://web.archive.org/web/20160922031242/http://esp8266-re.foogod.com/wiki/Random_Number_Generator #define _RAND_ADDR 0x3FF20E44UL #endif // ESP8266 #ifdef ESP32 #define _RAND_ADDR 0x3FF75144UL #endif // ESP32 static uint32_t last_ccount = 0; uint32_t ccount; uint32_t result = 0; do { ccount = ESP.getCycleCount(); result ^= *(volatile uint32_t *)_RAND_ADDR; } while (ccount - last_ccount < 64); last_ccount = ccount; return result ^ *(volatile uint32_t *)_RAND_ADDR; #undef _RAND_ADDR }