/* xdrv_16_tuyamcu.ino - Tuya MCU support for Sonoff-Tasmota Copyright (C) 2019 digiblur, Joel Stein and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_LIGHT #ifdef USE_TUYA_MCU #define XDRV_16 16 #define XNRG_16 16 // Needs to be the last XNRG_xx #ifndef TUYA_DIMMER_ID #define TUYA_DIMMER_ID 0 #endif #define TUYA_CMD_HEARTBEAT 0x00 #define TUYA_CMD_QUERY_PRODUCT 0x01 #define TUYA_CMD_MCU_CONF 0x02 #define TUYA_CMD_WIFI_STATE 0x03 #define TUYA_CMD_WIFI_RESET 0x04 #define TUYA_CMD_WIFI_SELECT 0x05 #define TUYA_CMD_SET_DP 0x06 #define TUYA_CMD_STATE 0x07 #define TUYA_CMD_QUERY_STATE 0x08 #define TUYA_TYPE_BOOL 0x01 #define TUYA_TYPE_VALUE 0x02 #define TUYA_BUFFER_SIZE 256 #include TasmotaSerial *TuyaSerial = nullptr; struct TUYA { uint16_t new_dim = 0; // Tuya dimmer value temp bool ignore_dim = false; // Flag to skip serial send to prevent looping when processing inbound states from the faceplate interaction uint8_t cmd_status = 0; // Current status of serial-read uint8_t cmd_checksum = 0; // Checksum of tuya command uint8_t data_len = 0; // Data lenght of command int8_t wifi_state = -2; // Keep MCU wifi-status in sync with WifiState() uint8_t heartbeat_timer = 0; // 10 second heartbeat timer for tuya module #ifdef USE_ENERGY_SENSOR uint32_t lastPowerCheckTime = 0; // Time when last power was checked #endif // USE_ENERGY_SENSOR char *buffer = nullptr; // Serial receive buffer int byte_counter = 0; // Index in serial receive buffer } Tuya; enum TuyaSupportedFunctions { TUYA_MCU_FUNC_NONE, TUYA_MCU_FUNC_SWT1 = 1, // Buttons TUYA_MCU_FUNC_SWT2, TUYA_MCU_FUNC_SWT3, TUYA_MCU_FUNC_SWT4, TUYA_MCU_FUNC_REL1 = 11, // Relays TUYA_MCU_FUNC_REL2, TUYA_MCU_FUNC_REL3, TUYA_MCU_FUNC_REL4, TUYA_MCU_FUNC_REL5, TUYA_MCU_FUNC_REL6, TUYA_MCU_FUNC_REL7, TUYA_MCU_FUNC_REL8, TUYA_MCU_FUNC_DIMMER = 21, TUYA_MCU_FUNC_POWER = 31, TUYA_MCU_FUNC_CURRENT, TUYA_MCU_FUNC_VOLTAGE, TUYA_MCU_FUNC_REL1_INV = 41, // Inverted Relays TUYA_MCU_FUNC_REL2_INV, TUYA_MCU_FUNC_REL3_INV, TUYA_MCU_FUNC_REL4_INV, TUYA_MCU_FUNC_REL5_INV, TUYA_MCU_FUNC_REL6_INV, TUYA_MCU_FUNC_REL7_INV, TUYA_MCU_FUNC_REL8_INV, TUYA_MCU_FUNC_LAST = 255 }; const char kTuyaCommand[] PROGMEM = "|" // No prefix D_CMND_TUYA_MCU; void (* const TuyaCommand[])(void) PROGMEM = { &CmndTuyaMcu }; /* TuyaMcu fnid,dpid */ void CmndTuyaMcu(void) { if (XdrvMailbox.data_len > 0) { char *p; uint8_t i = 0; uint8_t parm[3] = { 0 }; for (char *str = strtok_r(XdrvMailbox.data, ", ", &p); str && i < 2; str = strtok_r(nullptr, ", ", &p)) { parm[i] = strtoul(str, nullptr, 0); i++; } if (TuyaFuncIdValid(parm[0])) { TuyaAddMcuFunc(parm[0], parm[1]); restart_flag = 2; } else { AddLog_P2(LOG_LEVEL_ERROR, PSTR("TYA: TuyaMcu Invalid function id=%d"), parm[0]); } } Response_P(PSTR("{\"" D_CMND_TUYA_MCU "\":[")); bool added = false; for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { if (Settings.tuya_fnid_map[i].fnid != 0) { if (added) { ResponseAppend_P(PSTR(",")); } ResponseAppend_P(PSTR("{\"fnId\":%d,\"dpId\":%d}" ), Settings.tuya_fnid_map[i].fnid, Settings.tuya_fnid_map[i].dpid); added = true; } } ResponseAppend_P(PSTR("]}")); } /*********************************************************************************************\ * Internal Functions \*********************************************************************************************/ void TuyaAddMcuFunc(uint8_t fnId, uint8_t dpId) { bool added = false; if (fnId == 0 || dpId == 0) { // Delete entry for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { if ((dpId > 0 && Settings.tuya_fnid_map[i].dpid == dpId) || (fnId > TUYA_MCU_FUNC_NONE && Settings.tuya_fnid_map[i].fnid == fnId)) { Settings.tuya_fnid_map[i].fnid = TUYA_MCU_FUNC_NONE; Settings.tuya_fnid_map[i].dpid = 0; break; } } } else { // Add or update for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { if (Settings.tuya_fnid_map[i].dpid == dpId || Settings.tuya_fnid_map[i].dpid == 0 || Settings.tuya_fnid_map[i].fnid == fnId || Settings.tuya_fnid_map[i].fnid == 0) { if (!added) { // Update entry if exisiting entry or add Settings.tuya_fnid_map[i].fnid = fnId; Settings.tuya_fnid_map[i].dpid = dpId; added = true; } else if (Settings.tuya_fnid_map[i].dpid == dpId || Settings.tuya_fnid_map[i].fnid == fnId) { // Remove existing entry if added to empty place Settings.tuya_fnid_map[i].fnid = TUYA_MCU_FUNC_NONE; Settings.tuya_fnid_map[i].dpid = 0; } } } } UpdateDevices(); } void UpdateDevices() { for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { uint8_t fnId = Settings.tuya_fnid_map[i].fnid; if (fnId > TUYA_MCU_FUNC_NONE && Settings.tuya_fnid_map[i].dpid > 0) { if (fnId >= TUYA_MCU_FUNC_REL1 && fnId <= TUYA_MCU_FUNC_REL8) { //Relay bitClear(rel_inverted, fnId - TUYA_MCU_FUNC_REL1); } else if (fnId >= TUYA_MCU_FUNC_REL1_INV && fnId <= TUYA_MCU_FUNC_REL8_INV) { // Inverted Relay bitSet(rel_inverted, fnId - TUYA_MCU_FUNC_REL1_INV); } } } } inline bool TuyaFuncIdValid(uint8_t fnId) { return (fnId >= TUYA_MCU_FUNC_SWT1 && fnId <= TUYA_MCU_FUNC_SWT4) || (fnId >= TUYA_MCU_FUNC_REL1 && fnId <= TUYA_MCU_FUNC_REL8) || fnId == TUYA_MCU_FUNC_DIMMER || (fnId >= TUYA_MCU_FUNC_POWER && fnId <= TUYA_MCU_FUNC_VOLTAGE) || (fnId >= TUYA_MCU_FUNC_REL1_INV && fnId <= TUYA_MCU_FUNC_REL8_INV); } uint8_t TuyaGetFuncId(uint8_t dpid) { for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { if (Settings.tuya_fnid_map[i].dpid == dpid) { return Settings.tuya_fnid_map[i].fnid; } } return TUYA_MCU_FUNC_NONE; } uint8_t TuyaGetDpId(uint8_t fnId) { for (uint8_t i = 0; i < MAX_TUYA_FUNCTIONS; i++) { if (Settings.tuya_fnid_map[i].fnid == fnId) { return Settings.tuya_fnid_map[i].dpid; } } return 0; } void TuyaSendCmd(uint8_t cmd, uint8_t payload[] = nullptr, uint16_t payload_len = 0) { uint8_t checksum = (0xFF + cmd + (payload_len >> 8) + (payload_len & 0xFF)); TuyaSerial->write(0x55); // Tuya header 55AA TuyaSerial->write(0xAA); TuyaSerial->write((uint8_t)0x00); // version 00 TuyaSerial->write(cmd); // Tuya command TuyaSerial->write(payload_len >> 8); // following data length (Hi) TuyaSerial->write(payload_len & 0xFF); // following data length (Lo) snprintf_P(log_data, sizeof(log_data), PSTR("TYA: Send \"55aa00%02x%02x%02x"), cmd, payload_len >> 8, payload_len & 0xFF); for (uint32_t i = 0; i < payload_len; ++i) { TuyaSerial->write(payload[i]); checksum += payload[i]; snprintf_P(log_data, sizeof(log_data), PSTR("%s%02x"), log_data, payload[i]); } TuyaSerial->write(checksum); TuyaSerial->flush(); snprintf_P(log_data, sizeof(log_data), PSTR("%s%02x\""), log_data, checksum); AddLog(LOG_LEVEL_DEBUG); } void TuyaSendState(uint8_t id, uint8_t type, uint8_t* value) { uint16_t payload_len = 4; uint8_t payload_buffer[8]; payload_buffer[0] = id; payload_buffer[1] = type; switch (type) { case TUYA_TYPE_BOOL: payload_len += 1; payload_buffer[2] = 0x00; payload_buffer[3] = 0x01; payload_buffer[4] = value[0]; break; case TUYA_TYPE_VALUE: payload_len += 4; payload_buffer[2] = 0x00; payload_buffer[3] = 0x04; payload_buffer[4] = value[3]; payload_buffer[5] = value[2]; payload_buffer[6] = value[1]; payload_buffer[7] = value[0]; break; } TuyaSendCmd(TUYA_CMD_SET_DP, payload_buffer, payload_len); } void TuyaSendBool(uint8_t id, bool value) { TuyaSendState(id, TUYA_TYPE_BOOL, (uint8_t*)&value); } void TuyaSendValue(uint8_t id, uint32_t value) { TuyaSendState(id, TUYA_TYPE_VALUE, (uint8_t*)(&value)); } bool TuyaSetPower(void) { bool status = false; uint8_t rpower = XdrvMailbox.index; int16_t source = XdrvMailbox.payload; if (source != SRC_SWITCH && TuyaSerial) { // ignore to prevent loop from pushing state from faceplate interaction TuyaSendBool(active_device, bitRead(rpower, active_device-1) ^ bitRead(rel_inverted, active_device-1)); status = true; } return status; } bool TuyaSetChannels(void) { LightSerialDuty(((uint8_t*)XdrvMailbox.data)[0]); delay(20); // Hack when power is off and dimmer is set then both commands go too soon to Serial out. return true; } void LightSerialDuty(uint16_t duty) { uint8_t dpid = TuyaGetDpId(TUYA_MCU_FUNC_DIMMER); if (duty > 0 && !Tuya.ignore_dim && TuyaSerial && dpid > 0) { if (duty < Settings.dimmer_hw_min) { duty = Settings.dimmer_hw_min; } // dimming acts odd below 25(10%) - this mirrors the threshold set on the faceplate itself duty = changeUIntScale(duty, 0, 255, 0, Settings.dimmer_hw_max); if (Tuya.new_dim != duty) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Send dim value=%d (id=%d)"), duty, dpid); TuyaSendValue(dpid, duty); } } else if (dpid > 0) { Tuya.ignore_dim = false; // reset flag duty = changeUIntScale(duty, 0, 255, 0, Settings.dimmer_hw_max); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Send dim skipped value=%d"), duty); // due to 0 or already set } else { AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Cannot set dimmer. Dimmer Id unknown")); // } } void TuyaRequestState(void) { if (TuyaSerial) { // Get current status of MCU AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Read MCU state")); TuyaSendCmd(TUYA_CMD_QUERY_STATE); } } void TuyaResetWifi(void) { if (!Settings.flag.button_restrict) { char scmnd[20]; snprintf_P(scmnd, sizeof(scmnd), D_CMND_WIFICONFIG " %d", 2); ExecuteCommand(scmnd, SRC_BUTTON); } } void TuyaPacketProcess(void) { char scmnd[20]; uint8_t fnId = TUYA_MCU_FUNC_NONE; switch (Tuya.buffer[3]) { case TUYA_CMD_HEARTBEAT: AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Heartbeat")); if (Tuya.buffer[6] == 0) { AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Detected MCU restart")); Tuya.wifi_state = -2; } break; case TUYA_CMD_STATE: fnId = TuyaGetFuncId(Tuya.buffer[6]); AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: FnId=%d is set for dpId=%d"), fnId, Tuya.buffer[6]); // if (TuyaFuncIdValid(fnId)) { if (Tuya.buffer[5] == 5) { // on/off packet if (fnId >= TUYA_MCU_FUNC_REL1 && fnId <= TUYA_MCU_FUNC_REL8) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: RX Relay-%d --> MCU State: %s Current State:%s"), fnId - TUYA_MCU_FUNC_REL1 + 1, Tuya.buffer[10]?"On":"Off",bitRead(power, fnId - TUYA_MCU_FUNC_REL1)?"On":"Off"); if ((power || Settings.light_dimmer > 0) && (Tuya.buffer[10] != bitRead(power, fnId - TUYA_MCU_FUNC_REL1))) { ExecuteCommandPower(fnId - TUYA_MCU_FUNC_REL1 + 1, Tuya.buffer[10], SRC_SWITCH); // send SRC_SWITCH? to use as flag to prevent loop from inbound states from faceplate interaction } } else if (fnId >= TUYA_MCU_FUNC_REL1_INV && fnId <= TUYA_MCU_FUNC_REL8_INV) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: RX Relay-%d-Inverted --> MCU State: %s Current State:%s"), fnId - TUYA_MCU_FUNC_REL1_INV + 1, Tuya.buffer[10]?"Off":"On",bitRead(power, fnId - TUYA_MCU_FUNC_REL1_INV) ^ 1?"Off":"On"); if (Tuya.buffer[10] != bitRead(power, fnId - TUYA_MCU_FUNC_REL1_INV) ^ 1) { ExecuteCommandPower(fnId - TUYA_MCU_FUNC_REL1_INV + 1, Tuya.buffer[10] ^ 1, SRC_SWITCH); // send SRC_SWITCH? to use as flag to prevent loop from inbound states from faceplate interaction } } else if (fnId >= TUYA_MCU_FUNC_SWT1 && fnId <= TUYA_MCU_FUNC_SWT4) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: RX Switch-%d --> MCU State: %d Current State:%d"),fnId - TUYA_MCU_FUNC_SWT1 + 1,Tuya.buffer[10], SwitchGetVirtual(fnId - TUYA_MCU_FUNC_SWT1)); if (SwitchGetVirtual(fnId - TUYA_MCU_FUNC_SWT1) != Tuya.buffer[10]) { SwitchSetVirtual(fnId - TUYA_MCU_FUNC_SWT1, Tuya.buffer[10]); SwitchHandler(1); } } } else if (Tuya.buffer[5] == 8) { // Long value packet bool tuya_energy_enabled = (XNRG_16 == energy_flg); uint16_t packetValue = Tuya.buffer[12] << 8 | Tuya.buffer[13]; if (fnId == TUYA_MCU_FUNC_DIMMER) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: RX Dim State=%d"), packetValue); Tuya.new_dim = changeUIntScale(packetValue, 0, Settings.dimmer_hw_max, 0, 100); if ((power || Settings.flag3.tuya_apply_o20) && (Tuya.new_dim > 0) && (abs(Tuya.new_dim - Settings.light_dimmer) > 1)) { Tuya.ignore_dim = true; snprintf_P(scmnd, sizeof(scmnd), PSTR(D_CMND_DIMMER " %d"), Tuya.new_dim ); ExecuteCommand(scmnd, SRC_SWITCH); } } #ifdef USE_ENERGY_SENSOR else if (tuya_energy_enabled && fnId == TUYA_MCU_FUNC_VOLTAGE) { Energy.voltage[0] = (float)packetValue / 10; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Rx ID=%d Voltage=%d"), Tuya.buffer[6], packetValue); } else if (tuya_energy_enabled && fnId == TUYA_MCU_FUNC_CURRENT) { Energy.current[0] = (float)packetValue / 1000; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Rx ID=%d Current=%d"), Tuya.buffer[6], packetValue); } else if (tuya_energy_enabled && fnId == TUYA_MCU_FUNC_POWER) { Energy.active_power[0] = (float)packetValue / 10; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Rx ID=%d Active_Power=%d"), Tuya.buffer[6], packetValue); if (Tuya.lastPowerCheckTime != 0 && Energy.active_power[0] > 0) { Energy.kWhtoday += (float)Energy.active_power[0] * (Rtc.utc_time - Tuya.lastPowerCheckTime) / 36; EnergyUpdateToday(); } Tuya.lastPowerCheckTime = Rtc.utc_time; } #endif // USE_ENERGY_SENSOR } // } else { // AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Unknown FnId=%s for dpId=%s"), fnId, Tuya.buffer[6]); // } break; case TUYA_CMD_WIFI_RESET: case TUYA_CMD_WIFI_SELECT: AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: RX WiFi Reset")); TuyaResetWifi(); break; case TUYA_CMD_WIFI_STATE: AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: RX WiFi LED set ACK")); Tuya.wifi_state = WifiState(); break; case TUYA_CMD_MCU_CONF: AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: RX MCU configuration Mode=%d"), Tuya.buffer[5]); if (Tuya.buffer[5] == 2) { // Processing by ESP module mode uint8_t led1_gpio = Tuya.buffer[6]; uint8_t key1_gpio = Tuya.buffer[7]; bool key1_set = false; bool led1_set = false; for (uint32_t i = 0; i < sizeof(Settings.my_gp); i++) { if (Settings.my_gp.io[i] == GPIO_LED1) led1_set = true; else if (Settings.my_gp.io[i] == GPIO_KEY1) key1_set = true; } if (!Settings.my_gp.io[led1_gpio] && !led1_set) { Settings.my_gp.io[led1_gpio] = GPIO_LED1; restart_flag = 2; } if (!Settings.my_gp.io[key1_gpio] && !key1_set) { Settings.my_gp.io[key1_gpio] = GPIO_KEY1; restart_flag = 2; } } TuyaRequestState(); break; default: AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: RX unknown command")); } } /*********************************************************************************************\ * API Functions \*********************************************************************************************/ bool TuyaModuleSelected(void) { if (!(pin[GPIO_TUYA_RX] < 99) || !(pin[GPIO_TUYA_TX] < 99)) { // fallback to hardware-serial if not explicitly selected pin[GPIO_TUYA_TX] = 1; pin[GPIO_TUYA_RX] = 3; Settings.my_gp.io[1] = GPIO_TUYA_TX; Settings.my_gp.io[3] = GPIO_TUYA_RX; restart_flag = 2; } if (TuyaGetDpId(TUYA_MCU_FUNC_DIMMER) == 0 && TUYA_DIMMER_ID > 0) { TuyaAddMcuFunc(TUYA_MCU_FUNC_DIMMER, TUYA_DIMMER_ID); } bool relaySet = false; for (uint8_t i = 0 ; i < MAX_TUYA_FUNCTIONS; i++) { if ((Settings.tuya_fnid_map[i].fnid >= TUYA_MCU_FUNC_REL1 && Settings.tuya_fnid_map[i].fnid <= TUYA_MCU_FUNC_REL8 ) || (Settings.tuya_fnid_map[i].fnid >= TUYA_MCU_FUNC_REL1_INV && Settings.tuya_fnid_map[i].fnid <= TUYA_MCU_FUNC_REL8_INV )) { relaySet = true; devices_present++; } } if (!relaySet) { TuyaAddMcuFunc(TUYA_MCU_FUNC_REL1, 1); devices_present++; SettingsSaveAll(); } if (TuyaGetDpId(TUYA_MCU_FUNC_DIMMER) != 0) { light_type = LT_SERIAL1; } else { light_type = LT_BASIC; } UpdateDevices(); return true; } void TuyaInit(void) { Tuya.buffer = (char*)(malloc(TUYA_BUFFER_SIZE)); if (Tuya.buffer != nullptr) { TuyaSerial = new TasmotaSerial(pin[GPIO_TUYA_RX], pin[GPIO_TUYA_TX], 2); if (TuyaSerial->begin(9600)) { if (TuyaSerial->hardwareSerial()) { ClaimSerial(); } // Get MCU Configuration AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Request MCU configuration")); TuyaSendCmd(TUYA_CMD_MCU_CONF); } } Tuya.heartbeat_timer = 0; // init heartbeat timer when dimmer init is done } void TuyaSerialInput(void) { while (TuyaSerial->available()) { yield(); uint8_t serial_in_byte = TuyaSerial->read(); if (serial_in_byte == 0x55) { // Start TUYA Packet Tuya.cmd_status = 1; Tuya.buffer[Tuya.byte_counter++] = serial_in_byte; Tuya.cmd_checksum += serial_in_byte; } else if (Tuya.cmd_status == 1 && serial_in_byte == 0xAA) { // Only packtes with header 0x55AA are valid Tuya.cmd_status = 2; Tuya.byte_counter = 0; Tuya.buffer[Tuya.byte_counter++] = 0x55; Tuya.buffer[Tuya.byte_counter++] = 0xAA; Tuya.cmd_checksum = 0xFF; } else if (Tuya.cmd_status == 2) { if (Tuya.byte_counter == 5) { // Get length of data Tuya.cmd_status = 3; Tuya.data_len = serial_in_byte; } Tuya.cmd_checksum += serial_in_byte; Tuya.buffer[Tuya.byte_counter++] = serial_in_byte; } else if ((Tuya.cmd_status == 3) && (Tuya.byte_counter == (6 + Tuya.data_len)) && (Tuya.cmd_checksum == serial_in_byte)) { // Compare checksum and process packet Tuya.buffer[Tuya.byte_counter++] = serial_in_byte; snprintf_P(log_data, sizeof(log_data), PSTR("TYA: RX Packet: \"")); for (uint32_t i = 0; i < Tuya.byte_counter; i++) { snprintf_P(log_data, sizeof(log_data), PSTR("%s%02x"), log_data, Tuya.buffer[i]); } snprintf_P(log_data, sizeof(log_data), PSTR("%s\""), log_data); AddLog(LOG_LEVEL_DEBUG); TuyaPacketProcess(); Tuya.byte_counter = 0; Tuya.cmd_status = 0; Tuya.cmd_checksum = 0; Tuya.data_len = 0; } // read additional packets from TUYA else if (Tuya.byte_counter < TUYA_BUFFER_SIZE -1) { // add char to string if it still fits Tuya.buffer[Tuya.byte_counter++] = serial_in_byte; Tuya.cmd_checksum += serial_in_byte; } else { Tuya.byte_counter = 0; Tuya.cmd_status = 0; Tuya.cmd_checksum = 0; Tuya.data_len = 0; } } } bool TuyaButtonPressed(void) { if (!XdrvMailbox.index && ((PRESSED == XdrvMailbox.payload) && (NOT_PRESSED == Button.last_state[XdrvMailbox.index]))) { AddLog_P(LOG_LEVEL_DEBUG, PSTR("TYA: Reset GPIO triggered")); TuyaResetWifi(); return true; // Reset GPIO served here } return false; // Don't serve other buttons } void TuyaSetWifiLed(void) { uint8_t wifi_state = 0x02; switch(WifiState()){ case WIFI_SMARTCONFIG: wifi_state = 0x00; break; case WIFI_MANAGER: case WIFI_WPSCONFIG: wifi_state = 0x01; break; case WIFI_RESTART: wifi_state = 0x03; break; } AddLog_P2(LOG_LEVEL_DEBUG, PSTR("TYA: Set WiFi LED %d (%d)"), wifi_state, WifiState()); TuyaSendCmd(TUYA_CMD_WIFI_STATE, &wifi_state, 1); } #ifdef USE_ENERGY_SENSOR /*********************************************************************************************\ * Energy Interface \*********************************************************************************************/ bool Xnrg16(uint8_t function) { bool result = false; if (TUYA_DIMMER == my_module_type) { if (FUNC_PRE_INIT == function) { if (TuyaGetDpId(TUYA_MCU_FUNC_POWER) != 0) { if (TuyaGetDpId(TUYA_MCU_FUNC_CURRENT) == 0) { Energy.current_available = false; } if (TuyaGetDpId(TUYA_MCU_FUNC_VOLTAGE) == 0) { Energy.voltage_available = false; } energy_flg = XNRG_16; } } } return result; } #endif // USE_ENERGY_SENSOR /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xdrv16(uint8_t function) { bool result = false; if (TUYA_DIMMER == my_module_type) { switch (function) { case FUNC_LOOP: if (TuyaSerial) { TuyaSerialInput(); } break; case FUNC_MODULE_INIT: result = TuyaModuleSelected(); break; case FUNC_INIT: TuyaInit(); break; case FUNC_SET_DEVICE_POWER: result = TuyaSetPower(); break; case FUNC_BUTTON_PRESSED: result = TuyaButtonPressed(); break; case FUNC_EVERY_SECOND: if (TuyaSerial && Tuya.wifi_state != WifiState()) { TuyaSetWifiLed(); } Tuya.heartbeat_timer++; if (Tuya.heartbeat_timer > 10) { Tuya.heartbeat_timer = 0; TuyaSendCmd(TUYA_CMD_HEARTBEAT); } break; case FUNC_SET_CHANNELS: result = TuyaSetChannels(); break; case FUNC_COMMAND: result = DecodeCommand(kTuyaCommand, TuyaCommand); break; } } return result; } #endif // USE_TUYA_MCU #endif // USE_LIGHT