/* tasmota.ino - Tasmota firmware for iTead Sonoff, Wemos, NodeMCU, ESP8266 and ESP32 hardwares Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ // Location specific includes #ifndef ESP32_STAGE // ESP32 Stage has no core_version.h file. Disable include via PlatformIO Option #include // Arduino_Esp8266 version information (ARDUINO_ESP8266_RELEASE and ARDUINO_ESP8266_RELEASE_2_7_1) #endif // ESP32_STAGE #include "tasmota_compat.h" #include "tasmota_version.h" // Tasmota version information #include "tasmota.h" // Enumeration used in my_user_config.h #include "my_user_config.h" // Fixed user configurable options #ifdef USE_TLS #include // We need to include before "tasmota_globals.h" to take precedence over the BearSSL version in Arduino #endif // USE_TLS #include "tasmota_globals.h" // Function prototypes and global configuration #include "i18n.h" // Language support configured by my_user_config.h #include "tasmota_template.h" // Hardware configuration // Libraries #include // Ota #include // Ota #ifdef ESP32 #ifdef USE_TLS #include "HTTPUpdateLight.h" // Ota over HTTPS for ESP32 #endif // USE_TLS #endif #include // Webserver, Updater #include #include #include #include #include #ifdef USE_ARDUINO_OTA #include // Arduino OTA #ifndef USE_DISCOVERY #define USE_DISCOVERY #endif #endif // USE_ARDUINO_OTA #ifdef USE_DISCOVERY #include // MQTT, Webserver, Arduino OTA #endif // USE_DISCOVERY //#ifdef USE_I2C #include // I2C support library //#endif // USE_I2C #ifdef USE_SPI #include // SPI support, TFT, SDcard #endif // USE_SPI #ifdef USE_UFILESYS #ifdef ESP8266 #include #include #ifdef USE_SDCARD #include #include #endif // USE_SDCARD #endif // ESP8266 #ifdef ESP32 #include #ifdef USE_SDCARD #include #endif // USE_SDCARD #include "FFat.h" #include "FS.h" #endif // ESP32 #endif // USE_UFILESYS // Structs #include "settings.h" #ifdef CONFIG_IDF_TARGET_ESP32 #include "soc/efuse_reg.h" #endif /*********************************************************************************************\ * Global variables \*********************************************************************************************/ const uint32_t VERSION_MARKER[] PROGMEM = { 0x5AA55AA5, 0xFFFFFFFF, 0xA55AA55A }; WiFiUDP PortUdp; // UDP Syslog and Alexa struct TasmotaGlobal_t { uint32_t global_update; // Timestamp of last global temperature and humidity update uint32_t baudrate; // Current Serial baudrate uint32_t pulse_timer[MAX_PULSETIMERS]; // Power off timer uint32_t blink_timer; // Power cycle timer uint32_t backlog_timer; // Timer for next command in backlog uint32_t loop_load_avg; // Indicative loop load average uint32_t log_buffer_pointer; // Index in log buffer uint32_t uptime; // Counting every second until 4294967295 = 130 year uint32_t zc_time; // Zero-cross moment (microseconds) uint32_t zc_offset; // Zero cross moment offset due to monitoring chip processing (microseconds) uint32_t zc_code_offset; // Zero cross moment offset due to executing power code (microseconds) uint32_t zc_interval; // Zero cross interval around 8333 (60Hz) or 10000 (50Hz) (microseconds) GpioOptionABits gpio_optiona; // GPIO Option_A flags void *log_buffer_mutex; // Control access to log buffer power_t power; // Current copy of Settings->power power_t rel_inverted; // Relay inverted flag (1 = (0 = On, 1 = Off)) power_t last_power; // Last power set state power_t blink_power; // Blink power state power_t blink_powersave; // Blink start power save state power_t blink_mask; // Blink relay active mask int serial_in_byte_counter; // Index in receive buffer float temperature_celsius; // Provide a global temperature to be used by some sensors float humidity; // Provide a global humidity to be used by some sensors float pressure_hpa; // Provide a global pressure to be used by some sensors uint16_t gpio_pin[MAX_GPIO_PIN]; // GPIO functions indexed by pin number myio my_module; // Active copy of Module GPIOs (17 x 16 bits) uint16_t blink_counter; // Number of blink cycles uint16_t seriallog_timer; // Timer to disable Seriallog uint16_t syslog_timer; // Timer to re-enable syslog_level uint16_t tele_period; // Tele period timer int16_t save_data_counter; // Counter and flag for config save to Flash RulesBitfield rules_flag; // Rule state flags (16 bits) bool serial_local; // Handle serial locally bool fallback_topic_flag; // Use Topic or FallbackTopic bool backlog_nodelay; // Execute all backlog commands with no delay bool backlog_mutex; // Command backlog pending bool stop_flash_rotate; // Allow flash configuration rotation bool blinkstate; // LED state bool pwm_present; // Any PWM channel configured with SetOption15 0 bool i2c_enabled; // I2C configured #ifdef ESP32 bool i2c_enabled_2; // I2C configured, second controller on ESP32, Wire1 #endif bool ntp_force_sync; // Force NTP sync bool skip_light_fade; // Temporarily skip light fading bool restart_halt; // Do not restart but stay in wait loop bool module_changed; // Indicate module changed since last restart bool wifi_stay_asleep; // Allow sleep only incase of ESP32 BLE bool no_autoexec; // Disable autoexec bool enable_logging; // Enable logging StateBitfield global_state; // Global states (currently Wifi and Mqtt) (8 bits) uint16_t pwm_inverted; // PWM inverted flag (1 = inverted) - extended to 16 bits for ESP32 #ifdef ESP32 int16_t pwm_cur_value[MAX_PWMS]; // Current effective values of PWMs as applied to GPIOs int16_t pwm_cur_phase[MAX_PWMS]; // Current phase values of PWMs as applied to GPIOs int16_t pwm_value[MAX_PWMS]; // Wanted values of PWMs after update - -1 means no change int16_t pwm_phase[MAX_PWMS]; // Wanted phase of PWMs after update - -1 means no change #endif // ESP32 uint8_t init_state; // Tasmota init state uint8_t heartbeat_inverted; // Heartbeat pulse inverted flag uint8_t spi_enabled; // SPI configured uint8_t soft_spi_enabled; // Software SPI configured uint8_t blinks; // Number of LED blinks uint8_t restart_flag; // Tasmota restart flag uint8_t ota_state_flag; // OTA state flag uint8_t wifi_state_flag; // Wifi state flag uint8_t mqtt_cmnd_blocked; // Ignore flag for publish command uint8_t mqtt_cmnd_blocked_reset; // Count down to reset if needed uint8_t state_250mS; // State 250msecond per second flag uint8_t latching_relay_pulse; // Latching relay pulse timer uint8_t active_device; // Active device in ExecuteCommandPower uint8_t sleep; // Current copy of Settings->sleep uint8_t leds_present; // Max number of LED supported uint8_t led_inverted; // LED inverted flag (1 = (0 = On, 1 = Off)) uint8_t led_power; // LED power state uint8_t ledlnk_inverted; // Link LED inverted flag (1 = (0 = On, 1 = Off)) // uint8_t pwm_inverted; // PWM inverted flag (1 = inverted) -- TODO uint8_t energy_driver; // Energy monitor configured uint8_t light_driver; // Light module configured uint8_t light_type; // Light types uint8_t serial_in_byte; // Received byte uint8_t devices_present; // Max number of devices supported uint8_t masterlog_level; // Master log level used to override set log level uint8_t seriallog_level; // Current copy of Settings->seriallog_level uint8_t syslog_level; // Current copy of Settings->syslog_level uint8_t templog_level; // Temporary log level to be used by HTTP cm and Telegram uint8_t module_type; // Current copy of Settings->module or user template type uint8_t emulated_module_type; // Emulated module type as requested by ESP32 uint8_t last_source; // Last command source uint8_t shutters_present; // Number of actual define shutters uint8_t discovery_counter; // Delayed discovery counter #ifdef USE_PWM_DIMMER uint8_t restore_powered_off_led_counter; // Seconds before powered-off LED (LEDLink) is restored #endif // USE_PWM_DIMMER #ifndef SUPPORT_IF_STATEMENT uint8_t backlog_index; // Command backlog index uint8_t backlog_pointer; // Command backlog pointer String backlog[MAX_BACKLOG]; // Command backlog buffer #endif #ifdef MQTT_DATA_STRING String mqtt_data; // Buffer filled by Response functions #else char mqtt_data[MESSZ]; // MQTT publish buffer #endif char version[16]; // Composed version string like 255.255.255.255 char image_name[33]; // Code image and/or commit char hostname[33]; // Composed Wifi hostname char serial_in_buffer[INPUT_BUFFER_SIZE]; // Receive buffer char mqtt_client[99]; // Composed MQTT Clientname char mqtt_topic[TOPSZ]; // Composed MQTT topic #ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED char* log_buffer = nullptr; // Log buffer in IRAM #else char log_buffer[LOG_BUFFER_SIZE]; // Log buffer in DRAM #endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED #ifdef USE_BERRY bool berry_fast_loop_enabled = false; // is Berry fast loop enabled, i.e. control is passed at each loop iteration #endif // USE_BERRY } TasmotaGlobal; TSettings* Settings = nullptr; #ifdef SUPPORT_IF_STATEMENT #include LinkedList backlog; // Command backlog implemented with LinkedList #define BACKLOG_EMPTY (backlog.size() == 0) #else #define BACKLOG_EMPTY (TasmotaGlobal.backlog_pointer == TasmotaGlobal.backlog_index) #endif /*********************************************************************************************\ * Main \*********************************************************************************************/ void setup(void) { #ifdef ESP32 #ifdef DISABLE_ESP32_BROWNOUT DisableBrownout(); // Workaround possible weak LDO resulting in brownout detection during Wifi connection #endif // DISABLE_ESP32_BROWNOUT #ifdef CONFIG_IDF_TARGET_ESP32 // restore GPIO16/17 if no PSRAM is found if (!FoundPSRAM()) { // test if the CPU is not pico uint32_t chip_ver = REG_GET_FIELD(EFUSE_BLK0_RDATA3_REG, EFUSE_RD_CHIP_VER_PKG); uint32_t pkg_version = chip_ver & 0x7; if (pkg_version <= 3) { // D0WD, S0WD, D2WD gpio_reset_pin(GPIO_NUM_16); gpio_reset_pin(GPIO_NUM_17); } } #endif // CONFIG_IDF_TARGET_ESP32 #endif // ESP32 RtcPreInit(); SettingsInit(); #ifdef USE_EMERGENCY_RESET EmergencyReset(); #endif // USE_EMERGENCY_RESET memset(&TasmotaGlobal, 0, sizeof(TasmotaGlobal)); TasmotaGlobal.baudrate = APP_BAUDRATE; TasmotaGlobal.seriallog_timer = SERIALLOG_TIMER; TasmotaGlobal.temperature_celsius = NAN; TasmotaGlobal.blinks = 201; TasmotaGlobal.wifi_state_flag = WIFI_RESTART; TasmotaGlobal.tele_period = 9999; TasmotaGlobal.active_device = 1; TasmotaGlobal.global_state.data = 0xF; // Init global state (wifi_down, mqtt_down) to solve possible network issues TasmotaGlobal.enable_logging = 1; RtcRebootLoad(); if (!RtcRebootValid()) { RtcReboot.fast_reboot_count = 0; } #ifdef FIRMWARE_MINIMAL RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection #else if (ResetReason() == REASON_DEEP_SLEEP_AWAKE) { RtcReboot.fast_reboot_count = 0; // Disable fast reboot and quick power cycle detection } else { RtcReboot.fast_reboot_count++; } #endif RtcRebootSave(); if (RtcSettingsLoad(0)) { uint32_t baudrate = (RtcSettings.baudrate / 300) * 300; // Make it a valid baudrate if (baudrate) { TasmotaGlobal.baudrate = baudrate; } } Serial.begin(TasmotaGlobal.baudrate); Serial.println(); // Serial.setRxBufferSize(INPUT_BUFFER_SIZE); // Default is 256 chars TasmotaGlobal.seriallog_level = LOG_LEVEL_INFO; // Allow specific serial messages until config loaded #ifdef PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED ESP.setIramHeap(); Settings = (TSettings*)malloc(sizeof(TSettings)); // Allocate in "new" 16k heap space TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "new" 16k heap space ESP.resetHeap(); if (TasmotaGlobal.log_buffer == nullptr) { TasmotaGlobal.log_buffer = (char*)malloc(LOG_BUFFER_SIZE); // Allocate in "old" heap space as fallback } if (TasmotaGlobal.log_buffer != nullptr) { TasmotaGlobal.log_buffer[0] = '\0'; } #endif // PIO_FRAMEWORK_ARDUINO_MMU_CACHE16_IRAM48_SECHEAP_SHARED if (Settings == nullptr) { Settings = (TSettings*)malloc(sizeof(TSettings)); } // AddLog(LOG_LEVEL_INFO, PSTR("ADR: Settings %p, Log %p"), Settings, TasmotaGlobal.log_buffer); #ifdef ESP32 AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s %s"), GetDeviceHardware().c_str(), FoundPSRAM() ? (CanUsePSRAM() ? "(PSRAM)" : "(PSRAM disabled)") : "" ); AddLog(LOG_LEVEL_DEBUG, PSTR("HDW: FoundPSRAM=%i CanUsePSRAM=%i"), FoundPSRAM(), CanUsePSRAM()); #if !defined(HAS_PSRAM_FIX) if (FoundPSRAM() && !CanUsePSRAM()) { AddLog(LOG_LEVEL_INFO, PSTR("HDW: PSRAM is disabled, requires specific compilation on this hardware (see doc)")); } #endif #else // ESP32 AddLog(LOG_LEVEL_INFO, PSTR("HDW: %s"), GetDeviceHardware().c_str()); #endif // ESP32 #ifdef USE_UFILESYS UfsInit(); // xdrv_50_filesystem.ino #endif SettingsLoad(); SettingsDelta(); OsWatchInit(); TasmotaGlobal.seriallog_level = Settings->seriallog_level; TasmotaGlobal.syslog_level = Settings->syslog_level; TasmotaGlobal.module_changed = (Settings->module != Settings->last_module); if (TasmotaGlobal.module_changed) { Settings->baudrate = APP_BAUDRATE / 300; Settings->serial_config = TS_SERIAL_8N1; } SetSerialBaudrate(Settings->baudrate * 300); // Reset serial interface if current baudrate is different from requested baudrate if (1 == RtcReboot.fast_reboot_count) { // Allow setting override only when all is well UpdateQuickPowerCycle(true); } if (ResetReason() != REASON_DEEP_SLEEP_AWAKE) { #ifdef ESP8266 Settings->flag4.network_wifi = 1; // Make sure we're in control #endif #ifdef ESP32 if (!Settings->flag4.network_ethernet) { Settings->flag4.network_wifi = 1; // Make sure we're in control } #endif } TasmotaGlobal.stop_flash_rotate = Settings->flag.stop_flash_rotate; // SetOption12 - Switch between dynamic or fixed slot flash save location TasmotaGlobal.save_data_counter = Settings->save_data; TasmotaGlobal.sleep = Settings->sleep; #ifndef USE_EMULATION Settings->flag2.emulation = 0; #else #ifndef USE_EMULATION_WEMO if (EMUL_WEMO == Settings->flag2.emulation) { Settings->flag2.emulation = 0; } #endif #ifndef USE_EMULATION_HUE if (EMUL_HUE == Settings->flag2.emulation) { Settings->flag2.emulation = 0; } #endif #endif // USE_EMULATION // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)&TasmotaGlobal, sizeof(TasmotaGlobal)); if (Settings->param[P_BOOT_LOOP_OFFSET]) { // SetOption36 // Disable functionality as possible cause of fast restart within BOOT_LOOP_TIME seconds (Exception, WDT or restarts) if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET]) { // Restart twice Settings->flag3.user_esp8285_enable = 0; // SetOption51 - Enable ESP8285 user GPIO's - Disable ESP8285 Generic GPIOs interfering with flash SPI if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +1) { // Restart 3 times for (uint32_t i = 0; i < MAX_RULE_SETS; i++) { if (bitRead(Settings->rule_stop, i)) { bitWrite(Settings->rule_enabled, i, 0); // Disable rules causing boot loop } } } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +2) { // Restarted 4 times Settings->rule_enabled = 0; // Disable all rules TasmotaGlobal.no_autoexec = true; } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +3) { // Restarted 5 times for (uint32_t i = 0; i < nitems(Settings->my_gp.io); i++) { Settings->my_gp.io[i] = GPIO_NONE; // Reset user defined GPIO disabling sensors } } if (RtcReboot.fast_reboot_count > Settings->param[P_BOOT_LOOP_OFFSET] +4) { // Restarted 6 times Settings->module = Settings->fallback_module; // Reset module to fallback module // Settings->last_module = Settings->fallback_module; } AddLog(LOG_LEVEL_INFO, PSTR("FRC: " D_LOG_SOME_SETTINGS_RESET " (%d)"), RtcReboot.fast_reboot_count); } } memcpy_P(TasmotaGlobal.version, VERSION_MARKER, 1); // Dummy for compiler saving VERSION_MARKER snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%d.%d.%d"), VERSION >> 24 & 0xff, VERSION >> 16 & 0xff, VERSION >> 8 & 0xff); // Release version 6.3.0 if (VERSION & 0xff) { // Development or patched version 6.3.0.10 snprintf_P(TasmotaGlobal.version, sizeof(TasmotaGlobal.version), PSTR("%s.%d"), TasmotaGlobal.version, VERSION & 0xff); } // Thehackbox inserts "release" or "commit number" before compiling using sed -i -e 's/PSTR("(%s)")/PSTR("(85cff52-%s)")/g' tasmota.ino snprintf_P(TasmotaGlobal.image_name, sizeof(TasmotaGlobal.image_name), PSTR("(%s)"), PSTR(CODE_IMAGE_STR)); // Results in (85cff52-tasmota) or (release-tasmota) Format(TasmotaGlobal.mqtt_client, SettingsText(SET_MQTT_CLIENT), sizeof(TasmotaGlobal.mqtt_client)); Format(TasmotaGlobal.mqtt_topic, SettingsText(SET_MQTT_TOPIC), sizeof(TasmotaGlobal.mqtt_topic)); if (strchr(SettingsText(SET_HOSTNAME), '%') != nullptr) { SettingsUpdateText(SET_HOSTNAME, WIFI_HOSTNAME); snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME), TasmotaGlobal.mqtt_topic, ESP_getChipId() & 0x1FFF); } else { snprintf_P(TasmotaGlobal.hostname, sizeof(TasmotaGlobal.hostname)-1, SettingsText(SET_HOSTNAME)); } char *s = TasmotaGlobal.hostname; while (*s) { if (!(isalnum(*s) || ('.' == *s))) { *s = '-'; } // Valid hostname chars are A..Z, a..z, 0..9, . and - if ((s == TasmotaGlobal.hostname) && ('-' == *s)) { *s = 'x'; } // First char cannot be a dash so replace by an x s++; } snprintf_P(TasmotaGlobal.mqtt_topic, sizeof(TasmotaGlobal.mqtt_topic), ResolveToken(TasmotaGlobal.mqtt_topic).c_str()); RtcInit(); GpioInit(); ButtonInit(); SwitchInit(); #ifdef ROTARY_V1 RotaryInit(); #endif // ROTARY_V1 #ifdef USE_BERRY if (!TasmotaGlobal.no_autoexec) { BerryInit(); } #endif // USE_BERRY XdrvCall(FUNC_PRE_INIT); XsnsCall(FUNC_PRE_INIT); TasmotaGlobal.init_state = INIT_GPIOS; SetPowerOnState(); WifiConnect(); AddLog(LOG_LEVEL_INFO, PSTR(D_PROJECT " %s - %s " D_VERSION " %s%s-" ARDUINO_CORE_RELEASE "(%s)"), PSTR(PROJECT), SettingsText(SET_DEVICENAME), TasmotaGlobal.version, TasmotaGlobal.image_name, GetBuildDateAndTime().c_str()); #ifdef FIRMWARE_MINIMAL AddLog(LOG_LEVEL_INFO, PSTR(D_WARNING_MINIMAL_VERSION)); #endif // FIRMWARE_MINIMAL #ifdef USE_ARDUINO_OTA ArduinoOTAInit(); #endif // USE_ARDUINO_OTA XdrvCall(FUNC_INIT); XsnsCall(FUNC_INIT); #ifdef USE_SCRIPT if (bitRead(Settings->rule_enabled, 0)) Run_Scripter(">BS",3,0); #endif TasmotaGlobal.rules_flag.system_init = 1; } void BacklogLoop(void) { if (TimeReached(TasmotaGlobal.backlog_timer)) { if (!BACKLOG_EMPTY && !TasmotaGlobal.backlog_mutex) { TasmotaGlobal.backlog_mutex = true; bool nodelay = false; bool nodelay_detected = false; String cmd; do { #ifdef SUPPORT_IF_STATEMENT cmd = backlog.shift(); #else cmd = TasmotaGlobal.backlog[TasmotaGlobal.backlog_pointer]; TasmotaGlobal.backlog[TasmotaGlobal.backlog_pointer] = (const char*) nullptr; // Force deallocation of the String internal memory TasmotaGlobal.backlog_pointer++; if (TasmotaGlobal.backlog_pointer >= MAX_BACKLOG) { TasmotaGlobal.backlog_pointer = 0; } #endif nodelay_detected = !strncasecmp_P(cmd.c_str(), PSTR(D_CMND_NODELAY), strlen(D_CMND_NODELAY)); if (nodelay_detected) { nodelay = true; } } while (!BACKLOG_EMPTY && nodelay_detected); if (!nodelay_detected) { ExecuteCommand((char*)cmd.c_str(), SRC_BACKLOG); } if (nodelay || TasmotaGlobal.backlog_nodelay) { TasmotaGlobal.backlog_timer = millis(); // Reset backlog_timer which has been set by ExecuteCommand (CommandHandler) } TasmotaGlobal.backlog_mutex = false; } if (BACKLOG_EMPTY) { TasmotaGlobal.backlog_nodelay = false; } } } void SleepDelay(uint32_t mseconds) { if (!TasmotaGlobal.backlog_nodelay && mseconds) { uint32_t wait = millis() + mseconds; while (!TimeReached(wait) && !Serial.available()) { // We need to service serial buffer ASAP as otherwise we get uart buffer overrun delay(1); } } else { delay(0); } } void Scheduler(void) { XdrvCall(FUNC_LOOP); XsnsCall(FUNC_LOOP); // check LEAmDNS.h // MDNS.update() needs to be called in main loop #ifdef ESP8266 // Not needed with esp32 mdns #ifdef USE_DISCOVERY #ifdef USE_WEBSERVER #ifdef WEBSERVER_ADVERTISE MdnsUpdate(); #endif // WEBSERVER_ADVERTISE #endif // USE_WEBSERVER #endif // USE_DISCOVERY #endif // ESP8266 OsWatchLoop(); ButtonLoop(); SwitchLoop(); #ifdef USE_DEVICE_GROUPS DeviceGroupsLoop(); #endif // USE_DEVICE_GROUPS BacklogLoop(); static uint32_t state_50msecond = 0; // State 50msecond timer if (TimeReached(state_50msecond)) { SetNextTimeInterval(state_50msecond, 50); #ifdef ROTARY_V1 RotaryHandler(); #endif // ROTARY_V1 XdrvCall(FUNC_EVERY_50_MSECOND); XsnsCall(FUNC_EVERY_50_MSECOND); } static uint32_t state_100msecond = 0; // State 100msecond timer if (TimeReached(state_100msecond)) { SetNextTimeInterval(state_100msecond, 100); Every100mSeconds(); XdrvCall(FUNC_EVERY_100_MSECOND); XsnsCall(FUNC_EVERY_100_MSECOND); } static uint32_t state_250msecond = 0; // State 250msecond timer if (TimeReached(state_250msecond)) { SetNextTimeInterval(state_250msecond, 250); Every250mSeconds(); XdrvCall(FUNC_EVERY_250_MSECOND); XsnsCall(FUNC_EVERY_250_MSECOND); } static uint32_t state_second = 0; // State second timer if (TimeReached(state_second)) { SetNextTimeInterval(state_second, 1000); PerformEverySecond(); XdrvCall(FUNC_EVERY_SECOND); XsnsCall(FUNC_EVERY_SECOND); } if (!TasmotaGlobal.serial_local) { SerialInput(); } #ifdef USE_ARDUINO_OTA ArduinoOtaLoop(); #endif // USE_ARDUINO_OTA } void loop(void) { uint32_t my_sleep = millis(); Scheduler(); uint32_t my_activity = millis() - my_sleep; if (Settings->flag3.sleep_normal) { // SetOption60 - Enable normal sleep instead of dynamic sleep // yield(); // yield == delay(0), delay contains yield, auto yield in loop SleepDelay(TasmotaGlobal.sleep); // https://github.com/esp8266/Arduino/issues/2021 } else { if (my_activity < (uint32_t)TasmotaGlobal.sleep) { SleepDelay((uint32_t)TasmotaGlobal.sleep - my_activity); // Provide time for background tasks like wifi } else { if (TasmotaGlobal.global_state.network_down) { SleepDelay(my_activity /2); // If wifi down and my_activity > setoption36 then force loop delay to 1/2 of my_activity period } } } if (!my_activity) { my_activity++; } // We cannot divide by 0 uint32_t loop_delay = TasmotaGlobal.sleep; if (!loop_delay) { loop_delay++; } // We cannot divide by 0 uint32_t loops_per_second = 1000 / loop_delay; // We need to keep track of this many loops per second uint32_t this_cycle_ratio = 100 * my_activity / loop_delay; TasmotaGlobal.loop_load_avg = TasmotaGlobal.loop_load_avg - (TasmotaGlobal.loop_load_avg / loops_per_second) + (this_cycle_ratio / loops_per_second); // Take away one loop average away and add the new one }