/* xsns_15_mhz19.ino - MH-Z19(B) CO2 sensor support for Sonoff-Tasmota Copyright (C) 2018 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_MHZ19 /*********************************************************************************************\ * MH-Z19 - CO2 sensor * * Adapted from EspEasy plugin P049 by Dmitry (rel22 ___ inbox.ru) * * Hardware Serial will be selected if GPIO1 = [MHZ Rx] and GPIO3 = [MHZ Tx] ********************************************************************************************** * Filter usage * * Select filter usage on low stability readings \*********************************************************************************************/ #define XSNS_15 15 enum MhzFilterOptions {MHZ19_FILTER_OFF, MHZ19_FILTER_OFF_ALLSAMPLES, MHZ19_FILTER_FAST, MHZ19_FILTER_MEDIUM, MHZ19_FILTER_SLOW}; #define MHZ19_FILTER_OPTION MHZ19_FILTER_FAST /*********************************************************************************************\ * Source: http://www.winsen-sensor.com/d/files/infrared-gas-sensor/mh-z19b-co2-ver1_0.pdf * * Automatic Baseline Correction (ABC logic function) * * ABC logic function refers to that sensor itself do zero point judgment and automatic calibration procedure * intelligently after a continuous operation period. The automatic calibration cycle is every 24 hours after powered on. * * The zero point of automatic calibration is 400ppm. * * This function is usually suitable for indoor air quality monitor such as offices, schools and homes, * not suitable for greenhouse, farm and refrigeratory where this function should be off. * * Please do zero calibration timely, such as manual or commend calibration. \*********************************************************************************************/ #define MHZ19_ABC_ENABLE 1 // Automatic Baseline Correction (0 = off, 1 = on (default)) /*********************************************************************************************/ #include #ifndef CO2_LOW #define CO2_LOW 800 // Below this CO2 value show green light #endif #ifndef CO2_HIGH #define CO2_HIGH 1200 // Above this CO2 value show red light #endif #define MHZ19_READ_TIMEOUT 400 // Must be way less than 1000 but enough to read 9 bytes at 9600 bps #define MHZ19_RETRY_COUNT 8 TasmotaSerial *MhzSerial; const char kMhzTypes[] PROGMEM = "MHZ19|MHZ19B"; enum MhzCommands { MHZ_CMND_READPPM, MHZ_CMND_ABCENABLE, MHZ_CMND_ABCDISABLE, MHZ_CMND_ZEROPOINT, MHZ_CMND_RESET }; const uint8_t kMhzCommands[][2] PROGMEM = { {0x86,0x00}, // mhz_cmnd_read_ppm {0x79,0xA0}, // mhz_cmnd_abc_enable {0x79,0x00}, // mhz_cmnd_abc_disable {0x87,0x00}, // mhz_cmnd_zeropoint {0x8D,0x00}}; // mhz_cmnd_reset uint8_t mhz_type = 1; uint16_t mhz_last_ppm = 0; uint8_t mhz_filter = MHZ19_FILTER_OPTION; bool mhz_abc_enable = MHZ19_ABC_ENABLE; bool mhz_abc_must_apply = false; char mhz_types[7]; float mhz_temperature = 0; uint8_t mhz_retry = MHZ19_RETRY_COUNT; uint8_t mhz_received = 0; uint8_t mhz_state = 0; /*********************************************************************************************/ byte MhzCalculateChecksum(byte *array) { byte checksum = 0; for (byte i = 1; i < 8; i++) { checksum += array[i]; } checksum = 255 - checksum; return (checksum +1); } size_t MhzSendCmd(byte command_id) { uint8_t mhz_send[9] = { 0 }; mhz_send[0] = 0xFF; // Start byte, fixed mhz_send[1] = 0x01; // Sensor number, 0x01 by default memcpy_P(&mhz_send[2], kMhzCommands[command_id], sizeof(kMhzCommands[0])); /* mhz_send[4] = 0x00; mhz_send[5] = 0x00; mhz_send[6] = 0x00; mhz_send[7] = 0x00; */ mhz_send[8] = MhzCalculateChecksum(mhz_send); return MhzSerial->write(mhz_send, sizeof(mhz_send)); } /*********************************************************************************************/ bool MhzCheckAndApplyFilter(uint16_t ppm, uint8_t s) { if (1 == s) { return false; // S==1 => "A" version sensor bootup, do not use values. } if (mhz_last_ppm < 400 || mhz_last_ppm > 5000) { // Prevent unrealistic values during start-up with filtering enabled. // Just assume the entered value is correct. mhz_last_ppm = ppm; return true; } int32_t difference = ppm - mhz_last_ppm; if (s > 0 && s < 64 && mhz_filter != MHZ19_FILTER_OFF) { // Not the "B" version of the sensor, S value is used. // S==0 => "B" version, else "A" version // The S value is an indication of the stability of the reading. // S == 64 represents a stable reading and any lower value indicates (unusual) fast change. // Now we increase the delay filter for low values of S and increase response time when the // value is more stable. // This will make the reading useful in more turbulent environments, // where the sensor would report more rapid change of measured values. difference *= s; difference /= 64; } if (MHZ19_FILTER_OFF == mhz_filter) { if (s != 0 && s != 64) { return false; } } else { difference >>= (mhz_filter -1); } mhz_last_ppm = static_cast(mhz_last_ppm + difference); return true; } void MhzEverySecond() { mhz_state++; if (8 == mhz_state) { // Every 8 sec start a MH-Z19 measuring cycle (which takes 1005 +5% ms) mhz_state = 0; if (mhz_retry) { mhz_retry--; if (!mhz_retry) { mhz_last_ppm = 0; mhz_temperature = 0; } } MhzSerial->flush(); // Sync reception MhzSendCmd(MHZ_CMND_READPPM); mhz_received = 0; } if ((mhz_state > 2) && !mhz_received) { // Start reading response after 3 seconds every second until received uint8_t mhz_response[9]; unsigned long start = millis(); uint8_t counter = 0; while (((millis() - start) < MHZ19_READ_TIMEOUT) && (counter < 9)) { if (MhzSerial->available() > 0) { mhz_response[counter++] = MhzSerial->read(); } else { delay(5); } } AddLogSerial(LOG_LEVEL_DEBUG_MORE, mhz_response, counter); if (counter < 9) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 comms timeout")); return; } byte crc = MhzCalculateChecksum(mhz_response); if (mhz_response[8] != crc) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 crc error")); return; } if (0xFF != mhz_response[0] || 0x86 != mhz_response[1]) { // AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_DEBUG "MH-Z19 bad response")); return; } mhz_received = 1; uint16_t u = (mhz_response[6] << 8) | mhz_response[7]; if (15000 == u) { // During (and only ever at) sensor boot, 'u' is reported as 15000 if (!mhz_abc_enable) { // After bootup of the sensor the ABC will be enabled. // Thus only actively disable after bootup. mhz_abc_must_apply = true; } } else { uint16_t ppm = (mhz_response[2] << 8) | mhz_response[3]; mhz_temperature = ConvertTemp((float)mhz_response[4] - 40); uint8_t s = mhz_response[5]; mhz_type = (s) ? 1 : 2; if (MhzCheckAndApplyFilter(ppm, s)) { mhz_retry = MHZ19_RETRY_COUNT; LightSetSignal(CO2_LOW, CO2_HIGH, mhz_last_ppm); if (0 == s || 64 == s) { // Reading is stable. if (mhz_abc_must_apply) { mhz_abc_must_apply = false; if (mhz_abc_enable) { MhzSendCmd(MHZ_CMND_ABCENABLE); } else { MhzSendCmd(MHZ_CMND_ABCDISABLE); } } } } } } } /*********************************************************************************************\ * Command Sensor15 * * 0 - (Not implemented) ABC Off * 1 - (Not implemented) ABC On * 2 - Manual start = ABC Off * 3 - (Not implemented) Optional filter settings * 9 - Reset \*********************************************************************************************/ bool MhzCommandSensor() { boolean serviced = true; switch (XdrvMailbox.payload) { case 2: MhzSendCmd(MHZ_CMND_ZEROPOINT); snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_ZERO_POINT_CALIBRATION); break; case 9: MhzSendCmd(MHZ_CMND_RESET); snprintf_P(mqtt_data, sizeof(mqtt_data), S_JSON_SENSOR_INDEX_SVALUE, XSNS_15, D_JSON_RESET); break; default: serviced = false; } return serviced; } /*********************************************************************************************/ void MhzInit() { mhz_type = 0; if ((pin[GPIO_MHZ_RXD] < 99) && (pin[GPIO_MHZ_TXD] < 99)) { MhzSerial = new TasmotaSerial(pin[GPIO_MHZ_RXD], pin[GPIO_MHZ_TXD], 1); if (MhzSerial->begin(9600)) { if (MhzSerial->hardwareSerial()) { ClaimSerial(); } mhz_type = 1; } } } void MhzShow(boolean json) { char temperature[10]; dtostrfd(mhz_temperature, Settings.flag2.temperature_resolution, temperature); GetTextIndexed(mhz_types, sizeof(mhz_types), mhz_type -1, kMhzTypes); if (json) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"%s\":{\"" D_JSON_CO2 "\":%d,\"" D_JSON_TEMPERATURE "\":%s}"), mqtt_data, mhz_types, mhz_last_ppm, temperature); #ifdef USE_DOMOTICZ if (0 == tele_period) DomoticzSensor(DZ_AIRQUALITY, mhz_last_ppm); #endif // USE_DOMOTICZ #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_CO2, mqtt_data, mhz_types, mhz_last_ppm); snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_TEMP, mqtt_data, mhz_types, temperature, TempUnit()); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ boolean Xsns15(byte function) { boolean result = false; if (mhz_type) { switch (function) { case FUNC_INIT: MhzInit(); break; case FUNC_EVERY_SECOND: MhzEverySecond(); break; case FUNC_COMMAND: if (XSNS_15 == XdrvMailbox.index) { result = MhzCommandSensor(); } break; case FUNC_JSON_APPEND: MhzShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: MhzShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_MHZ19