/*
xnrg_12_solaxX1.ino - Solax X1 inverter RS485 support for Tasmota
Copyright (C) 2021 by Pablo Zerón
Copyright (C) 2022 by Stefan Wershoven
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_SOLAX_X1
/*********************************************************************************************\
* Solax X1 Inverter
\*********************************************************************************************/
#define XNRG_12 12
#ifndef SOLAXX1_SPEED
#define SOLAXX1_SPEED 9600 // default solax rs485 speed
#endif
#define INVERTER_ADDRESS 0x0A
#define D_SOLAX_X1 "SolaxX1"
#include
const char kSolaxMode[] PROGMEM =
D_OFF "|" D_SOLAX_MODE_0 "|" D_SOLAX_MODE_1 "|" D_SOLAX_MODE_2 "|" D_SOLAX_MODE_3 "|" D_SOLAX_MODE_4 "|"
D_SOLAX_MODE_5 "|" D_SOLAX_MODE_6;
const char kSolaxError[] PROGMEM =
D_SOLAX_ERROR_0 "|" D_SOLAX_ERROR_1 "|" D_SOLAX_ERROR_2 "|" D_SOLAX_ERROR_3 "|" D_SOLAX_ERROR_4 "|" D_SOLAX_ERROR_5 "|"
D_SOLAX_ERROR_6 "|" D_SOLAX_ERROR_7 "|" D_SOLAX_ERROR_8;
const char kSolaxSafetyType[] PROGMEM =
"VDE0126|ARN4105|AS4777_AU|G98/1|C10/11|OVE/ONORME8001|EN50438_NL|EN50438_DK|CEB|CEI021|NRS097_2_1|"
"VDE0126_Gr_Is|UTE_C15_712|IEC61727|G99/1|VDE0126_Gr_Co|France_VFR2014|C15_712_is_50|C15_712_is_60|"
"AS4777_NZ|RD1699|Chile|EN50438_Ireland|Philippines|Czech_PPDS|Czech_50438";
union {
uint32_t ErrMessage;
struct {
//BYTE0
uint8_t TzProtectFault:1;//0
uint8_t MainsLostFault:1;//1
uint8_t GridVoltFault:1;//2
uint8_t GridFreqFault:1;//3
uint8_t PLLLostFault:1;//4
uint8_t BusVoltFault:1;//5
uint8_t ErrBit06:1;//6
uint8_t OciFault:1;//7
//BYTE1
uint8_t Dci_OCP_Fault:1;//8
uint8_t ResidualCurrentFault:1;//9
uint8_t PvVoltFault:1;//10
uint8_t Ac10Mins_Voltage_Fault:1;//11
uint8_t IsolationFault:1;//12
uint8_t TemperatureOverFault:1;//13
uint8_t FanFault:1;//14
uint8_t ErrBit15:1;//15
//BYTE2
uint8_t SpiCommsFault:1;//16
uint8_t SciCommsFault:1;//17
uint8_t ErrBit18:1;//18
uint8_t InputConfigFault:1;//19
uint8_t EepromFault:1;//20
uint8_t RelayFault:1;//21
uint8_t SampleConsistenceFault:1;//22
uint8_t ResidualCurrent_DeviceFault:1;//23
//BYTE3
uint8_t ErrBit24:1;//24
uint8_t ErrBit25:1;//25
uint8_t ErrBit26:1;//26
uint8_t ErrBit27:1;//27
uint8_t ErrBit28:1;//28
uint8_t DCI_DeviceFault:1;//29
uint8_t OtherDeviceFault:1;//30
uint8_t ErrBit31:1;//31
};
} solaxX1_ErrCode;
struct SOLAXX1_LIVEDATA {
int16_t temperature = 0;
float energy_today = 0;
float dc1_voltage = 0;
float dc2_voltage = 0;
float dc1_current = 0;
float dc2_current = 0;
uint32_t runtime_total = 0;
float dc1_power = 0;
float dc2_power = 0;
int16_t runMode = 0;
uint32_t errorCode = 0;
uint8_t SerialNumber[16] = {0x6e, 0x2f, 0x61}; // "n/a"
} solaxX1;
struct SOLAXX1_GLOBALDATA {
bool AddressAssigned = true;
uint8_t SendRetry_count = 20;
uint8_t QueryData_count = 0;
uint8_t QueryID_count = 240;
bool Command_QueryID = false;;
bool Command_QueryConfig = false;
} solaxX1_global;
struct SOLAXX1_SENDDATA {
uint8_t Header[2] = {0xAA, 0x55};
uint8_t Source[2] = {0x00, 0x00};
uint8_t Destination[2] = {0x00, 0x00};
uint8_t ControlCode[1] = {0x00};
uint8_t FunctionCode[1] = {0x00};
uint8_t DataLength[1] = {0x00};
uint8_t Payload[16] = {0};
} solaxX1_SendData;
TasmotaSerial *solaxX1Serial;
/*********************************************************************************************/
void solaxX1_RS485Send(void)
{
uint8_t message[30];
memcpy(message, solaxX1_SendData.Header, 2);
memcpy(message + 2, solaxX1_SendData.Source, 2);
memcpy(message + 4, solaxX1_SendData.Destination, 2);
memcpy(message + 6, solaxX1_SendData.ControlCode, 1);
memcpy(message + 7, solaxX1_SendData.FunctionCode, 1);
memcpy(message + 8, solaxX1_SendData.DataLength, 1);
memcpy(message + 9, solaxX1_SendData.Payload, sizeof(solaxX1_SendData.Payload));
uint16_t crc = solaxX1_calculateCRC(message, 9 + solaxX1_SendData.DataLength[0]); // calculate out crc bytes
while (solaxX1Serial->available() > 0) { // read serial if any old data is available
solaxX1Serial->read();
}
if (PinUsed(GPIO_SOLAXX1_RTS)) {
digitalWrite(Pin(GPIO_SOLAXX1_RTS), HIGH);
}
solaxX1Serial->flush();
solaxX1Serial->write(message, 9 + solaxX1_SendData.DataLength[0]);
solaxX1Serial->write(highByte(crc));
solaxX1Serial->write(lowByte(crc));
solaxX1Serial->flush();
if (PinUsed(GPIO_SOLAXX1_RTS)) {
digitalWrite(Pin(GPIO_SOLAXX1_RTS), LOW);
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, message, 9 + solaxX1_SendData.DataLength[0]);
}
bool solaxX1_RS485Receive(uint8_t *ReadBuffer)
{
uint8_t len = 0;
while (solaxX1Serial->available() > 0) {
ReadBuffer[len++] = (uint8_t)solaxX1Serial->read();
}
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, ReadBuffer, len);
uint16_t crc = solaxX1_calculateCRC(ReadBuffer, len - 2); // calculate out crc bytes
return !(ReadBuffer[len - 1] == lowByte(crc) && ReadBuffer[len - 2] == highByte(crc));
}
uint16_t solaxX1_calculateCRC(uint8_t *bExternTxPackage, uint8_t bLen)
{
uint8_t i;
uint16_t wChkSum = 0;
for (i = 0; i < bLen; i++) {
wChkSum = wChkSum + bExternTxPackage[i];
}
return wChkSum;
}
void solaxX1_ExtractText(uint8_t *DataIn, uint8_t *DataOut, uint8_t Begin, uint8_t End)
{
uint8_t i;
for (i = Begin; i <= End; i++) {
DataOut[i - Begin] = DataIn[i];
}
DataOut[End - Begin + 1] = 0;
}
void solaxX1_QueryOfflineInverters(void)
{
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = 0x00;
solaxX1_SendData.ControlCode[0] = 0x10;
solaxX1_SendData.FunctionCode[0] = 0x00;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_SendInverterAddress(void)
{
solaxX1_SendData.Source[0] = 0x00;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = 0x00;
solaxX1_SendData.ControlCode[0] = 0x10;
solaxX1_SendData.FunctionCode[0] = 0x01;
solaxX1_SendData.DataLength[0] = 0x0F;
solaxX1_SendData.Payload[14] = INVERTER_ADDRESS; // Inverter Address, It must be unique in case of more inverters in the same rs485 net.
solaxX1_RS485Send();
}
void solaxX1_QueryLiveData(void)
{
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x02;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_QueryIDData(void)
{
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x03;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
void solaxX1_QueryConfigData(void)
{
solaxX1_SendData.Source[0] = 0x01;
solaxX1_SendData.Destination[0] = 0x00;
solaxX1_SendData.Destination[1] = INVERTER_ADDRESS;
solaxX1_SendData.ControlCode[0] = 0x11;
solaxX1_SendData.FunctionCode[0] = 0x04;
solaxX1_SendData.DataLength[0] = 0x00;
solaxX1_RS485Send();
}
uint8_t solaxX1_ParseErrorCode(uint32_t code){
solaxX1_ErrCode.ErrMessage = code;
if (code == 0) return 0;
if (solaxX1_ErrCode.MainsLostFault) return 1;
if (solaxX1_ErrCode.GridVoltFault) return 2;
if (solaxX1_ErrCode.GridFreqFault) return 3;
if (solaxX1_ErrCode.PvVoltFault) return 4;
if (solaxX1_ErrCode.IsolationFault) return 5;
if (solaxX1_ErrCode.TemperatureOverFault) return 6;
if (solaxX1_ErrCode.FanFault) return 7;
if (solaxX1_ErrCode.OtherDeviceFault) return 8;
return 0;
}
/*********************************************************************************************/
void solaxX1_250MSecond(void) // Every 250 milliseconds
{
uint8_t DataRead[80] = {0};
uint8_t TempData[16] = {0};
char TempDataChar[16];
float TempFloat;
if (solaxX1Serial->available()) {
if (solaxX1_RS485Receive(DataRead)) { // CRC-error -> no further action
DEBUG_SENSOR_LOG(PSTR("SX1: Data response CRC error"));
return;
}
solaxX1_global.SendRetry_count = 20; // Inverter is responding
if (DataRead[0] != 0xAA || DataRead[1] != 0x55) { // Check for header
DEBUG_SENSOR_LOG(PSTR("SX1: Check for header failed"));
return;
}
if (DataRead[6] == 0x11 && DataRead[7] == 0x82) { // received "Response for query (live data)"
Energy.data_valid[0] = 0;
solaxX1.temperature = (DataRead[9] << 8) | DataRead[10]; // Temperature
solaxX1.energy_today = ((DataRead[11] << 8) | DataRead[12]) * 0.1f; // Energy Today
solaxX1.dc1_voltage = ((DataRead[13] << 8) | DataRead[14]) * 0.1f; // PV1 Voltage
solaxX1.dc2_voltage = ((DataRead[15] << 8) | DataRead[16]) * 0.1f; // PV2 Voltage
solaxX1.dc1_current = ((DataRead[17] << 8) | DataRead[18]) * 0.1f; // PV1 Current
solaxX1.dc2_current = ((DataRead[19] << 8) | DataRead[20]) * 0.1f; // PV2 Current
Energy.current[0] = ((DataRead[21] << 8) | DataRead[22]) * 0.1f; // AC Current
Energy.voltage[0] = ((DataRead[23] << 8) | DataRead[24]) * 0.1f; // AC Voltage
Energy.frequency[0] = ((DataRead[25] << 8) | DataRead[26]) * 0.01f; // AC Frequency
Energy.active_power[0] = ((DataRead[27] << 8) | DataRead[28]); // AC Power
//temporal = (float)((DataRead[29] << 8) | DataRead[30]) * 0.1f; // Not Used
Energy.import_active[0] = ((DataRead[31] << 24) | (DataRead[32] << 16) | (DataRead[33] << 8) | DataRead[34]) * 0.1f; // Energy Total
solaxX1.runtime_total = (DataRead[35] << 24) | (DataRead[36] << 16) | (DataRead[37] << 8) | DataRead[38]; // Work Time Total
solaxX1.runMode = (DataRead[39] << 8) | DataRead[40]; // Work mode
//temporal = (float)((DataRead[41] << 8) | DataRead[42]); // Grid voltage fault value 0.1V
//temporal = (float)((DataRead[43] << 8) | DataRead[44]); // Gird frequency fault value 0.01Hz
//temporal = (float)((DataRead[45] << 8) | DataRead[46]); // Dc injection fault value 1mA
//temporal = (float)((DataRead[47] << 8) | DataRead[48]); // Temperature fault value
//temporal = (float)((DataRead[49] << 8) | DataRead[50]); // Pv1 voltage fault value 0.1V
//temporal = (float)((DataRead[51] << 8) | DataRead[52]); // Pv2 voltage fault value 0.1V
//temporal = (float)((DataRead[53] << 8) | DataRead[54]); // GFC fault value
solaxX1.errorCode = (DataRead[58] << 24) | (DataRead[57] << 16) | (DataRead[56] << 8) | DataRead[55]; // Error Code
solaxX1.dc1_power = solaxX1.dc1_voltage * solaxX1.dc1_current;
solaxX1.dc2_power = solaxX1.dc2_voltage * solaxX1.dc2_current;
EnergyUpdateTotal(); // 484.708 kWh
DEBUG_SENSOR_LOG(PSTR("SX1: received live data"));
return;
} // end received "Response for query (live data)"
if (DataRead[6] == 0x11 && DataRead[7] == 0x83) { // received "Response for query (ID data)"
solaxX1_ExtractText(DataRead, solaxX1.SerialNumber, 49, 62); // extract "real" serial number
if (solaxX1_global.Command_QueryID) {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter phases: %d"),DataRead[9]); // number of phases
solaxX1_ExtractText(DataRead, TempData, 10, 15); // extract rated bus power (my be empty)
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus power: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 16, 20); // extract firmware version
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter firmware version: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 21, 34); // extract module name (my be empty)
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter module name: %s"),(char*)TempData);
solaxX1_ExtractText(DataRead, TempData, 35, 48); // extract factory name
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter factory name: %s"),(char*)TempData);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber);
solaxX1_ExtractText(DataRead, TempData, 63, 66); // extract rated bus voltage
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Inverter rated bus voltage: %s"),(char*)TempData);
solaxX1_global.Command_QueryID = false;
} else {
AddLog(LOG_LEVEL_DEBUG, PSTR("SX1: Inverter serial number: %s"),(char*)solaxX1.SerialNumber);
}
DEBUG_SENSOR_LOG(PSTR("SX1: received ID data"));
return;
} // end received "Response for query (ID data)"
if (DataRead[6] == 0x11 && DataRead[7] == 0x84) { // received "Response for query (config data)"
if (solaxX1_global.Command_QueryConfig) {
// This values are displayed as they were received from the inverter. They are not interpreted in any way.
TempFloat = ((DataRead[9] << 8) | DataRead[10]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: new wVpvStart: %1_f V (Inverter launch voltage threshold)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wTimeStart: %d sec (launch wait time)"), (DataRead[11] << 8) | DataRead[12]);
TempFloat = ((DataRead[13] << 8) | DataRead[14]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinProtect: %1_f V (allowed minimum grid voltage)"), &TempFloat);
TempFloat = ((DataRead[15] << 8) | DataRead[16]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxProtect: %1_f V (allowed maximum grid voltage)"), &TempFloat);
TempFloat = ((DataRead[17] << 8) | DataRead[18]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinProtect: %2_f Hz (allowed minimum grid frequency)"), &TempFloat);
TempFloat = ((DataRead[19] << 8) | DataRead[20]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxProtect: %2_f Hz (allowed maximum grid frequency)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wDciLimits: %d mA (DC component limits)"), (DataRead[21] << 8) | DataRead[22]);
TempFloat = ((DataRead[23] << 8) | DataRead[24]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wGrid10MinAvgProtect: %1_f V (10 minutes over voltage protect)"), &TempFloat);
TempFloat = ((DataRead[25] << 8) | DataRead[26]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMinSlowProtect: %1_f V (grid undervoltage protect value)"), &TempFloat);
TempFloat = ((DataRead[27] << 8) | DataRead[28]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wVacMaxSlowProtect: %1_f V (grid overvoltage protect value)"), &TempFloat);
TempFloat = ((DataRead[29] << 8) | DataRead[30]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMinSlowProtect: %2_f Hz (grid underfrequency protect value)"), &TempFloat);
TempFloat = ((DataRead[31] << 8) | DataRead[32]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wFacMaxSlowProtect: %2_f Hz (grid overfrequency protect value)"), &TempFloat);
GetTextIndexed(TempDataChar, sizeof(TempDataChar), (DataRead[33] << 8) | DataRead[34], kSolaxSafetyType);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wSafety: %d ≙ %s"), (DataRead[33] << 8) | DataRead[34], TempDataChar);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_mode: %d"), DataRead[35]);
TempFloat = DataRead[36] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerfactor_data: %2_f"), &TempFloat);
TempFloat = DataRead[37] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wUpperLimit: %2_f (overexcite limits)"), &TempFloat);
TempFloat = DataRead[38] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wLowerLimit: %2_f (underexcite limits)"), &TempFloat);
TempFloat = DataRead[39] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerLow: %2_f (power ratio change upper limits)"), &TempFloat);
TempFloat = DataRead[40] * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wPowerUp: %2_f (power ratio change lower limits)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Qpower_set: %d"), (DataRead[41] << 8) | DataRead[42]);
TempFloat = ((DataRead[43] << 8) | DataRead[44]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqSetPoint: %2_f Hz (Over Frequency drop output setpoint)"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqDroopRate: %d %% (drop output slope)"), (DataRead[45] << 8) | DataRead[46]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVupRate: %d %% (Q(U) curve up set point)"), (DataRead[47] << 8) | DataRead[48]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: QuVlowRate: %d %% (Q(U) curve low set point)"), (DataRead[49] << 8) | DataRead[50]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerLimitsPercent: %d %%"), (DataRead[51] << 8) | DataRead[52]);
TempFloat = ((DataRead[53] << 8) | DataRead[54]) * 0.01f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WWgra: %2_f %%"), &TempFloat);
TempFloat = ((DataRead[55] << 8) | DataRead[56]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv2: %1_f V"), &TempFloat);
TempFloat = ((DataRead[57] << 8) | DataRead[58]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv3: %1_f V"), &TempFloat);
TempFloat = ((DataRead[59] << 8) | DataRead[60]) * 0.1f;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wWv4: %1_f V"), &TempFloat);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV1: %d %%"), (DataRead[61] << 8) | DataRead[62]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: wQurangeV4: %d %%"), (DataRead[63] << 8) | DataRead[64]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: BVoltPowerLimit: %d"), (DataRead[65] << 8) | DataRead[66]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WPowerManagerEnable: %d"), (DataRead[67] << 8) | DataRead[68]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WGlobalSeachMPPTStrartFlg: %d"), (DataRead[69] << 8) | DataRead[70]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFrqProtectRestrictive: %d"), (DataRead[71] << 8) | DataRead[72]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WQuDelayTimer: %d sec"), (DataRead[73] << 8) | DataRead[74]);
AddLog(LOG_LEVEL_INFO, PSTR("SX1: WFreqActivePowerDelayTimer: %d ms"), (DataRead[75] << 8) | DataRead[76]);
solaxX1_global.Command_QueryConfig = false;
}
DEBUG_SENSOR_LOG(PSTR("SX1: received config data"));
return;
} // end received "Response for query (config data)"
if (DataRead[6] == 0x10 && DataRead[7] == 0x80) { // received "register request"
solaxX1_global.QueryData_count = 5; // give time for next query
solaxX1_ExtractText(DataRead, solaxX1_SendData.Payload, 9, 22); // store serial number for register
DEBUG_SENSOR_LOG(PSTR("SX1: received register request and send register address"));
solaxX1_SendInverterAddress(); // "send register address"
return;
}
if (DataRead[6] == 0x10 && DataRead[7] == 0x81 && DataRead[9] == 0x06) { // received "address confirm (ACK)"
solaxX1_global.QueryData_count = 5; // give time for next query
solaxX1_global.AddressAssigned = true;
DEBUG_SENSOR_LOG(PSTR("SX1: received \"address confirm (ACK)\""));
return;
}
} // end solaxX1Serial->available()
// DEBUG_SENSOR_LOG(PSTR("SX1: solaxX1_global.AddressAssigned: %d, solaxX1_global.QueryData_count: %d, solaxX1_global.SendRetry_count: %d, solaxX1_global.QueryID_count: %d"), solaxX1_global.AddressAssigned, solaxX1_global.QueryData_count, solaxX1_global.SendRetry_count, solaxX1_global.QueryID_count);
if (solaxX1_global.AddressAssigned) {
if (!solaxX1_global.QueryData_count) { // normal periodically query
solaxX1_global.QueryData_count = 5;
if (!solaxX1_global.QueryID_count || solaxX1_global.Command_QueryID) { // ID query
DEBUG_SENSOR_LOG(PSTR("SX1: Send ID query"));
solaxX1_QueryIDData();
} else if (solaxX1_global.Command_QueryConfig) { // Config query
DEBUG_SENSOR_LOG(PSTR("SX1: Send config query"));
solaxX1_QueryConfigData();
} else { // live query
DEBUG_SENSOR_LOG(PSTR("SX1: Send live query"));
solaxX1_QueryLiveData();
}
solaxX1_global.QueryID_count++; // query ID every 256th time
} // end normal periodically query
solaxX1_global.QueryData_count--;
if (!solaxX1_global.SendRetry_count) { // Inverter went "off"
solaxX1_global.SendRetry_count = 20;
DEBUG_SENSOR_LOG(PSTR("SX1: Inverter went \"off\""));
Energy.data_valid[0] = ENERGY_WATCHDOG;
solaxX1.temperature = solaxX1.dc1_voltage = solaxX1.dc2_voltage = solaxX1.dc1_current = solaxX1.dc2_current = solaxX1.dc1_power = 0;
solaxX1.dc2_power = Energy.current[0] = Energy.voltage[0] = Energy.frequency[0] = Energy.active_power[0] = 0;
solaxX1.runMode = -1; // off(line)
solaxX1_global.AddressAssigned = false;
} // end Inverter went "off"
} else { // sent query for inverters in offline status
if (!solaxX1_global.SendRetry_count) {
solaxX1_global.SendRetry_count = 20;
DEBUG_SENSOR_LOG(PSTR("SX1: Sent query for inverters in offline state"));
solaxX1_QueryOfflineInverters();
}
}
solaxX1_global.SendRetry_count--;
return;
} // end solaxX1_250MSecond
void solaxX1_SnsInit(void)
{
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Init - RX-pin: %d, TX-pin: %d, RTS-pin: %d"), Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), Pin(GPIO_SOLAXX1_RTS));
solaxX1Serial = new TasmotaSerial(Pin(GPIO_SOLAXX1_RX), Pin(GPIO_SOLAXX1_TX), 1);
if (solaxX1Serial->begin(SOLAXX1_SPEED)) {
if (solaxX1Serial->hardwareSerial()) { ClaimSerial(); }
} else {
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
if (PinUsed(GPIO_SOLAXX1_RTS)) {
pinMode(Pin(GPIO_SOLAXX1_RTS), OUTPUT);
}
}
void solaxX1_DrvInit(void)
{
if (PinUsed(GPIO_SOLAXX1_RX) && PinUsed(GPIO_SOLAXX1_TX)) {
TasmotaGlobal.energy_driver = XNRG_12;
}
}
bool SolaxX1_cmd(void)
{
if (!solaxX1_global.AddressAssigned) {
AddLog(LOG_LEVEL_INFO, PSTR("SX1: No inverter registered"));
return false;
}
if (!strcasecmp(XdrvMailbox.data, "ReadIDinfo")) {
solaxX1_global.Command_QueryID = true;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: ReadIDinfo sent..."));
return true;
} else if (!strcasecmp(XdrvMailbox.data, "ReadConfig")) {
solaxX1_global.Command_QueryConfig = true;
AddLog(LOG_LEVEL_INFO, PSTR("SX1: ReadConfig sent..."));
return true;
}
AddLog(LOG_LEVEL_INFO, PSTR("SX1: Unknown command: \"%s\""),XdrvMailbox.data);
return false;
}
#ifdef USE_WEBSERVER
const char HTTP_SNS_solaxX1_DATA1[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_SOLAR_POWER "{m}%s " D_UNIT_WATT "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}" D_SOLAX_X1 " " D_PV1_POWER "{m}%s " D_UNIT_WATT "{e}";
#ifdef SOLAXX1_PV2
const char HTTP_SNS_solaxX1_DATA2[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_PV2_VOLTAGE "{m}%s " D_UNIT_VOLT "{e}"
"{s}" D_SOLAX_X1 " " D_PV2_CURRENT "{m}%s " D_UNIT_AMPERE "{e}"
"{s}" D_SOLAX_X1 " " D_PV2_POWER "{m}%s " D_UNIT_WATT "{e}";
#endif
const char HTTP_SNS_solaxX1_DATA3[] PROGMEM =
"{s}" D_SOLAX_X1 " " D_UPTIME "{m}%s " D_UNIT_HOUR "{e}"
"{s}" D_SOLAX_X1 " " D_STATUS "{m}%s"
"{s}" D_SOLAX_X1 " " D_ERROR "{m}%s"
"{s}" D_SOLAX_X1 " Inverter SN{m}%s";
#endif // USE_WEBSERVER
void solaxX1_Show(bool json)
{
char solar_power[33];
dtostrfd(solaxX1.dc1_power + solaxX1.dc2_power, Settings->flag2.wattage_resolution, solar_power);
char pv1_voltage[33];
dtostrfd(solaxX1.dc1_voltage, Settings->flag2.voltage_resolution, pv1_voltage);
char pv1_current[33];
dtostrfd(solaxX1.dc1_current, Settings->flag2.current_resolution, pv1_current);
char pv1_power[33];
dtostrfd(solaxX1.dc1_power, Settings->flag2.wattage_resolution, pv1_power);
#ifdef SOLAXX1_PV2
char pv2_voltage[33];
dtostrfd(solaxX1.dc2_voltage, Settings->flag2.voltage_resolution, pv2_voltage);
char pv2_current[33];
dtostrfd(solaxX1.dc2_current, Settings->flag2.current_resolution, pv2_current);
char pv2_power[33];
dtostrfd(solaxX1.dc2_power, Settings->flag2.wattage_resolution, pv2_power);
#endif
char runtime[33];
dtostrfd(solaxX1.runtime_total, 0, runtime);
char status[33];
GetTextIndexed(status, sizeof(status), solaxX1.runMode + 1, kSolaxMode);
if (json) {
ResponseAppend_P(PSTR(",\"" D_JSON_SOLAR_POWER "\":%s,\"" D_JSON_PV1_VOLTAGE "\":%s,\"" D_JSON_PV1_CURRENT "\":%s,\"" D_JSON_PV1_POWER "\":%s"),
solar_power, pv1_voltage, pv1_current, pv1_power);
#ifdef SOLAXX1_PV2
ResponseAppend_P(PSTR(",\"" D_JSON_PV2_VOLTAGE "\":%s,\"" D_JSON_PV2_CURRENT "\":%s,\"" D_JSON_PV2_POWER "\":%s"),
pv2_voltage, pv2_current, pv2_power);
#endif
ResponseAppend_P(PSTR(",\"" D_JSON_TEMPERATURE "\":%d,\"" D_JSON_RUNTIME "\":%s,\"" D_JSON_STATUS "\":\"%s\",\"" D_JSON_ERROR "\":%d"),
solaxX1.temperature, runtime, status, solaxX1.errorCode);
#ifdef USE_DOMOTICZ
// Avoid bad temperature report at beginning of the day (spikes of 1200 celsius degrees)
if (0 == TasmotaGlobal.tele_period && solaxX1.temperature < 100) { DomoticzSensor(DZ_TEMP, solaxX1.temperature); }
#endif // USE_DOMOTICZ
#ifdef USE_WEBSERVER
} else {
WSContentSend_PD(HTTP_SNS_solaxX1_DATA1, solar_power, pv1_voltage, pv1_current, pv1_power);
#ifdef SOLAXX1_PV2
WSContentSend_PD(HTTP_SNS_solaxX1_DATA2, pv2_voltage, pv2_current, pv2_power);
#endif
WSContentSend_Temp(D_SOLAX_X1, solaxX1.temperature);
char errorCodeString[33];
WSContentSend_PD(HTTP_SNS_solaxX1_DATA3, runtime, status,
GetTextIndexed(errorCodeString, sizeof(errorCodeString), solaxX1_ParseErrorCode(solaxX1.errorCode), kSolaxError),
solaxX1.SerialNumber);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg12(uint8_t function)
{
bool result = false;
switch (function) {
case FUNC_EVERY_250_MSECOND:
solaxX1_250MSecond();
break;
case FUNC_JSON_APPEND:
solaxX1_Show(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
solaxX1_Show(0);
break;
#endif // USE_WEBSERVER
case FUNC_INIT:
solaxX1_SnsInit();
break;
case FUNC_PRE_INIT:
solaxX1_DrvInit();
break;
case FUNC_COMMAND:
result = SolaxX1_cmd();
break;
}
return result;
}
#endif // USE_SOLAX_X1_NRG
#endif // USE_ENERGY_SENSOR