/* xdrv_23_zigbee_4a_eeprom.ino - zigbee support for Tasmota - nano filesystem for EEPROM, with anti-weavering Copyright (C) 2021 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE // #define Z_EEPROM_DEBUG const static uint32_t ZIGB_NAME1 = 0x3167697A; // 'zig1' little endian const static uint32_t ZIGB_NAME2 = 0x3267697A; // 'zig2' little endian, v2 const static uint32_t ZIGB_DATA2 = 0x32746164; // 'dat2' little endian, v2 extern FS *dfsp; extern "C" uint32_t _FS_end; // Is it ok to write to bank 0x402FF000 bool flash_valid(void) { return (((uint32_t)&_FS_end) > 0x40280000) && (((uint32_t)&_FS_end) < 0x402FF000); } void hydrateSingleDevice(const SBuffer & buf_d); #ifdef USE_ZIGBEE_EEPROM // The EEPROM is 64KB in size with individually writable bytes. // They are conveniently organized in pages of 128 bytes to accelerate // data transfer, but unlike flash memory, you don't need to erase an entire page. // The chip spec says it supports over 2 million writes per byte. // EEPROM LAYOUT: // ============== // 64KB EEPROM is divided in 256 block of 256 bytes. // The internal page size is 128 bytes, so we're grouping 2 pages in one block // The advantage is that any pointer to a block is a single byte // // Block 0, 1 and 255 are reserved. // // BLock 0 contains the directory of files // Block 1 contains the linked list of blocks for each file // Block 255 contains the bitmap of block and ageing information // File structure // Each file has : // - a name of 4 chars (no extension) that conveniently fit in uint32_t. // - a length in bytes, encoded with 16 bits (uint16_t) // - 1 byte indicating the first block of the file // - 1 byte reserved // // Then blocks are a linked-list of content. The next block is indicated in Block 1 // // Note: the linked list could cause a circular reference loop and potentially an infinite loop. // This is why the content lenght is used to check that the block count does not exceed // the content length hence cannot cause an infinite loop. // Any pointer to blocks 1 or 255 is considered invalid and means a corruption of the file system. // Signature entry: // - 4 bytes of signature, currently 'Tasm'. Any other entry indicates that the EEPROM was not formatted // - 1 byte version number, currently 0x00 // - all other bytes (5..7) are reserved and filled with 0s // DIRECTORY // ========= // Block 0 is the directory. There is no support for folders. // Each file entry is 8 bytes. // First entry is a signature marker and version // Entries 1..30 are for files // Entry 31 (last entry) is reserved and filled with 0s // BITMAP // ========== // Block 255: // Each byte represents a block, remember there are 256 blocks in total // Each byte is set as follows: // bit 7 - block is used (1) or free (0) - note that blocks 0, 1 and 255 are always used // bit 6 - block is damaged - not implemented yet but may be useful // bit 0..5 - generation number for anti-weavering // // Caveat: this bitmap system may lead to wasted blocked marked as used but actually unused // Periodical garbage collection and sanity checks can occur, for ex at boot. // // If the generation number overflows, all blocks start at generation `0` // meaning that the entire bitmap block is overwritten. // Version 0: // Many features are not yet implemented. // We start with hardcoded values: // - the two entries for files 'zig2' and 'dat2' are predefined // - the starting block for each file is fixed. // 'Zig2' uses 32 blocks (8kb max) - starting at block 32 // 'Dat2' uses 32 blocks (8kb max) - starting at block 64 // - the bitmap marks those blocks as used // - version number only uses first entry that doesn't get re-written // - only file size actually changes /*********************************************************************************************\ * * Constants * \*********************************************************************************************/ const size_t ZFS_BLOCK_SIZE = 256; const size_t ZFS_ENTRY_SIZE = 8; // each entry is 32 bytes const size_t ZFS_ENTRIES = 30; const uint32_t ZFS_SIGNATURE = 0x6D736154; // 'Tasm' /*********************************************************************************************\ * Specific to v2 (limited support) \*********************************************************************************************/ const size_t ZFS_FILE_BLOCKS = 31; // 31 blocks /*********************************************************************************************\ * ZFS_File_Entry \*********************************************************************************************/ class ZFS_File_Entry { public: uint32_t name; // file name representing 4 chars, 0x00000000 means empty entry uint16_t length; // length of file in bytes uint8_t blk_start; uint8_t reserved; // reserved for future use ZFS_File_Entry() : name(0), length(0), blk_start(0), reserved(0) {} inline static bool validIdx(uint8_t blk_start) { return ((blk_start != 0x00) && (blk_start != 0x01) && (blk_start != 0xFF)); }; static uint16_t getAddress(uint8_t entry_idx); void read(uint8_t entry_idx); void write(uint8_t entry_idx) const ; }; /*********************************************************************************************\ * ZFS_File_Entry \*********************************************************************************************/ class ZFS_Root_Entry { public: uint32_t signature; // Signature that the block is correctly formatted uint8_t version; // version of file system structure uint8_t reserved[3]; ZFS_Root_Entry() : signature(ZFS_SIGNATURE), // 'Tasm' version(0), reserved{} {}; }; /*********************************************************************************************\ * ZFS_File_Entry \*********************************************************************************************/ class ZFS_Dir_Block { public: ZFS_Root_Entry b0; // signature entry ZFS_File_Entry e[ZFS_ENTRIES]; // 7 entries for files ZFS_File_Entry reserved; // reserved for future use void format(void); // prepare default values for formatting }; /*********************************************************************************************\ * ZFS_Bitmap at block 0xFF \*********************************************************************************************/ // Individual block union ZFS_Bitmap_Entry { uint8_t raw; struct { uint8_t gen : 6; bool damaged : 1; bool used : 1; }; }; class ZFS_Bitmap { public: ZFS_Bitmap_Entry block[ZFS_BLOCK_SIZE]; void format(void); }; /*********************************************************************************************\ * ZFS_Map, linked list of blocks, at block 1 \*********************************************************************************************/ class ZFS_Map { public: uint8_t next_blk[ZFS_BLOCK_SIZE]; void format(void); }; /*********************************************************************************************\ * * Formatting implementations * \*********************************************************************************************/ void ZFS_Dir_Block::format(void) { // entry 0 - 'zig2' e[0].name = ZIGB_NAME2; e[0].length = 0; e[0].blk_start = 2; // start at block 2 to 32 // entry 1 - 'dat2' e[1].name = ZIGB_DATA2; e[1].length = 0; e[1].blk_start = 2 + 31; // start at block 33 to 63 } void ZFS_Bitmap::format(void) { ZFS_Bitmap_Entry val_used; val_used.gen = 0; val_used.damaged = false; val_used.used = true; // block 0, 1, 255 // block[0x00] = val_used; // already in loop // block[0x01] = val_used; block[0xFF] = val_used; // reserve block 32->63 for file 0 and 64->95 for file 1 for (uint32_t i = 0; i < 64; i++) { block[i] = val_used; } } void ZFS_Map::format(void) { // map a linear linked list for v1 for (uint32_t i = 2; i < ZFS_BLOCK_SIZE - 2; i++) { next_blk[i] = i+1; } } /*********************************************************************************************\ * * Writing a file * \*********************************************************************************************/ class ZFS_Write_File { public: // file info uint32_t name; uint16_t cursor; uint16_t length; uint8_t blk_start; // if 0x00 then file does not exist uint8_t entry_idx; // entry number in the directory ZFS_Write_File(void) : name(0), cursor(0), length(0), blk_start(0) {} void init(uint32_t _name) { name = _name; findOrCreate(); } inline bool valid(void) const { return blk_start != 0; } // does the file exist? int32_t addBytes(void* buffer, size_t buffer_len); int32_t close(void); protected: void findOrCreate(void); }; /*********************************************************************************************\ * * Check that the EEPROM is formatted * \*********************************************************************************************/ // Main class for the Zigbee filesystem class ZFS { public: static void initOrFormat(void); // <0 means error static void format(void); // format EEPROM static int32_t getLength(uint32_t name); static bool findFileEntry(uint32_t name, ZFS_File_Entry & entry, uint8_t * entry_idx); static void erase(void); // erase EEPROM // read file static int32_t readBytes(uint32_t name, void* buffer, size_t buffer_len, uint16_t start, uint16_t len); }; /*********************************************************************************************\ * * Check that the EEPROM is formatted * \*********************************************************************************************/ bool ZFS::findFileEntry(uint32_t name, ZFS_File_Entry & entry, uint8_t * _entry_idx) { if (!zigbee.eeprom_ready) { return false; } for (uint32_t entry_idx = 0; entry_idx < ZFS_ENTRIES; entry_idx++) { // read entry from EEPROM uint16_t entry_addr = 0x0000 + sizeof(ZFS_Root_Entry) + sizeof(ZFS_File_Entry) * entry_idx; zigbee.eeprom.readBytes(entry_addr, sizeof(ZFS_File_Entry), (byte*)&entry); #ifdef Z_EEPROM_DEBUG // { // char hex_char[(sizeof(ZFS_File_Entry) * 2) + 2]; // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Read entry %d at address 0x%04X contains %*_H"), entry_idx, entry_addr, sizeof(entry), &entry); // } #endif if (entry.name == name) { if (_entry_idx) { *_entry_idx = entry_idx; } return true; } } return false; } int32_t ZFS::getLength(uint32_t name) { ZFS_File_Entry entry; if (ZFS::findFileEntry(name, entry, nullptr)) { return entry.length; } return -1; } void ZFS::erase(void) { if (!zigbee.eeprom_present) { return; } uint32_t zero = 0; zigbee.eeprom.writeBytes(0x0000, sizeof(zero), (byte*)&zero); } /*********************************************************************************************\ * * Reading a file * \*********************************************************************************************/ int32_t ZFS::readBytes(uint32_t name, void* buffer, size_t buffer_len, uint16_t read_start, uint16_t read_len) { if (!zigbee.eeprom_ready) { return -1; } #ifdef Z_EEPROM_DEBUG // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "readBytes name=%08X, buffer_len=%d, read_start=0x%04X, read_len=%d"), name, buffer_len, read_start, read_len); #endif if (name == 0x00000000) { return -1; } if (buffer_len == 0) { return 0; } // look for file ZFS_File_Entry entry; uint8_t entry_idx; if (!findFileEntry(name, entry, &entry_idx)) { return -1; } // file not found if (read_start >= entry.length) { return 0; } // start of read is beyond end of file, return nothing uint16_t max_read_len = entry.length - read_start; // we know it's > 0 if (read_len > max_read_len) { read_len = max_read_len; } if (read_len > buffer_len) { read_len = buffer_len; } // we know read_len is the correct max value now // compute the start block for the file // V1 it's the first one uint8_t blk = entry.blk_start; zigbee.eeprom.readBytes((blk << 8) + read_start, read_len, (byte*) buffer); return read_len; } /*********************************************************************************************\ * * Check that the EEPROM is formatted * \*********************************************************************************************/ void ZFS::initOrFormat(void) { if (!zigbee.eeprom_present) { return; } #ifdef Z_EEPROM_DEBUG // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "sizeof(ZFS_Bitmap)=%d sizeof(ZFS_File_Entry)=%d sizeof(ZFS_Root_Entry)=%d sizeof(ZFS_Dir_Block)=%d"), sizeof(ZFS_Bitmap), sizeof(ZFS_File_Entry), sizeof(ZFS_Root_Entry), sizeof(ZFS_Dir_Block)); { byte map[256]; char hex_char[(256 * 2) + 2]; zigbee.eeprom.readBytes(0x0000, 256, map); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 00 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char))); // zigbee.eeprom.readBytes(0x0100, 256, map); // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 01 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char))); zigbee.eeprom.readBytes(0x0200, 256, map); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 02 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char))); zigbee.eeprom.readBytes(0x2100, 256, map); AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK 21 %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char))); // zigbee.eeprom.readBytes(0xFF00, 256, map); // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "BLK FF %s"), ToHex_P(map, sizeof(map), hex_char, sizeof(hex_char))); } #endif ZFS_Dir_Block * dir = new ZFS_Dir_Block(); zigbee.eeprom.readBytes(0, sizeof(ZFS_Dir_Block), (byte*) dir); if (dir->b0.signature == ZFS_SIGNATURE) { // Good AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "EEPROM signature 0x%08X is correct"), dir->b0.signature); } else { AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "EEPROM signature 0x%08X is incorrect, formatting"), dir->b0.signature); format(); } delete dir; zigbee.eeprom_ready = true; } // // Format EEPROM // void ZFS::format(void) { AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Formatting EEPROM")); // First write the bitmap ZFS_Bitmap * bitmap = new ZFS_Bitmap(); bitmap->format(); zigbee.eeprom.writeBytes(0xFF00, 256, (byte*) bitmap); delete bitmap; // Map ZFS_Map * map = new ZFS_Map(); map->format(); zigbee.eeprom.writeBytes(0x0100, 256, (byte*) map); delete map; // Dir ZFS_Dir_Block * dir = new ZFS_Dir_Block(); dir->format(); zigbee.eeprom.writeBytes(0x0000, 256, (byte*) dir); delete dir; } uint16_t ZFS_File_Entry::getAddress(uint8_t entry_idx) { return sizeof(ZFS_Root_Entry) + sizeof(ZFS_File_Entry) * entry_idx; } void ZFS_File_Entry::read(uint8_t entry_idx) { if (!zigbee.eeprom_ready) { return; } zigbee.eeprom.readBytes(getAddress(entry_idx), sizeof(ZFS_File_Entry), (byte*)this); } void ZFS_Write_File::findOrCreate(void) { ZFS_File_Entry entry; if (ZFS::findFileEntry(name, entry, &entry_idx)) { blk_start = entry.blk_start; } }; int32_t ZFS_Write_File::addBytes(void* buffer, size_t buffer_len) { if (!zigbee.eeprom_ready) { return -1; } if ((buffer == nullptr) || (buffer_len == 0)) { return 0; } if (length + buffer_len > ZFS_FILE_BLOCKS * 256) { return -1; } // exceeded max size // #ifdef Z_EEPROM_DEBUG // AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "eeprom.writeBytes address=0x%04X, len=%d"), (blk_start << 8) + length, buffer_len); // #endif zigbee.eeprom.writeBytes((blk_start << 8) + length, buffer_len, (byte*)buffer); length += buffer_len; return length; } int32_t ZFS_Write_File::close(void) { if (!zigbee.eeprom_ready) { return -1; } // write the final length uint16_t address = ZFS_File_Entry::getAddress(entry_idx); zigbee.eeprom.writeBytes(address + sizeof(name), 2, (byte*)&length); return length; } #endif // USE_ZIGBEE_EEPROM /*********************************************************************************************\ * * Generic for Reading a file * * Can work in 3 modes: * - if passed a filename, use the ZFS for EEPROM nano-fs * - if passed a File* object, use this object * - if passed a buffer, read from a binary buffer in RAM \*********************************************************************************************/ class Univ_Read_File { public: // file info uint16_t len = 0; uint16_t cursor = 0; bool is_valid = false; Univ_Read_File(void) {} // == EEPROM ================================================ #ifdef USE_ZIGBEE_EEPROM uint32_t eeprom_name = 0; ZFS_File_Entry entry; // uint16_t length; // uint8_t blk_start; // if 0x00 then file does not exist uint8_t entry_idx; // entry number in the directory void init(uint32_t _name) { eeprom_name = _name; if (ZFS::findFileEntry(eeprom_name, entry, &entry_idx)) { len = ZFS::getLength(eeprom_name); is_valid = (len > 0); } } #endif // USE_ZIGBEE_EEPROM // == File ================================================ #ifdef USE_UFILESYS File * file = nullptr; void init(File * _file) { file = _file; is_valid = (bool) *file; len = file->size(); } #endif #ifdef ESP8266 // == Buffer ================================================ // binary buffer const uint8_t * buffer = nullptr; void init(const uint8_t * buf, size_t buflen) { buffer = buf; len = buflen; is_valid = (buffer != nullptr) && (len > 0); } #endif // ESP8266 // ================================================== inline bool valid(void) const { return is_valid; } // does the file exist? int32_t readBytes(uint8_t* buf, size_t buflen); void close(void); }; void Univ_Read_File::close(void) { #ifdef USE_UFILESYS if (file != nullptr) { file->close(); } #endif // USE_UFILESYS // don't do anything for ZFS read of buffer } int32_t Univ_Read_File::readBytes(uint8_t* buf, size_t btr) { if (!is_valid) { return -1; } #ifdef USE_UFILESYS if (file != nullptr) { return file->read(buf, btr); } #endif // USE_UFILESYS #ifdef USE_ZIGBEE_EEPROM if (eeprom_name != 0) { int32_t bytes_read = ZFS::readBytes(eeprom_name, buf, btr, cursor, btr); if (bytes_read < 0) { return -1; } cursor += bytes_read; return bytes_read; } #endif // USE_ZIGBEE_EEPROM #ifdef ESP8266 // binary buffer if (buffer != nullptr) { if (btr > len - cursor) { btr = len - cursor; } memcpy_P(buf, buffer + cursor, btr); cursor += btr; return btr; } #endif // ESP8266 return -1; } /*********************************************************************************************\ * * Generic for Writing a file * * Can work in 3 modes: * - if passed a filename, use the ZFS for EEPROM nano-fs * - if passed a File* object, use this object * - if passed a buffer, write to a binary buffer in RAM \*********************************************************************************************/ class Univ_Write_File { public: // file info bool is_valid = false; Univ_Write_File(void) {} // == EEPROM ================================================ #ifdef USE_ZIGBEE_EEPROM ZFS_Write_File eeprom_file; void init(uint32_t _name) { eeprom_file.init(_name); is_valid = eeprom_file.valid(); } #endif // USE_ZIGBEE_EEPROM // == File ================================================ #ifdef USE_UFILESYS File * file = nullptr; void init(File * _file) { file = _file; is_valid = (bool) *file; } #endif #ifdef ESP8266 // == Buffer ================================================ // binary buffer size_t buflen = 0; uint8_t * buffer = nullptr; uint16_t cursor = 0; void init(uint8_t * buf, size_t _buflen) { buffer = buf; buflen = _buflen; is_valid = (buffer != nullptr) && (buflen > 0); } #endif // ESP8266 // ================================================== inline bool valid(void) const { return is_valid; } // does the file exist? int32_t writeBytes(uint8_t* buf, size_t buflen); int32_t getCursor(void); void close(void); }; void Univ_Write_File::close(void) { #ifdef USE_UFILESYS if (file != nullptr) { file->close(); } #endif // USE_UFILESYS #ifdef USE_ZIGBEE_EEPROM if (eeprom_file.valid()) { eeprom_file.close(); } #endif // USE_ZIGBEE_EEPROM // binary buffer doesn't need a close } int32_t Univ_Write_File::getCursor(void) { if (!is_valid) { return -1; } #ifdef USE_UFILESYS if (file != nullptr) { return file->position(); } #endif // USE_UFILESYS #ifdef USE_ZIGBEE_EEPROM if (eeprom_file.valid()) { return eeprom_file.length; } #endif // USE_ZIGBEE_EEPROM #ifdef ESP8266 if (buffer != nullptr) { return cursor; } #endif // ESP8266 return -1; } int32_t Univ_Write_File::writeBytes(uint8_t* buf, size_t btw) { if (!is_valid) { return -1; } #ifdef USE_UFILESYS if (file != nullptr) { return file->write(buf, btw); } #endif // USE_UFILESYS #ifdef USE_ZIGBEE_EEPROM if (eeprom_file.valid()) { uint16_t length_before = eeprom_file.length; eeprom_file.addBytes(buf, btw); return eeprom_file.length - length_before; // compute the increase in size } #endif // USE_ZIGBEE_EEPROM #ifdef ESP8266 if (buffer != nullptr) { // binary buffer if (btw > buflen - cursor) { btw = buflen - cursor; } memcpy_P(buffer + cursor, buf, btw); cursor += btw; return btw; } #endif // ESP8266 return -1; } #endif // USE_ZIGBEE