/*************************************************** This is our touchscreen painting example for the Adafruit TFT FeatherWing ----> http://www.adafruit.com/products/3315 Check out the links above for our tutorials and wiring diagrams Adafruit invests time and resources providing this open source code, please support Adafruit and open-source hardware by purchasing products from Adafruit! Written by Limor Fried/Ladyada for Adafruit Industries. MIT license, all text above must be included in any redistribution ****************************************************/ #include #include // this is needed even tho we aren't using it #include // Core graphics library #include // Hardware-specific library #include #include #ifdef ESP8266 #define STMPE_CS 16 #define TFT_CS 0 #define TFT_DC 15 #define SD_CS 2 #endif #ifdef ESP32 #define STMPE_CS 32 #define TFT_CS 15 #define TFT_DC 33 #define SD_CS 14 #endif #ifdef TEENSYDUINO #define TFT_DC 10 #define TFT_CS 4 #define STMPE_CS 3 #define SD_CS 8 #endif #ifdef ARDUINO_STM32_FEATHER #define TFT_DC PB4 #define TFT_CS PA15 #define STMPE_CS PC7 #define SD_CS PC5 #endif #ifdef ARDUINO_NRF52_FEATHER /* BSP 0.6.5 and higher! */ #define TFT_DC 11 #define TFT_CS 31 #define STMPE_CS 30 #define SD_CS 27 #endif #if defined(ARDUINO_MAX32620FTHR) || defined(ARDUINO_MAX32630FTHR) #define TFT_DC P5_4 #define TFT_CS P5_3 #define STMPE_CS P3_3 #define SD_CS P3_2 #endif // Anything else! #if defined (__AVR_ATmega32U4__) || defined(ARDUINO_SAMD_FEATHER_M0) || defined (__AVR_ATmega328P__) || defined(ARDUINO_SAMD_ZERO) || defined(__SAMD51__) || defined(__SAM3X8E__) #define STMPE_CS 6 #define TFT_CS 9 #define TFT_DC 10 #define SD_CS 5 #endif Adafruit_ILI9341 tft = Adafruit_ILI9341(TFT_CS, TFT_DC); Adafruit_STMPE610 ts = Adafruit_STMPE610(STMPE_CS); // This is calibration data for the raw touch data to the screen coordinates #define TS_MINX 3800 #define TS_MAXX 100 #define TS_MINY 100 #define TS_MAXY 3750 #define PENRADIUS 3 void setup(void) { Serial.begin(115200); delay(10); Serial.println("FeatherWing TFT"); if (!ts.begin()) { Serial.println("Couldn't start touchscreen controller"); while (1); } Serial.println("Touchscreen started"); tft.begin(); tft.fillScreen(ILI9341_BLUE); yield(); Serial.print("Initializing SD card..."); if (!SD.begin(SD_CS)) { Serial.println("failed!"); } Serial.println("OK!"); bmpDraw("purple.bmp", 0, 0); } void loop() { // Retrieve a point TS_Point p = ts.getPoint(); Serial.print("X = "); Serial.print(p.x); Serial.print("\tY = "); Serial.print(p.y); Serial.print("\tPressure = "); Serial.println(p.z); // Scale from ~0->4000 to tft.width using the calibration #'s p.x = map(p.x, TS_MINX, TS_MAXX, 0, tft.width()); p.y = map(p.y, TS_MINY, TS_MAXY, 0, tft.height()); if (((p.y-PENRADIUS) > 0) && ((p.y+PENRADIUS) < tft.height())) { tft.fillCircle(p.x, p.y, PENRADIUS, ILI9341_RED); } } // This function opens a Windows Bitmap (BMP) file and // displays it at the given coordinates. It's sped up // by reading many pixels worth of data at a time // (rather than pixel by pixel). Increasing the buffer // size takes more of the Arduino's precious RAM but // makes loading a little faster. 20 pixels seems a // good balance. #define BUFFPIXEL 20 void bmpDraw(char *filename, int16_t x, int16_t y) { File bmpFile; int bmpWidth, bmpHeight; // W+H in pixels uint8_t bmpDepth; // Bit depth (currently must be 24) uint32_t bmpImageoffset; // Start of image data in file uint32_t rowSize; // Not always = bmpWidth; may have padding uint8_t sdbuffer[3*BUFFPIXEL]; // pixel buffer (R+G+B per pixel) uint8_t buffidx = sizeof(sdbuffer); // Current position in sdbuffer boolean goodBmp = false; // Set to true on valid header parse boolean flip = true; // BMP is stored bottom-to-top int w, h, row, col; uint8_t r, g, b; uint32_t pos = 0, startTime = millis(); if((x >= tft.width()) || (y >= tft.height())) return; Serial.println(); Serial.print(F("Loading image '")); Serial.print(filename); Serial.println('\''); // Open requested file on SD card if ((bmpFile = SD.open(filename)) == NULL) { Serial.print(F("File not found")); return; } // Parse BMP header if(read16(bmpFile) == 0x4D42) { // BMP signature Serial.print(F("File size: ")); Serial.println(read32(bmpFile)); (void)read32(bmpFile); // Read & ignore creator bytes bmpImageoffset = read32(bmpFile); // Start of image data Serial.print(F("Image Offset: ")); Serial.println(bmpImageoffset, DEC); // Read DIB header Serial.print(F("Header size: ")); Serial.println(read32(bmpFile)); bmpWidth = read32(bmpFile); bmpHeight = read32(bmpFile); if(read16(bmpFile) == 1) { // # planes -- must be '1' bmpDepth = read16(bmpFile); // bits per pixel Serial.print(F("Bit Depth: ")); Serial.println(bmpDepth); if((bmpDepth == 24) && (read32(bmpFile) == 0)) { // 0 = uncompressed goodBmp = true; // Supported BMP format -- proceed! Serial.print(F("Image size: ")); Serial.print(bmpWidth); Serial.print('x'); Serial.println(bmpHeight); // BMP rows are padded (if needed) to 4-byte boundary rowSize = (bmpWidth * 3 + 3) & ~3; // If bmpHeight is negative, image is in top-down order. // This is not canon but has been observed in the wild. if(bmpHeight < 0) { bmpHeight = -bmpHeight; flip = false; } // Crop area to be loaded w = bmpWidth; h = bmpHeight; if((x+w-1) >= tft.width()) w = tft.width() - x; if((y+h-1) >= tft.height()) h = tft.height() - y; // Set TFT address window to clipped image bounds tft.startWrite(); tft.setAddrWindow(x, y, w, h); for (row=0; row= sizeof(sdbuffer)) { // Indeed tft.endWrite(); bmpFile.read(sdbuffer, sizeof(sdbuffer)); tft.startWrite(); buffidx = 0; // Set index to beginning } // Convert pixel from BMP to TFT format, push to display b = sdbuffer[buffidx++]; g = sdbuffer[buffidx++]; r = sdbuffer[buffidx++]; tft.pushColor(tft.color565(r,g,b)); } // end pixel tft.endWrite(); } // end scanline Serial.print(F("Loaded in ")); Serial.print(millis() - startTime); Serial.println(" ms"); } // end goodBmp } } bmpFile.close(); if(!goodBmp) Serial.println(F("BMP format not recognized.")); } // These read 16- and 32-bit types from the SD card file. // BMP data is stored little-endian, Arduino is little-endian too. // May need to reverse subscript order if porting elsewhere. uint16_t read16(File &f) { uint16_t result; ((uint8_t *)&result)[0] = f.read(); // LSB ((uint8_t *)&result)[1] = f.read(); // MSB return result; } uint32_t read32(File &f) { uint32_t result; ((uint8_t *)&result)[0] = f.read(); // LSB ((uint8_t *)&result)[1] = f.read(); ((uint8_t *)&result)[2] = f.read(); ((uint8_t *)&result)[3] = f.read(); // MSB return result; }