/*
xdrv_23_zigbee.ino - zigbee support for Tasmota
Copyright (C) 2021 Theo Arends and Stephan Hadinger
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ZIGBEE
#ifdef USE_ZIGBEE_EZSP
void EZ_SendZDO(uint16_t shortaddr, uint16_t cmd, const unsigned char *payload, size_t payload_len, bool retry = true);
//
// Trying to get a uniform LQI measure, we are aligning with the definition of ZNP
// I.e. a linear projection from -87dBm to +10dB over 0..255
// for ZNP, lqi is linear from -87 to +10 dBm (https://sunmaysky.blogspot.com/2017/02/conversion-between-rssi-and-lqi-in-z.html)
uint8_t ZNP_RSSI2Lqi(int8_t rssi) {
if (rssi < -87) { rssi = -87; }
if (rssi > 10) { rssi = 10; }
return changeUIntScale(rssi + 87, 0, 87+10, 0, 254);
}
/*********************************************************************************************\
* Parsers for incoming EZSP messages
\*********************************************************************************************/
// EZSP: received ASH "RSTACK" frame, indicating that the MCU finished boot
void EZ_RSTACK(uint8_t reset_code) {
const char *reason_str;
switch (reset_code) {
case 0x01: reason_str = PSTR("External"); break;
case 0x02: reason_str = PSTR("Power-on"); break;
case 0x03: reason_str = PSTR("Watchdog"); break;
case 0x06: reason_str = PSTR("Assert"); break;
case 0x09: reason_str = PSTR("Bootloader"); break;
case 0x0B: reason_str = PSTR("Software"); break;
case 0x00:
default: reason_str = PSTR("Unknown"); break;
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\"EFR32 booted\",\"RestartReason\":\"%s\""
",\"Code\":%d}}"),
ZIGBEE_STATUS_BOOT, reason_str, reset_code);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
}
// EZSP: received ASH "ERROR" frame, indicating that the MCU finished boot
void EZ_ERROR(uint8_t error_code) {
const char *reason_str;
switch (error_code) {
case 0x51: reason_str = PSTR("ACK timeout"); break;
default: reason_str = PSTR("Unknown"); break;
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\"Failed state\",\"Error\":\"%s\""
",\"Code\":%d}}"),
ZIGBEE_STATUS_ABORT, reason_str, error_code);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
}
int32_t EZ_ReadAPSUnicastMessage(int32_t res, SBuffer &buf) {
// Called when receiving a response from getConfigurationValue
// Value is in bytes 2+3
// uint16_t value = buf.get16(2);
return res;
}
/*********************************************************************************************\
* Parsers for incoming EZSP messages
\*********************************************************************************************/
//
// Handle a "getEui64" incoming message
//
int32_t EZ_GetEUI64(int32_t res, SBuffer &buf) {
localIEEEAddr = buf.get64(2);
return res;
}
//
// Handle a "getEui64" incoming message
//
int32_t EZ_GetNodeId(int32_t res, SBuffer &buf) {
localShortAddr = buf.get8(2);
return res;
}
//
// Handle a "getNetworkParameters" incoming message
//
int32_t EZ_NetworkParameters(int32_t res, SBuffer &buf) {
uint8_t node_type = buf.get8(3);
// ext panid: 4->11
// panid: 12->13
// radioTxPower: 14
// radioChannel: 15
// Local short and long addresses are supposed to be already retrieved
// localIEEEAddr = long_adr;
// localShortAddr = short_adr;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d}}"),
ZIGBEE_STATUS_EZ_INFO, &localIEEEAddr, localShortAddr, node_type);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
return res;
}
//
// Analyze response to "getKey" and check NWK key
//
int32_t EZ_CheckKeyNWK(int32_t res, SBuffer &buf) {
// uint8_t status = buf.get8(2);
// uint16_t bitmask = buf.get16(3);
uint8_t key_type = buf.get8(5);
uint64_t key_low = buf.get64(6);
uint64_t key_high = buf.get64(14);
if ( (key_type == EMBER_CURRENT_NETWORK_KEY) &&
(key_low == ezsp_key_low) &&
(key_high == ezsp_key_high) ) {
return 0; // proceed to next step
} else {
return -2; // error state
}
}
//
// Handle a "incomingRouteErrorHandler" incoming message
//
int32_t EZ_RouteError(int32_t res, const SBuffer &buf) {
uint8_t status = buf.get8(2);
uint16_t shortaddr = buf.get16(3);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_ROUTE_ERROR "\":{"
"\"ShortAddr\":\"0x%04X\",\"" D_JSON_ZIGBEE_STATUS "\":%d,\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\"}}"),
shortaddr, status, getEmberStatus(status).c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
return -1;
}
//
// Handle EZSP Energy Scan result
//
int32_t EZSP_EnergyScanResult(int32_t res, const SBuffer &buf) {
uint8_t channel = buf.get8(2);
int8_t energy = buf.get8(3);
if ((channel >= USE_ZIGBEE_CHANNEL_MIN) && (channel <= USE_ZIGBEE_CHANNEL_MAX)) {
zigbee.energy[channel - USE_ZIGBEE_CHANNEL_MIN] = energy;
}
return -1;
}
//
// Handle EZSP Energy Scan complete
//
int32_t EZSP_EnergyScanComplete(int32_t res, const SBuffer &buf) {
// uint8_t channel = buf.get8(2);
uint8_t status = buf.get8(3);
if (0 == status) {
EnergyScanResults();
}
return -1;
}
//
// Dump energu scan results
//
void EnergyScanResults(void) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_SCAN "\":{"));
for (uint32_t i = 0; i < USE_ZIGBEE_CHANNEL_COUNT; i++) {
int8_t energy = zigbee.energy[i];
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"%d\":%d"), i + USE_ZIGBEE_CHANNEL_MIN, energy);
// display as log
static const int32_t bar_min = -87;
static const int32_t bar_max = 10;
static const uint32_t bar_count = 60;
char bar_str[bar_count + 1];
uint32_t energy_unsigned = energy + 0x80;
uint32_t bars = changeUIntScale(energy_unsigned, bar_min + 0x80, bar_max + 0x80, 0, bar_count);
for (uint32_t j = 0; j < bars; j++) { bar_str[j] = '#'; }
bar_str[bars] = 0;
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Channel %2d: %s"), i + USE_ZIGBEE_CHANNEL_MIN, bar_str);
}
ResponseAppend_P(PSTR("}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
}
//
// Handle a "permitJoining" incoming message
//
int32_t EZ_PermitJoinRsp(int32_t res, const SBuffer &buf) {
uint8_t status = buf.get8(2);
if (status) { // only report if there is an error
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{\"Status\":23,\"Message\":\"Pairing mode error 0x%02X\"}}"), status);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
}
return -1;
}
//
// Received MessageSentHandler
//
// We normally ignore the message, but it's a way to sniff group ids for IKEA remote
// In case of a multicast message sent to 0xFFFD with non-null group id, we log the group id
int32_t EZ_MessageSent(int32_t res, const SBuffer &buf) {
uint8_t message_type = buf.get8(2);
uint16_t dst_addr = buf.get16(3);
uint16_t group_addr = buf.get16(13);
if ((EMBER_OUTGOING_MULTICAST == message_type) && (0xFFFD == dst_addr)) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "Sniffing group 0x%04X"), group_addr);
}
return -1; // ignore
}
#endif // USE_ZIGBEE_EZSP
//
// Special case: EZSP does not send an event for PermitJoin end, so we generate a synthetic one
//
void Z_PermitJoinDisable(void) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{\"Status\":20,\"Message\":\"Pairing mode disabled\"}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
}
/*********************************************************************************************\
* Handle auto-mapping
\*********************************************************************************************/
// low-level sending of packet
void Z_Send_State_or_Map(uint16_t shortaddr, uint8_t index, uint16_t zdo_cmd) {
#ifdef USE_ZIGBEE_ZNP
SBuffer buf(10);
buf.add8(Z_SREQ | Z_ZDO); // 25
buf.add8(zdo_cmd); // 33
buf.add16(shortaddr); // shortaddr
buf.add8(index); // StartIndex = 0
ZigbeeZNPSend(buf.getBuffer(), buf.len());
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
// ZDO message payload (see Zigbee spec 2.4.3.3.4)
uint8_t buf[] = { index }; // index = 0
EZ_SendZDO(shortaddr, zdo_cmd, buf, sizeof(buf), false);
#endif // USE_ZIGBEE_EZSP
}
// This callback is registered to send ZbMap(s) to each device one at a time
void Z_Map(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
if (BAD_SHORTADDR != shortaddr) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "sending `ZbMap 0x%04X`"), shortaddr);
#ifdef USE_ZIGBEE_ZNP
Z_Send_State_or_Map(shortaddr, value, ZDO_MGMT_LQI_REQ);
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
Z_Send_State_or_Map(shortaddr, value, ZDO_Mgmt_Lqi_req);
#endif // USE_ZIGBEE_EZSP
} else {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "ZbMap done"));
zigbee.mapping_in_progress = false;
zigbee.mapping_ready = true;
}
}
/*********************************************************************************************\
* Parsers for incoming EZSP messages
\*********************************************************************************************/
//
// Handle a "getEui64" incoming message
//
int32_t Z_EZSPGetEUI64(int32_t res, SBuffer &buf) {
localIEEEAddr = buf.get64(2);
return res;
}
//
// Handle a "getEui64" incoming message
//
int32_t Z_EZSPGetNodeId(int32_t res, SBuffer &buf) {
localShortAddr = buf.get8(2);
return res;
}
//
// Handle a "getNetworkParameters" incoming message
//
int32_t Z_EZSPNetworkParameters(int32_t res, SBuffer &buf) {
uint8_t node_type = buf.get8(3);
// ext panid: 4->11
// panid: 12->13
// radioTxPower: 14
// radioChannel: 15
// Local short and long addresses are supposed to be already retrieved
// localIEEEAddr = long_adr;
// localShortAddr = short_adr;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d}}"),
ZIGBEE_STATUS_EZ_INFO, &localIEEEAddr, localShortAddr, node_type);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
return res;
}
/*********************************************************************************************\
* Parsers for incoming ZNP messages
\*********************************************************************************************/
//
// Handle a "Receive Device Info" incoming message
//
int32_t ZNP_ReceiveDeviceInfo(int32_t res, SBuffer &buf) {
// Ex= 6700.00.6263151D004B1200.0000.07.09.02.83869991
// IEEE Adr (8 bytes) = 0x00124B001D156362
// Short Addr (2 bytes) = 0x0000
// Device Type (1 byte) = 0x07 (coord?)
// Device State (1 byte) = 0x09 (coordinator started)
// NumAssocDevices (1 byte) = 0x02
// List of devices: 0x8683, 0x9199
Z_IEEEAddress long_adr = buf.get64(3);
Z_ShortAddress short_adr = buf.get16(11);
uint8_t device_type = buf.get8(13);
uint8_t device_state = buf.get8(14);
uint8_t device_associated = buf.get8(15);
// keep track of the local IEEE address
localIEEEAddr = long_adr;
localShortAddr = short_adr;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"DeviceType\":%d,\"DeviceState\":%d"
",\"NumAssocDevices\":%d"),
ZIGBEE_STATUS_CC_INFO, &long_adr, short_adr, device_type, device_state,
device_associated);
if (device_associated > 0) { // If there are devices registered in CC2530, print the list
uint idx = 16;
ResponseAppend_P(PSTR(",\"AssocDevicesList\":["));
for (uint32_t i = 0; i < device_associated; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(idx));
idx += 2;
}
ResponseAppend_P(PSTR("]"));
}
ResponseJsonEndEnd(); // append '}}'
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
return res;
}
int32_t ZNP_CheckNVWrite(int32_t res, SBuffer &buf) {
// Check the status after NV Init "ZNP Has Configured"
// Good response should be 610700 or 610709 (Success or Created)
// We only filter the response on 6107 and check the code in this function
uint8_t status = buf.get8(2);
if ((0x00 == status) || (0x09 == status)) {
return 0; // Ok, continue
} else {
return -2; // Error
}
}
int32_t ZNP_Reboot(int32_t res, SBuffer &buf) {
// print information about the reboot of device
// 4180.02.02.00.02.06.03
//
uint8_t reason = buf.get8(2);
// uint8_t transport_rev = buf.get8(3);
// uint8_t product_id = buf.get8(4);
uint8_t major_rel = buf.get8(5);
uint8_t minor_rel = buf.get8(6);
// uint8_t hw_rev = buf.get8(7);
const char *reason_str;
switch (reason) {
case 0: reason_str = PSTR("Power-up"); break;
case 1: reason_str = PSTR("External"); break;
case 2: reason_str = PSTR("Watchdog"); break;
default: reason_str = PSTR("Unknown"); break;
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\"CCxxxx booted\",\"RestartReason\":\"%s\""
",\"MajorRel\":%d,\"MinorRel\":%d}}"),
ZIGBEE_STATUS_BOOT, reason_str,
major_rel, minor_rel);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
if ((0x02 == major_rel) && ((0x06 == minor_rel) || (0x07 == minor_rel))) {
if (0x07 == minor_rel) {
zigbee.zb3 = true; // we run Zigbee 3
ZNP_UpdateZStack3(); // update configuration for ZStack 3
}
return 0; // version 2.6.x and 2.7.x are ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
#ifdef USE_ZIGBEE_ZNP
int32_t ZNP_ReceiveCheckVersion(int32_t res, SBuffer &buf) {
// check that the version is supported
// typical version for ZNP 1.2
// 61020200-02.06.03.D9143401.0200000000
// TranportRev = 02
// Product = 00
// MajorRel = 2
// MinorRel = 6
// MaintRel = 3
// Revision = 20190425 d (0x013414D9)
uint8_t major_rel = buf.get8(4);
uint8_t minor_rel = buf.get8(5);
uint8_t maint_rel = buf.get8(6);
uint32_t revision = buf.get32(7);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"MajorRel\":%d,\"MinorRel\":%d"
",\"MaintRel\":%d,\"Revision\":%d}}"),
ZIGBEE_STATUS_CC_VERSION, major_rel, minor_rel,
maint_rel, revision);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
if ((0x02 == major_rel) && ((0x06 == minor_rel) || (0x07 == minor_rel))) {
return 0; // version 2.6.x and 2.7.x are ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
int32_t EZ_ReceiveCheckVersion(int32_t res, SBuffer &buf) {
uint8_t protocol_version = buf.get8(2);
uint8_t stack_type = buf.get8(3);
zigbee.ezsp_version = buf.get16(4);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Version\":\"%d.%d.%d.%d\",\"Protocol\":%d"
",\"Stack\":%d}}"),
ZIGBEE_STATUS_EZ_VERSION,
(zigbee.ezsp_version & 0xF000) >> 12,
(zigbee.ezsp_version & 0x0F00) >> 8,
(zigbee.ezsp_version & 0x00F0) >> 4,
zigbee.ezsp_version & 0x000F,
protocol_version,
stack_type
);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
if (0x08 == protocol_version) {
if ((zigbee.ezsp_version & 0xFF00) == 0x6700) {
// If v6.7 there is a bug so we need to change the response
ZBW(ZBR_SET_OK2, 0x00, 0x00 /*high*/, 0x00 /*ok*/)
}
return 0; // protocol v8 is ok
} else {
return ZIGBEE_LABEL_UNSUPPORTED_VERSION; // abort
}
}
bool EZ_reset_config = false;
// Set or clear reset_config
int32_t EZ_Set_ResetConfig(uint8_t value) {
EZ_reset_config = value ? true : false;
return 0;
}
// checks if we need to reset the configuration of the device
// if reset_config == 0, continue
// if reset_config == 1, goto ZIGBEE_LABEL_CONFIGURE_EZSP
int32_t EZ_GotoIfResetConfig(uint8_t value) {
if (EZ_reset_config) { return ZIGBEE_LABEL_CONFIGURE_EZSP; }
else { return 0; }
}
#endif // USE_ZIGBEE_EZSP
// checks the device type (coordinator, router, end-device)
// If coordinator continue
// If router goto ZIGBEE_LABEL_START_ROUTER
// If device goto ZIGBEE_LABEL_START_DEVICE
int32_t Z_SwitchDeviceType(int32_t res, SBuffer &buf) {
switch (Settings.zb_pan_id) {
case 0xFFFF: return ZIGBEE_LABEL_INIT_ROUTER;
case 0xFFFE: return ZIGBEE_LABEL_INIT_DEVICE;
default: return 0; // continue
}
}
//
// Helper function, checks if the incoming buffer matches the 2-bytes prefix, i.e. message type in PMEM
//
bool Z_ReceiveMatchPrefix(const SBuffer &buf, const uint8_t *match) {
if ( (pgm_read_byte(&match[0]) == buf.get8(0)) &&
(pgm_read_byte(&match[1]) == buf.get8(1)) ) {
return true;
} else {
return false;
}
}
//
// Handle Permit Join response
//
int32_t ZNP_ReceivePermitJoinStatus(int32_t res, const SBuffer &buf) {
// we received a PermitJoin status change
uint8_t duration = buf.get8(2);
uint8_t status_code;
const char* message;
if (!zigbee.zb3 && (0xFF == duration)) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_XX;
message = PSTR("Enable Pairing mode until next boot");
zigbee.permit_end_time = -1; // In ZNP mode, declare permitjoin open
} else if (duration > 0) {
status_code = ZIGBEE_STATUS_PERMITJOIN_OPEN_60;
message = PSTR("Enable Pairing mode for %d seconds");
zigbee.permit_end_time = -1; // In ZNP mode, declare permitjoin open
} else {
status_code = ZIGBEE_STATUS_PERMITJOIN_CLOSE;
message = PSTR("Disable Pairing mode");
zigbee.permit_end_time = 0; // In ZNP mode, declare permitjoin closed
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"Message\":\""),
status_code);
ResponseAppend_P(message, duration);
ResponseAppend_P(PSTR("\"}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_STATE));
return -1;
}
//
// ZNP only
//
int32_t ZNP_ReceiveNodeDesc(int32_t res, const SBuffer &buf) {
// Received ZDO_NODE_DESC_RSP
// Z_ShortAddress srcAddr = buf.get16(2);
uint8_t status = buf.get8(4);
// Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t logicalType = buf.get8(7);
// uint8_t apsFlags = buf.get8(8);
// uint8_t MACCapabilityFlags = buf.get8(9);
// uint16_t manufacturerCapabilities = buf.get16(10);
// uint8_t maxBufferSize = buf.get8(12);
// uint16_t maxInTransferSize = buf.get16(13);
// uint16_t serverMask = buf.get16(15);
// uint16_t maxOutTransferSize = buf.get16(17);
// uint8_t descriptorCapabilities = buf.get8(19);
if (0 == status) {
uint8_t deviceType = logicalType & 0x7; // 0=coordinator, 1=router, 2=end device
const char * deviceTypeStr;
switch (deviceType) {
case 0: deviceTypeStr = PSTR("Coordinator"); break;
case 1: deviceTypeStr = PSTR("Router"); break;
case 2: deviceTypeStr = PSTR("Device"); break;
default: deviceTypeStr = PSTR("Unknown"); break;
}
bool complexDescriptorAvailable = (logicalType & 0x08) ? 1 : 0;
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"NodeType\":\"%s\",\"ComplexDesc\":%s}}"),
ZIGBEE_STATUS_NODE_DESC, deviceTypeStr,
complexDescriptorAvailable ? PSTR("true") : PSTR("false")
);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
return -1;
}
//
// Porcess Receive Active Endpoint
//
int32_t Z_ReceiveActiveEp(int32_t res, const SBuffer &buf) {
// Received ZDO_ACTIVE_EP_RSP
#ifdef USE_ZIGBEE_ZNP
// Z_ShortAddress srcAddr = buf.get16(2);
// uint8_t status = buf.get8(4);
Z_ShortAddress nwkAddr = buf.get16(5);
uint8_t activeEpCount = buf.get8(7);
uint8_t* activeEpList = (uint8_t*) buf.charptr(8);
#endif
#ifdef USE_ZIGBEE_EZSP
// uint8_t status = buf.get8(0);
Z_ShortAddress nwkAddr = buf.get16(1);
uint8_t activeEpCount = buf.get8(3);
uint8_t* activeEpList = (uint8_t*) buf.charptr(4);
#endif
// device is reachable
zigbee_devices.deviceWasReached(nwkAddr);
for (uint32_t i = 0; i < activeEpCount; i++) {
uint8_t ep = activeEpList[i];
zigbee_devices.getShortAddr(nwkAddr).addEndpoint(ep);
if ((i < 4) && (ep < 0x10)) {
zigbee_devices.queueTimer(nwkAddr, 0 /* groupaddr */, 1500, ep /* fake cluster as ep */, ep, Z_CAT_EP_DESC, 0 /* value */, &Z_SendSimpleDescReq);
}
}
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"ActiveEndpoints\":["),
ZIGBEE_STATUS_ACTIVE_EP);
for (uint32_t i = 0; i < activeEpCount; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%02X\""), activeEpList[i]);
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
Z_SendDeviceInfoRequest(nwkAddr); // probe for ModelId and ManufId
return -1;
}
// list of clusters that need bindings
const uint8_t Z_bindings[] PROGMEM = {
Cx0001, Cx0006, Cx0008, Cx0102, Cx0201, Cx0300,
Cx0400, Cx0402, Cx0403, Cx0405, Cx0406,
Cx0500,
};
int32_t Z_ClusterToCxBinding(uint16_t cluster) {
uint8_t cx = ClusterToCx(cluster);
for (uint32_t i=0; i= 0) {
bitSet(cluster_map, found_cx);
bitSet(cluster_in_map, found_cx);
}
}
// scan out clusters
for (uint32_t i=0; i= 0) {
bitSet(cluster_map, found_cx);
}
}
// if IAS device, request the device type
if (bitRead(cluster_map, Z_ClusterToCxBinding(0x0500))) {
// send a read command to cluster 0x0500, attribute 0x0001 (ZoneType) - to read the type of sensor
zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_READ_ATTRIBUTE, 0x0001, &Z_SendSingleAttributeRead);
zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_CIE_ATTRIBUTE, 0 /* value */, &Z_WriteCIEAddress);
zigbee_devices.queueTimer(shortaddr, 0 /* groupaddr */, 2000, 0x0500, endpoint, Z_CAT_CIE_ENROLL, 1 /* zone */, &Z_SendCIEZoneEnrollResponse);
}
// enqueue bind requests
for (uint32_t i=0; i 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(numInIndex + i*2));
if (buf.get16(numInIndex + i*2) == 0xEF00) { is_tuya_protocol = true; } // tuya protocol
}
ResponseAppend_P(PSTR("],\"OutClusters\":["));
for (uint32_t i = 0; i < numOutCluster; i++) {
if (i > 0) { ResponseAppend_P(PSTR(",")); }
ResponseAppend_P(PSTR("\"0x%04X\""), buf.get16(numOutIndex + i*2));
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopic_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
XdrvRulesProcess(0);
}
// If tuya protocol, change the model information
if (is_tuya_protocol) {
Z_Device & device = zigbee_devices.getShortAddr(nwkAddr);
device.addEndpoint(endpoint);
device.data.get(endpoint).setConfig(ZM_Tuya);
zigbee_devices.dirty();
}
return -1;
}
//
// Handle IEEEAddr incoming message
//
// Same works for both ZNP and EZSP
int32_t Z_ReceiveIEEEAddr(int32_t res, const SBuffer &buf) {
#ifdef USE_ZIGBEE_ZNP
uint8_t status = buf.get8(2);
Z_IEEEAddress ieeeAddr = buf.get64(3);
Z_ShortAddress nwkAddr = buf.get16(11);
// uint8_t startIndex = buf.get8(13); // not used
// uint8_t numAssocDev = buf.get8(14);
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
uint8_t status = buf.get8(0);
Z_IEEEAddress ieeeAddr = buf.get64(1);
Z_ShortAddress nwkAddr = buf.get16(9);
// uint8_t numAssocDev = buf.get8(11);
// uint8_t startIndex = buf.get8(12); // not used
#endif // USE_ZIGBEE_EZSP
if (0 == status) { // SUCCESS
zigbee_devices.updateDevice(nwkAddr, ieeeAddr);
zigbee_devices.deviceWasReached(nwkAddr);
// Ping response
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_PING "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""
",\"" D_JSON_ZIGBEE_IEEE "\":\"0x%_X\""), nwkAddr, &ieeeAddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR("}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
return -1;
}
//
// Report any AF_DATA_CONFIRM message
// Ex: {"ZbConfirm":{"Endpoint":1,"Status":0,"StatusMessage":"SUCCESS"}}
//
int32_t ZNP_DataConfirm(int32_t res, const SBuffer &buf) {
uint8_t status = buf.get8(2);
uint8_t endpoint = buf.get8(3);
//uint8_t transId = buf.get8(4); // unused
if (status) { // only report errors
Response_P(PSTR("{\"" D_JSON_ZIGBEE_CONFIRM "\":{\"" D_CMND_ZIGBEE_ENDPOINT "\":%d"
",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), endpoint, status, getZigbeeStatusMessage(status).c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
return -1;
}
//
// Handle State Change Indication incoming message
//
// Reference:
// 0x00: Initialized - not started automatically
// 0x01: Initialized - not connected to anything
// 0x02: Discovering PAN's to join
// 0x03: Joining a PAN
// 0x04: Rejoining a PAN, only for end devices
// 0x05: Joined but not yet authenticated by trust center
// 0x06: Started as device after authentication
// 0x07: Device joined, authenticated and is a router
// 0x08: Starting as ZigBee Coordinator
// 0x09: Started as ZigBee Coordinator
// 0x0A: Device has lost information about its parent
int32_t ZNP_ReceiveStateChange(int32_t res, const SBuffer &buf) {
uint8_t state = buf.get8(2);
const char * msg = nullptr;
switch (state) {
case ZDO_DEV_NWK_DISC: // 0x02
msg = PSTR("Scanning Zigbee network");
break;
case ZDO_DEV_NWK_JOINING: // 0x03
case ZDO_DEV_NWK_REJOIN: // 0x04
msg = PSTR("Joining a PAN");
break;
case ZDO_DEV_END_DEVICE_UNAUTH: // 0x05
msg = PSTR("Joined, not yet authenticated");
break;
case ZDO_DEV_END_DEVICE: // 0x06
msg = PSTR("Started as device");
break;
case ZDO_DEV_ROUTER: // 0x07
msg = PSTR("Started as router");
break;
case ZDO_DEV_ZB_COORD: // 0x09
msg = PSTR("Started as coordinator");
break;
case ZDO_DEV_NWK_ORPHAN: // 0x0A
msg = PSTR("Device has lost its parent");
break;
};
if (msg) {
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"NewState\":%d,\"Message\":\"%s\"}}"),
ZIGBEE_STATUS_SCANNING, state, msg
);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
if ((ZDO_DEV_END_DEVICE == state) || (ZDO_DEV_ROUTER == state) || (ZDO_DEV_ZB_COORD == state)) {
return 0; // device sucessfully started
} else {
return -1; // ignore
}
}
//
// Handle Receive End Device Announce incoming message
// This message is also received when a previously paired device is powered up
// Send back Active Ep Req message
//
int32_t Z_ReceiveEndDeviceAnnonce(int32_t res, const SBuffer &buf) {
#ifdef USE_ZIGBEE_ZNP
// Z_ShortAddress srcAddr = buf.get16(2);
Z_ShortAddress nwkAddr = buf.get16(4);
Z_IEEEAddress ieeeAddr = buf.get64(6);
uint8_t capabilities = buf.get8(14);
#endif
#ifdef USE_ZIGBEE_EZSP
// uint8_t seq = buf.get8(0);
Z_ShortAddress nwkAddr = buf.get16(0);
Z_IEEEAddress ieeeAddr = buf.get64(2);
uint8_t capabilities = buf.get8(10);
#endif
// record if we already knew the ieeeAddr for this device
// this will influence the decision whether we do auto-binding or not
const Z_Device & device_before = zigbee_devices.findShortAddr(nwkAddr);
bool ieee_already_known = false;
if (device_before.valid() && (device_before.longaddr != 0) && (device_before.longaddr == ieeeAddr)) {
ieee_already_known = true;
}
zigbee_devices.updateDevice(nwkAddr, ieeeAddr);
// device is reachable
zigbee_devices.deviceWasReached(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"PowerSource\":%s,\"ReceiveWhenIdle\":%s,\"Security\":%s}}"),
ZIGBEE_STATUS_DEVICE_ANNOUNCE, &ieeeAddr, nwkAddr,
(capabilities & 0x04) ? PSTR("true") : PSTR("false"),
(capabilities & 0x08) ? PSTR("true") : PSTR("false"),
(capabilities & 0x40) ? PSTR("true") : PSTR("false")
);
// query the state of the bulb (for Alexa)
uint32_t wait_ms = 2000; // wait for 2s
Z_Query_Bulb(nwkAddr, wait_ms);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
// Continue the discovery process and auto-binding only if the device was unknown or if PermitJoin is ongoing
if (!ieee_already_known || zigbee.permit_end_time) {
Z_SendActiveEpReq(nwkAddr);
}
return -1;
}
//
// Handle Receive TC Dev Ind incoming message
// 45CA
//
int32_t ZNP_ReceiveTCDevInd(int32_t res, const SBuffer &buf) {
Z_ShortAddress srcAddr = buf.get16(2);
Z_IEEEAddress ieeeAddr = buf.get64(4);
Z_ShortAddress parentNw = buf.get16(12);
zigbee_devices.updateDevice(srcAddr, ieeeAddr);
// device is reachable
zigbee_devices.deviceWasReached(srcAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"ParentNetwork\":\"0x%04X\"}}"),
ZIGBEE_STATUS_DEVICE_INDICATION, &ieeeAddr, srcAddr, parentNw
);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
return -1;
}
//
// Handle Bind Rsp incoming message
//
int32_t Z_BindRsp(int32_t res, const SBuffer &buf) {
#ifdef USE_ZIGBEE_ZNP
Z_ShortAddress nwkAddr = buf.get16(2);
uint8_t status = buf.get8(4);
String msg = getZigbeeStatusMessage(status);
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
uint8_t status = buf.get8(0);
Z_ShortAddress nwkAddr = buf.get16(buf.len()-2); // last 2 bytes
String msg = getZDPStatusMessage(status);
#endif // USE_ZIGBEE_EZSP
// device is reachable
zigbee_devices.deviceWasReached(nwkAddr);
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_BIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), status, msg.c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
return -1;
}
//
// Handle Unbind Rsp incoming message
//
int32_t Z_UnbindRsp(int32_t res, const SBuffer &buf) {
#ifdef USE_ZIGBEE_ZNP
Z_ShortAddress nwkAddr = buf.get16(2);
uint8_t status = buf.get8(4);
String msg = getZigbeeStatusMessage(status);
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
uint8_t status = buf.get8(0);
Z_ShortAddress nwkAddr = buf.get16(buf.len()-2); // last 2 bytes
String msg = getZDPStatusMessage(status);
#endif // USE_ZIGBEE_EZSP
// device is reachable
zigbee_devices.deviceWasReached(nwkAddr);
const char * friendlyName = zigbee_devices.getFriendlyName(nwkAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_UNBIND "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), nwkAddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
"}}"), status, msg.c_str());
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
return -1;
}
//
// Handle MgMt Bind Rsp incoming message
//
int32_t Z_MgmtBindRsp(int32_t res, const SBuffer &buf) {
return Z_Mgmt_Lqi_Bind_Rsp(res, buf, false);
}
// Return false, true or null (if unknown)
const char * TrueFalseNull(uint32_t value) {
if (value == 0) {
return PSTR("false");
} else if (value == 1) {
return PSTR("true");
} else {
return PSTR("null");
}
}
const char * Z_DeviceRelationship(uint32_t value) {
switch (value) {
case 0: return PSTR("Parent");
case 1: return PSTR("Child");
case 2: return PSTR("Sibling");
case 4: return PSTR("Previous");
case 3:
default: return PSTR("None");
}
}
const char * Z_DeviceType(uint32_t value) {
switch (value) {
case 0: return PSTR("Coordinator");
case 1: return PSTR("Router");
case 2: return PSTR("Device");
default: return PSTR("Unknown");
}
}
//
// Combined code for MgmtLqiRsp and MgmtBindRsp
//
// If the response has a follow-up, send more requests automatically
//
int32_t Z_Mgmt_Lqi_Bind_Rsp(int32_t res, const SBuffer &buf, boolean lqi) {
#ifdef USE_ZIGBEE_ZNP
uint16_t shortaddr = buf.get16(2);
uint8_t status = buf.get8(4);
uint8_t total = buf.get8(5);
uint8_t start = buf.get8(6);
uint8_t len = buf.get8(7);
const size_t prefix_len = 8;
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
uint16_t shortaddr = buf.get16(buf.len()-2);
uint8_t status = buf.get8(0);
uint8_t total = buf.get8(1);
uint8_t start = buf.get8(2);
uint8_t len = buf.get8(3);
const size_t prefix_len = 4;
#endif // USE_ZIGBEE_EZSP
// device is reachable
zigbee_devices.deviceWasReached(shortaddr);
bool non_empty = false; // check whether the response contains relevant information
const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr);
Response_P(PSTR("{\"%s\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""),
lqi ? PSTR(D_JSON_ZIGBEE_MAP) : PSTR(D_JSON_ZIGBEE_BIND_STATE), shortaddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
",\"Total\":%d"
",\"Start\":%d"
",\"%s\":["
), status, getZigbeeStatusMessage(status).c_str(), total, start + 1,
lqi ? PSTR("Map") : PSTR("Bindings"));
if (lqi) {
uint32_t idx = prefix_len;
for (uint32_t i = 0; i < len; i++) {
if (idx + 22 > buf.len()) { break; } // size 22 for EZSP
//uint64_t extpanid = buf.get16(idx); // unused
// uint64_t m_longaddr = buf.get64(idx + 8);
uint16_t m_shortaddr = buf.get16(idx + 16);
uint8_t m_dev_type = buf.get8(idx + 18);
uint8_t m_permitjoin = buf.get8(idx + 19);
uint8_t m_depth = buf.get8(idx + 20);
uint8_t m_lqi = buf.get8(idx + 21);
idx += 22;
non_empty = true;
if (i > 0) {
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("{\"Device\":\"0x%04X\","), m_shortaddr);
const char * friendlyName = zigbee_devices.getFriendlyName(m_shortaddr);
if (friendlyName) {
ResponseAppend_P(PSTR("\"Name\":\"%s\","), friendlyName);
}
ResponseAppend_P(PSTR("\"DeviceType\":\"%s\","
"\"RxOnWhenIdle\":%s,"
"\"Relationship\":\"%s\","
"\"PermitJoin\":%s,"
"\"Depth\":%d,"
"\"LinkQuality\":%d"
"}"
),
Z_DeviceType(m_dev_type & 0x03),
TrueFalseNull((m_dev_type & 0x0C) >> 2),
Z_DeviceRelationship((m_dev_type & 0x70) >> 4),
TrueFalseNull(m_permitjoin & 0x02),
m_depth,
m_lqi);
// detect any router
Z_Device & device = zigbee_devices.findShortAddr(m_shortaddr);
if (device.valid()) {
if ((m_dev_type & 0x03) == 1) { // it is a router
device.setRouter(true);
}
}
// Add information to zigbee mapper
// Z_Mapper_Edge::Edge_Type edge_type;
// switch ((m_dev_type & 0x70) >> 4) {
// case 0: edge_type = Z_Mapper_Edge::Parent; break;
// case 1: edge_type = Z_Mapper_Edge::Child; break;
// case 2: edge_type = Z_Mapper_Edge::Sibling; break;
// default: edge_type = Z_Mapper_Edge::Unknown; break;
// }
// Z_Mapper_Edge edge(m_shortaddr, shortaddr, m_lqi, edge_type);
Z_Mapper_Edge edge(m_shortaddr, shortaddr, m_lqi);
zigbee_mapper.addEdge(edge);
}
ResponseAppend_P(PSTR("]}}"));
} else { // Bind
uint32_t idx = prefix_len;
for (uint32_t i = 0; i < len; i++) {
if (idx + 14 > buf.len()) { break; } // overflow, frame size is between 14 and 21
//uint64_t srcaddr = buf.get16(idx); // unused
uint8_t srcep = buf.get8(idx + 8);
uint16_t cluster = buf.get16(idx + 9);
uint8_t addrmode = buf.get8(idx + 11);
uint16_t group = 0x0000;
uint64_t dstaddr = 0;
uint8_t dstep = 0x00;
if (Z_Addr_Group == addrmode) { // Group address mode
group = buf.get16(idx + 12);
idx += 14;
} else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode
dstaddr = buf.get64(idx + 12);
dstep = buf.get8(idx + 20);
idx += 21;
} else {
//AddLog_P(LOG_LEVEL_INFO, PSTR("ZNP_MgmtBindRsp unknwon address mode %d"), addrmode);
break; // abort for any other value since we don't know the length of the field
}
non_empty = true;
if (i > 0) {
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("{\"Cluster\":\"0x%04X\",\"Endpoint\":%d,"), cluster, srcep);
if (Z_Addr_Group == addrmode) { // Group address mode
ResponseAppend_P(PSTR("\"ToGroup\":%d}"), group);
} else if (Z_Addr_IEEEAddress == addrmode) { // IEEE address mode
ResponseAppend_P(PSTR("\"ToDevice\":\"0x%_X\",\"ToEndpoint\":%d}"), &dstaddr, dstep);
}
}
ResponseAppend_P(PSTR("]}}"));
}
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_MAP));
// Check if there are more values waiting, if so re-send a new request to get other values
// Only send a new request if the current was non-empty. This avoids an infinite loop if the device announces more slots that it actually has.
if ((non_empty) && (start + len < total)) {
// there are more values to read
#ifdef USE_ZIGBEE_ZNP
Z_Send_State_or_Map(shortaddr, start + len, lqi ? ZDO_MGMT_LQI_REQ : ZDO_MGMT_BIND_REQ);
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
Z_Send_State_or_Map(shortaddr, start + len, lqi ? ZDO_Mgmt_Lqi_req : ZDO_Mgmt_Bind_req);
#endif // USE_ZIGBEE_EZSP
}
return -1;
}
//
// Handle MgMt Bind Rsp incoming message
//
int32_t Z_MgmtLqiRsp(int32_t res, const SBuffer &buf) {
return Z_Mgmt_Lqi_Bind_Rsp(res, buf, true);
}
#ifdef USE_ZIGBEE_EZSP
//
// Handle Parent Annonce Rsp incoming message
//
// rsp: true = ZDO_Parent_annce_rsp, false = ZDO_Parent_annce
int32_t EZ_ParentAnnceRsp(int32_t res, const SBuffer &buf, bool rsp) {
size_t prefix_len;
uint8_t status;
uint8_t num_children;
uint16_t shortaddr = buf.get16(buf.len()-2);
if (rsp) {
status = buf.get8(0);
num_children = buf.get8(1);
prefix_len = 2;
} else {
status = 0;
num_children = buf.get8(0);
prefix_len = 1;
}
// device is reachable
zigbee_devices.deviceWasReached(shortaddr);
const char * friendlyName = zigbee_devices.getFriendlyName(shortaddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_PARENT "\":{\"" D_JSON_ZIGBEE_DEVICE "\":\"0x%04X\""), shortaddr);
if (friendlyName) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_NAME "\":\"%s\""), friendlyName);
}
if (rsp) {
ResponseAppend_P(PSTR(",\"" D_JSON_ZIGBEE_STATUS "\":%d"
",\"" D_JSON_ZIGBEE_STATUS_MSG "\":\"%s\""
), status, getZigbeeStatusMessage(status).c_str());
}
ResponseAppend_P(PSTR(",\"Children\":%d"
",\"ChildInfo\":["
), num_children);
uint32_t idx = prefix_len;
for (uint32_t i = 0; i < num_children; i++) {
if (idx + 8 > buf.len()) { break; } // overflow, frame size is between 14 and 21
uint64_t child_ieee = buf.get64(idx);
idx += 8;
if (i > 0) {
ResponseAppend_P(PSTR(","));
}
ResponseAppend_P(PSTR("\"0x%_X\""), &child_ieee);
}
ResponseAppend_P(PSTR("]}}"));
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEE_BIND_STATE));
return -1;
}
#endif // USE_ZIGBEE_EZSP
/*********************************************************************************************\
* Send specific ZNP messages
\*********************************************************************************************/
//
// Send ZDO_IEEE_ADDR_REQ request to get IEEE long address
//
void Z_SendIEEEAddrReq(uint16_t shortaddr) {
#ifdef USE_ZIGBEE_ZNP
uint8_t IEEEAddrReq[] = { Z_SREQ | Z_ZDO, ZDO_IEEE_ADDR_REQ, Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 };
ZigbeeZNPSend(IEEEAddrReq, sizeof(IEEEAddrReq));
#endif
#ifdef USE_ZIGBEE_EZSP
uint8_t IEEEAddrReq[] = { Z_B0(shortaddr), Z_B1(shortaddr), 0x00, 0x00 };
EZ_SendZDO(shortaddr, ZDO_IEEE_addr_req, IEEEAddrReq, sizeof(IEEEAddrReq));
#endif
}
//
// Send ACTIVE_EP_REQ to collect active endpoints for this address
//
void Z_SendActiveEpReq(uint16_t shortaddr) {
#ifdef USE_ZIGBEE_ZNP
uint8_t ActiveEpReq[] = { Z_SREQ | Z_ZDO, ZDO_ACTIVE_EP_REQ, Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr) };
ZigbeeZNPSend(ActiveEpReq, sizeof(ActiveEpReq));
#endif
#ifdef USE_ZIGBEE_EZSP
uint8_t ActiveEpReq[] = { Z_B0(shortaddr), Z_B1(shortaddr) };
EZ_SendZDO(shortaddr, ZDO_Active_EP_req, ActiveEpReq, sizeof(ActiveEpReq));
#endif
}
//
// Probe the clusters_out on the first endpoint
//
// Send ZDO_SIMPLE_DESC_REQ to get full list of supported Clusters for a specific endpoint
void Z_SendSimpleDescReq(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
#ifdef USE_ZIGBEE_ZNP
uint8_t SimpleDescReq[] = { Z_SREQ | Z_ZDO, ZDO_SIMPLE_DESC_REQ, // 2504
Z_B0(shortaddr), Z_B1(shortaddr), Z_B0(shortaddr), Z_B1(shortaddr),
endpoint };
ZigbeeZNPSend(SimpleDescReq, sizeof(SimpleDescReq));
#endif
#ifdef USE_ZIGBEE_EZSP
uint8_t SimpleDescReq[] = { Z_B0(shortaddr), Z_B1(shortaddr), endpoint };
EZ_SendZDO(shortaddr, ZDO_SIMPLE_DESC_REQ, SimpleDescReq, sizeof(SimpleDescReq));
#endif
}
//
// Send AF Info Request
// Queue requests for the device
// 1. Request for 'ModelId' and 'Manufacturer': 0000/0005, 0000/0004
// 2. Auto-bind to coordinator:
// Iterate among
//
void Z_SendDeviceInfoRequest(uint16_t shortaddr) {
ZCLMessage zcl(4); // message is 4 bytes
zcl.shortaddr = shortaddr;
zcl.cluster = 0;
zcl.cmd = ZCL_READ_ATTRIBUTES;
zcl.clusterSpecific = false;
zcl.needResponse = true;
zcl.direct = false; // discover route
zcl.buf.add16(0x0005);
zcl.buf.add16(0x0004);
zigbeeZCLSendCmd(zcl);
}
//
// Send single attribute read request in Timer
//
void Z_SendSingleAttributeRead(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
ZCLMessage zcl(2); // message is 2 bytes
zcl.shortaddr = shortaddr;
zcl.cluster = cluster;
zcl.endpoint = endpoint;
zcl.cmd = ZCL_READ_ATTRIBUTES;
zcl.clusterSpecific = false;
zcl.needResponse = true;
zcl.direct = false; // discover route
zcl.buf.add16(value); // 04000500
zigbeeZCLSendCmd(zcl);
}
//
// Write CIE address
//
void Z_WriteCIEAddress(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
ZCLMessage zcl(12); // message is 12 bytes
zcl.shortaddr = shortaddr;
zcl.cluster = 0x0500;
zcl.endpoint = endpoint;
zcl.cmd = ZCL_WRITE_ATTRIBUTES;
zcl.clusterSpecific = false;
zcl.needResponse = true;
zcl.direct = false; // discover route
zcl.buf.add16(0x0010); // attribute 0x0010
zcl.buf.add8(ZEUI64);
zcl.buf.add64(localIEEEAddr);
zigbeeZCLSendCmd(zcl);
}
//
// Write CIE address
//
void Z_SendCIEZoneEnrollResponse(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
AddLog(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "Sending Enroll Zone %d"), Z_B0(value));
ZCLMessage zcl(2); // message is 2 bytes
zcl.shortaddr = shortaddr;
zcl.cluster = 0x0500;
zcl.endpoint = endpoint;
zcl.cmd = 0x00, // Zone Enroll Response
zcl.clusterSpecific = true;
zcl.needResponse = true;
zcl.direct = false; // discover route
zcl.buf.add8(0x00); // success
zcl.buf.add8(Z_B0(value)); // ZoneID
zigbeeZCLSendCmd(zcl);
}
//
// Auto-bind some clusters to the coordinator's endpoint 0x01
//
void Z_AutoBind(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
uint64_t srcLongAddr = zigbee_devices.getDeviceLongAddr(shortaddr);
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "auto-bind `ZbBind {\"Device\":\"0x%04X\",\"Endpoint\":%d,\"Cluster\":\"0x%04X\"}`"),
shortaddr, endpoint, cluster);
#ifdef USE_ZIGBEE_ZNP
SBuffer buf(34);
buf.add8(Z_SREQ | Z_ZDO);
buf.add8(ZDO_BIND_REQ);
buf.add16(shortaddr);
buf.add64(srcLongAddr);
buf.add8(endpoint);
buf.add16(cluster);
buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT
buf.add64(localIEEEAddr);
buf.add8(0x01); // toEndpoint
ZigbeeZNPSend(buf.getBuffer(), buf.len());
#endif // USE_ZIGBEE_ZNP
#ifdef USE_ZIGBEE_EZSP
SBuffer buf(24);
// ZDO message payload (see Zigbee spec 2.4.3.2.2)
buf.add64(srcLongAddr);
buf.add8(endpoint);
buf.add16(cluster);
buf.add8(Z_Addr_IEEEAddress); // DstAddrMode - 0x03 = ADDRESS_64_BIT
buf.add64(localIEEEAddr);
buf.add8(0x01); // toEndpoint
EZ_SendZDO(shortaddr, ZDO_BIND_REQ, buf.buf(), buf.len());
#endif // USE_ZIGBEE_EZSP
}
//
// Auto-bind some clusters to the coordinator's endpoint 0x01
//
// the structure below indicates which attributes need to be configured for attribute reporting
typedef struct Z_autoAttributeReporting_t {
uint16_t cluster;
uint16_t attr_id;
uint16_t min_interval; // minimum interval in seconds (consecutive reports won't happen before this value)
uint16_t max_interval; // maximum interval in seconds (attribut will always be reported after this interval)
float report_change; // for non discrete attributes, the value change that triggers a report
} Z_autoAttributeReporting_t;
// Note the attribute must be registered in the converter list, used to retrieve the type of the attribute
const Z_autoAttributeReporting_t Z_autoAttributeReporting[] PROGMEM = {
{ 0x0001, 0x0020, 60*60, USE_ZIGBEE_MAXTIME_BATT, USE_ZIGBEE_AUTOBIND_BATTVOLTAGE }, // BatteryVoltage
{ 0x0001, 0x0021, 60*60, USE_ZIGBEE_MAXTIME_BATT, USE_ZIGBEE_AUTOBIND_BATTPERCENT }, // BatteryPercentage
{ 0x0006, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 0 }, // Power
{ 0x0102, 0x0008, 1, USE_ZIGBEE_MAXTIME_LIFT, USE_ZIGBEE_AUTOBIND_LIFT }, // CurrentPositionLiftPercentage
{ 0x0201, 0x0000, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // LocalTemperature
{ 0x0201, 0x0008, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_HEATDEMAND }, // PIHeatingDemand
{ 0x0201, 0x0012, 60, USE_ZIGBEE_MAXTIME_TRV, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // OccupiedHeatingSetpoint
{ 0x0008, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Dimmer
{ 0x0300, 0x0000, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Hue
{ 0x0300, 0x0001, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // Sat
{ 0x0300, 0x0003, 1, USE_ZIGBEE_MAXTIME_LIGHT, 100 }, // X
{ 0x0300, 0x0004, 1, USE_ZIGBEE_MAXTIME_LIGHT, 100 }, // Y
{ 0x0300, 0x0007, 1, USE_ZIGBEE_MAXTIME_LIGHT, 5 }, // CT
{ 0x0300, 0x0008, 1, USE_ZIGBEE_MAXTIME_LIGHT, 0 }, // ColorMode
{ 0x0400, 0x0000, 10, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_ILLUMINANCE }, // Illuminance (5 lux)
{ 0x0402, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_TEMPERATURE }, // Temperature (0.2 °C)
{ 0x0403, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_PRESSURE }, // Pressure (1 hPa)
{ 0x0405, 0x0000, 30, USE_ZIGBEE_MAXTIME_SENSOR, USE_ZIGBEE_AUTOBIND_HUMIDITY }, // Humidity (1 %)
{ 0x0406, 0x0000, 10, USE_ZIGBEE_MAXTIME_SENSOR, 0 }, // Occupancy
{ 0x0500, 0x0002, 1, USE_ZIGBEE_MAXTIME_SENSOR, 0 }, // ZoneStatus
};
//
// Called by Device Auto-config
// Configures default values for the most common Attribute Rerporting configurations
//
// Note: must be of type `Z_DeviceTimer`
void Z_AutoConfigReportingForCluster(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
// Buffer, max 12 bytes per attribute
SBuffer buf(12*6);
Response_P(PSTR("ZbSend {\"Device\":\"0x%04X\",\"Config\":{"), shortaddr);
boolean comma = false;
for (uint32_t i=0; i 0) {
AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_ZIGBEE "auto-bind `%s`"), TasmotaGlobal.mqtt_data);
ZCLMessage zcl(buf.len()); // message is 4 bytes
zcl.shortaddr = shortaddr;
zcl.cluster = cluster;
zcl.endpoint = endpoint;
zcl.cmd = ZCL_CONFIGURE_REPORTING;
zcl.clusterSpecific = false; /* not cluster specific */
zcl.needResponse = false; /* noresponse */
zcl.direct = false; /* discover route */
zcl.buf.addBuffer(buf);
zigbeeZCLSendCmd(zcl);
}
}
//
// Handle trustCenterJoinHandler
// 2400
//
#ifdef USE_ZIGBEE_EZSP
int32_t EZ_ReceiveTCJoinHandler(int32_t res, const SBuffer &buf) {
uint16_t srcAddr = buf.get16(2);
uint64_t ieeeAddr = buf.get64(4);
uint8_t status = buf.get8(12);
uint8_t decision = buf.get8(13);
uint16_t parentNw = buf.get16(14);
if (EMBER_DEVICE_LEFT != status) { // ignore message if the device is leaving
zigbee_devices.updateDevice(srcAddr, ieeeAddr);
Response_P(PSTR("{\"" D_JSON_ZIGBEE_STATE "\":{"
"\"Status\":%d,\"IEEEAddr\":\"0x%_X\",\"ShortAddr\":\"0x%04X\""
",\"ParentNetwork\":\"0x%04X\""
",\"JoinStatus\":%d,\"Decision\":%d"
"}}"),
ZIGBEE_STATUS_DEVICE_INDICATION, &ieeeAddr, srcAddr, parentNw,
status, decision
);
MqttPublishPrefixTopicRulesProcess_P(RESULT_OR_TELE, PSTR(D_JSON_ZIGBEEZCL_RECEIVED));
}
return -1;
}
#endif // USE_ZIGBEE_EZSP
//
// Parse incoming ZCL message.
//
// This code is common to ZNP and EZSP
void Z_IncomingMessage(class ZCLFrame &zcl_received) {
uint16_t srcaddr = zcl_received.getSrcAddr();
uint16_t groupid = zcl_received.getGroupAddr();
uint16_t clusterid = zcl_received.getClusterId();
uint8_t linkquality = zcl_received.getLinkQuality();
uint8_t srcendpoint = zcl_received.getSrcEndpoint();
linkquality = linkquality != 0xFF ? linkquality : 0xFE; // avoid 0xFF (reserved for unknown)
bool defer_attributes = false; // do we defer attributes reporting to coalesce
// log the packet details
zcl_received.log();
// create the device entry if it does not exist and if it's not the local device
Z_Device & device = (srcaddr != localShortAddr) ? zigbee_devices.getShortAddr(srcaddr) :
device_unk;
if (device.valid()) {
device.setLQI(linkquality != 0xFF ? linkquality : 0xFE); // EFR32 has a different scale for LQI
device.setLastSeenNow();
zigbee_devices.deviceWasReached(srcaddr);
}
char shortaddr[8];
snprintf_P(shortaddr, sizeof(shortaddr), PSTR("0x%04X"), srcaddr);
Z_attribute_list attr_list;
attr_list.lqi = linkquality;
attr_list.src_ep = srcendpoint;
if (groupid) { // TODO we miss the group_id == 0 here
attr_list.group_id = groupid;
}
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_DEFAULT_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseResponse(); // Zigbee general "Default Response", publish ZbResponse message
} else {
// Build the ZbReceive list
if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId() || ZCL_WRITE_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseReportAttributes(attr_list); // Zigbee report attributes from sensors
if (clusterid && (ZCL_REPORT_ATTRIBUTES == zcl_received.getCmdId())) { defer_attributes = true; } // don't defer system Cluster=0 messages or Write Attribute
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseReadAttributesResponse(attr_list);
if (clusterid) { defer_attributes = true; } // don't defer system Cluster=0 messages
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_ATTRIBUTES == zcl_received.getCmdId())) {
zcl_received.parseReadAttributes(attr_list);
// never defer read_attributes, so the auto-responder can send response back on a per cluster basis
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_READ_REPORTING_CONFIGURATION_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseReadConfigAttributes(attr_list);
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_CONFIGURE_REPORTING_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseConfigAttributes(attr_list);
} else if ( (!zcl_received.isClusterSpecificCommand()) && (ZCL_WRITE_ATTRIBUTES_RESPONSE == zcl_received.getCmdId())) {
zcl_received.parseWriteAttributesResponse(attr_list);
} else if (zcl_received.isClusterSpecificCommand()) {
zcl_received.parseClusterSpecificCommand(attr_list);
}
AddLog_P(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE D_JSON_ZIGBEEZCL_RAW_RECEIVED ": {\"0x%04X\":{%s}}"), srcaddr, attr_list.toString().c_str());
// discard the message if it was sent by us (broadcast or group loopback)
if (srcaddr == localShortAddr) {
AddLog(LOG_LEVEL_DEBUG, PSTR(D_LOG_ZIGBEE "loopback message, ignoring"));
return; // abort the rest of message management
}
zcl_received.generateSyntheticAttributes(attr_list);
zcl_received.removeInvalidAttributes(attr_list);
zcl_received.computeSyntheticAttributes(attr_list);
zcl_received.generateCallBacks(attr_list); // set deferred callbacks, ex: Occupancy
Z_postProcessAttributes(srcaddr, zcl_received.getSrcEndpoint(), attr_list);
if (defer_attributes) {
// Prepare for publish
if (zigbee_devices.jsonIsConflict(srcaddr, attr_list)) {
// there is conflicting values, force a publish of the previous message now and don't coalesce
zigbee_devices.jsonPublishFlush(srcaddr);
}
zigbee_devices.jsonAppend(srcaddr, attr_list);
zigbee_devices.setTimer(srcaddr, 0 /* groupaddr */, USE_ZIGBEE_COALESCE_ATTR_TIMER, clusterid, srcendpoint, Z_CAT_READ_ATTR, 0, &Z_PublishAttributes);
} else {
// Publish immediately
zigbee_devices.jsonPublishNow(srcaddr, attr_list);
}
}
}
#ifdef USE_ZIGBEE_EZSP
/*********************************************************************************************\
* Send ZDO Message
\*********************************************************************************************/
void EZ_SendZDO(uint16_t shortaddr, uint16_t cmd, const unsigned char *payload, size_t payload_len, bool retry) {
SBuffer buf(payload_len + 22);
uint8_t seq = zigbee_devices.getNextSeqNumber(0x0000);
if (shortaddr < 0xFFFC) {
// send unicast
buf.add16(EZSP_sendUnicast);
buf.add8(EMBER_OUTGOING_DIRECT); // 00
buf.add16(shortaddr); // dest addr
// ApsFrame
buf.add16(0x0000); // ZOD profile
buf.add16(cmd); // ZDO cmd in cluster
buf.add8(0); // srcEp
buf.add8(0); // dstEp
if (retry) {
buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY | EMBER_APS_OPTION_RETRY); // APS frame
} else {
buf.add16(EMBER_APS_OPTION_ENABLE_ROUTE_DISCOVERY); // APS frame
}
buf.add16(0x0000); // groupId
buf.add8(seq);
// end of ApsFrame
buf.add8(0x01); // tag TODO
buf.add8(payload_len + 1); // insert seq number
buf.add8(seq);
buf.addBuffer(payload, payload_len);
} else {
// send broadcast
buf.add16(EZSP_sendBroadcast);
buf.add16(shortaddr); // dest addr
// ApsFrame
buf.add16(0x0000); // ZOD profile
buf.add16(cmd); // ZDO cmd in cluster
buf.add8(0); // srcEp
buf.add8(0); // dstEp
buf.add16(0x00); // APS frame
buf.add16(0x0000); // groupId
buf.add8(seq);
// end of ApsFrame
buf.add8(0x1E); // radius
buf.add8(0x01); // tag TODO
buf.add8(payload_len + 1); // insert seq number
buf.add8(seq);
buf.addBuffer(payload, payload_len);
}
ZigbeeEZSPSendCmd(buf.buf(), buf.len());
}
/*********************************************************************************************\
* Send specific EZSP messages
\*********************************************************************************************/
int32_t EZ_IncomingMessage(int32_t res, const SBuffer &buf) {
uint8_t msgtype = buf.get8(2); // see EZSP_EmberIncomingMessageType
bool wasbroadcast = (msgtype >= EMBER_INCOMING_MULTICAST) && (msgtype <= EMBER_INCOMING_BROADCAST_LOOPBACK);
uint16_t profileid = buf.get16(3); // HA = 0x0104, ZDO = 0x0000
uint16_t clusterid = buf.get16(5);
uint8_t srcendpoint = buf.get8(7);
uint8_t dstendpoint = buf.get8(8);
uint16_t apsoptions = buf.get16(9); // see EZSP_EmberApsOption, usually EMBER_APS_OPTION_ENABLE_ADDRESS_DISCOVERY
bool securityuse = (apsoptions & EMBER_APS_OPTION_ENCRYPTION) ? true : false;
uint16_t groupid = buf.get16(11);
uint8_t seqnumber = buf.get8(13);
int8_t linkrssi = buf.get8(15);
uint8_t linkquality = ZNP_RSSI2Lqi(linkrssi); // don't take EZSP LQI but calculate our own based on ZNP
uint16_t srcaddr = buf.get16(16);
// uint8_t bindingindex = buf.get8(18); // not sure we need this one as a coordinator
// uint8_t addressindex = buf.get8(19); // not sure how to handle this one
// offset 20 is len, and buffer starts at offset 21
if ((0x0000 == profileid) && (0x00 == srcendpoint)) {
// ZDO request
// Report LQI
if (srcaddr != localShortAddr) {
Z_Device & device = zigbee_devices.getShortAddr(srcaddr);
device.setLQI(linkquality);
device.setLastSeenNow();
}
// Since ZDO messages start with a sequence number, we skip it
// but we add the source address in the last 2 bytes
SBuffer zdo_buf(buf.get8(20) - 1 + 2);
zdo_buf.addBuffer(buf.buf(22), buf.get8(20) - 1);
zdo_buf.add16(srcaddr);
switch (clusterid) {
case ZDO_Device_annce:
return Z_ReceiveEndDeviceAnnonce(res, zdo_buf);
case ZDO_Active_EP_rsp:
return Z_ReceiveActiveEp(res, zdo_buf);
case ZDO_IEEE_addr_rsp:
return Z_ReceiveIEEEAddr(res, zdo_buf);
case ZDO_Simple_Desc_rsp:
return Z_ReceiveSimpleDesc(res, zdo_buf);
case ZDO_Bind_rsp:
return Z_BindRsp(res, zdo_buf);
case ZDO_Unbind_rsp:
return Z_UnbindRsp(res, zdo_buf);
case ZDO_Mgmt_Lqi_rsp:
return Z_MgmtLqiRsp(res, zdo_buf);
case ZDO_Mgmt_Bind_rsp:
return Z_MgmtBindRsp(res, zdo_buf);
case ZDO_Parent_annce:
return EZ_ParentAnnceRsp(res, zdo_buf, false);
case ZDO_Parent_annce_rsp:
return EZ_ParentAnnceRsp(res, zdo_buf, true);
default:
break;
}
} else {
ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 21, buf.get8(20), clusterid, groupid,
srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber);
//
Z_IncomingMessage(zcl_received);
}
return -1;
}
//
// Callback for resetting the NCP, called by the state machine
//
// value = 0 : drive reset pin and halt MCU
// value = 1 : release the reset pin, restart
int32_t EZ_Reset_Device(uint8_t value) {
/*
// we use Led4i to drive the reset pin. Since it is reverted we need to pass 1 to start reset, and 0 to release reset
if (PinUsed(GPIO_LED1, ZIGBEE_EZSP_RESET_LED - 1)) {
SetLedPowerIdx(ZIGBEE_EZSP_RESET_LED - 1, value ? 0 : 1);
*/
if (PinUsed(GPIO_ZIGBEE_RST)) {
digitalWrite(Pin(GPIO_ZIGBEE_RST), value);
} else {
// no GPIO so we use software Reset instead
if (value) { // send reset only when we are supposed to release reset
uint8_t ezsp_reset[1] = { 0xC0 }; // EZSP ASH Reset
ZigbeeEZSPSendRaw(ezsp_reset, sizeof(ezsp_reset), true);
}
}
return 0; // continue
}
/*********************************************************************************************\
* Default resolver
\*********************************************************************************************/
int32_t EZ_Recv_Default(int32_t res, const SBuffer &buf) {
// Default message handler for new messages
if (zigbee.init_phase) {
// if still during initialization phase, ignore any unexpected message
return -1; // ignore message
} else {
uint16_t ezsp_command_index = buf.get16(0);
switch (ezsp_command_index) {
case EZSP_incomingMessageHandler:
return EZ_IncomingMessage(res, buf);
case EZSP_trustCenterJoinHandler:
return EZ_ReceiveTCJoinHandler(res, buf);
case EZSP_incomingRouteErrorHandler:
return EZ_RouteError(res, buf);
case EZSP_permitJoining:
return EZ_PermitJoinRsp(res, buf);
case EZSP_messageSentHandler:
return EZ_MessageSent(res, buf);
case EZSP_energyScanResultHandler:
return EZSP_EnergyScanResult(res, buf);
case EZSP_scanCompleteHandler:
return EZSP_EnergyScanComplete(res, buf);
}
return -1;
}
}
#endif // USE_ZIGBEE_EZSP
/*********************************************************************************************\
* Callbacks
\*********************************************************************************************/
// Publish the received values once they have been coalesced
void Z_PublishAttributes(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value) {
zigbee_devices.jsonPublishFlush(shortaddr);
}
/*********************************************************************************************\
* Global dispatcher for incoming messages
\*********************************************************************************************/
#ifdef USE_ZIGBEE_ZNP
//
// Callback for resetting the NCP, called by the state machine
//
// value = 0 : drive reset pin and halt MCU
// value = 1 : release the reset pin, restart
int32_t ZNP_Reset_Device(uint8_t value) {
/*
// we use Led4i to drive the reset pin. Since it is reverted we need to pass 1 to start reset, and 0 to release reset
if (PinUsed(GPIO_LED1, ZIGBEE_EZSP_RESET_LED - 1)) {
SetLedPowerIdx(ZIGBEE_EZSP_RESET_LED - 1, value ? 0 : 1);
*/
if (PinUsed(GPIO_ZIGBEE_RST)) {
digitalWrite(Pin(GPIO_ZIGBEE_RST), value);
} else {
// no GPIO so we use software Reset instead
if (value) { // send reset only when we are supposed to release reset
// flush the serial buffer, sending 0xFF 256 times.
ZigbeeZNPFlush();
ZigbeeZNPSend(ZBS_RESET, sizeof(ZBS_RESET));
}
}
return 0; // continue
}
int32_t ZNP_ReceiveAfIncomingMessage(int32_t res, const SBuffer &buf) {
uint16_t groupid = buf.get16(2);
uint16_t clusterid = buf.get16(4);
uint16_t srcaddr = buf.get16(6);
uint8_t srcendpoint = buf.get8(8);
uint8_t dstendpoint = buf.get8(9);
uint8_t wasbroadcast = buf.get8(10);
uint8_t linkquality = buf.get8(11);
uint8_t securityuse = buf.get8(12);
// uint32_t timestamp = buf.get32(13);
uint8_t seqnumber = buf.get8(17);
bool defer_attributes = false; // do we defer attributes reporting to coalesce
ZCLFrame zcl_received = ZCLFrame::parseRawFrame(buf, 19, buf.get8(18), clusterid, groupid,
srcaddr,
srcendpoint, dstendpoint, wasbroadcast,
linkquality, securityuse, seqnumber);
//
Z_IncomingMessage(zcl_received);
return -1;
}
#endif // USE_ZIGBEE_ZNP
/*********************************************************************************************\
* Global dispatcher for incoming messages
\*********************************************************************************************/
#ifdef USE_ZIGBEE_ZNP
// Structure for the Dispatcher callbacks table
typedef struct Z_Dispatcher {
uint8_t match[2];
ZB_RecvMsgFunc func;
} Z_Dispatcher;
// Dispatcher callbacks table
const Z_Dispatcher Z_DispatchTable[] PROGMEM = {
{ { Z_AREQ | Z_AF, AF_DATA_CONFIRM }, &ZNP_DataConfirm }, // 4480
{ { Z_AREQ | Z_AF, AF_INCOMING_MSG }, &ZNP_ReceiveAfIncomingMessage }, // 4481
// { { Z_AREQ | Z_ZDO, ZDO_STATE_CHANGE_IND }, &ZNP_ReceiveStateChange }, // 45C0
{ { Z_AREQ | Z_ZDO, ZDO_END_DEVICE_ANNCE_IND }, &Z_ReceiveEndDeviceAnnonce }, // 45C1
{ { Z_AREQ | Z_ZDO, ZDO_TC_DEV_IND }, &ZNP_ReceiveTCDevInd }, // 45CA
{ { Z_AREQ | Z_ZDO, ZDO_PERMIT_JOIN_IND }, &ZNP_ReceivePermitJoinStatus }, // 45CB
{ { Z_AREQ | Z_ZDO, ZDO_NODE_DESC_RSP }, &ZNP_ReceiveNodeDesc }, // 4582
{ { Z_AREQ | Z_ZDO, ZDO_ACTIVE_EP_RSP }, &Z_ReceiveActiveEp }, // 4585
{ { Z_AREQ | Z_ZDO, ZDO_SIMPLE_DESC_RSP}, &Z_ReceiveSimpleDesc}, // 4584
{ { Z_AREQ | Z_ZDO, ZDO_IEEE_ADDR_RSP }, &Z_ReceiveIEEEAddr }, // 4581
{ { Z_AREQ | Z_ZDO, ZDO_BIND_RSP }, &Z_BindRsp }, // 45A1
{ { Z_AREQ | Z_ZDO, ZDO_UNBIND_RSP }, &Z_UnbindRsp }, // 45A2
{ { Z_AREQ | Z_ZDO, ZDO_MGMT_LQI_RSP }, &Z_MgmtLqiRsp }, // 45B1
{ { Z_AREQ | Z_ZDO, ZDO_MGMT_BIND_RSP }, &Z_MgmtBindRsp }, // 45B3
};
/*********************************************************************************************\
* Default resolver
\*********************************************************************************************/
int32_t ZNP_Recv_Default(int32_t res, const SBuffer &buf) {
// Default message handler for new messages
if (zigbee.init_phase) {
// if still during initialization phase, ignore any unexpected message
return -1; // ignore message
} else {
for (uint32_t i = 0; i < nitems(Z_DispatchTable); i++) {
if (Z_ReceiveMatchPrefix(buf, Z_DispatchTable[i].match)) {
(*Z_DispatchTable[i].func)(res, buf);
}
}
return -1;
}
}
#endif // USE_ZIGBEE_ZNP
/*********************************************************************************************\
* Functions called by State Machine
\*********************************************************************************************/
//
// Callback for loading preparing EEPROM, called by the state machine
//
#ifdef USE_ZIGBEE_EZSP
int32_t Z_Prepare_EEPROM(uint8_t value) {
ZFS::initOrFormat();
return 0; // continue
}
#endif // USE_ZIGBEE_EZSP
//
// Callback for loading Zigbee configuration from Flash, called by the state machine
//
int32_t Z_Load_Devices(uint8_t value) {
// try to hidrate from known devices
loadZigbeeDevices();
return 0; // continue
}
//
// Callback for loading Zigbee data from EEPROM, called by the state machine
//
int32_t Z_Load_Data_EEPROM(uint8_t value) {
hydrateDevicesDataFromEEPROM();
return 0; // continue
}
//
// Query the state of a bulb (light) if its type allows it
//
void Z_Query_Bulb(uint16_t shortaddr, uint32_t &wait_ms) {
const uint32_t inter_message_ms = 100; // wait 100ms between messages
if (0 <= zigbee_devices.getHueBulbtype(shortaddr)) {
uint8_t endpoint = zigbee_devices.findFirstEndpoint(shortaddr);
if (endpoint) { // send only if we know the endpoint
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0006, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0008, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0 /* groupaddr */, wait_ms, 0x0300, endpoint, Z_CAT_READ_CLUSTER, 0 /* value */, &Z_ReadAttrCallback);
wait_ms += inter_message_ms;
zigbee_devices.setTimer(shortaddr, 0, wait_ms + Z_CAT_REACHABILITY_TIMEOUT, 0, endpoint, Z_CAT_REACHABILITY, 0 /* value */, &Z_Unreachable);
wait_ms += 1000; // wait 1 second between devices
}
}
}
//
// Send messages to query the state of each Hue emulated light
//
int32_t Z_Query_Bulbs(uint8_t value) {
if (!Settings.flag5.zb_disable_autoquery) {
// Scan all devices and send deferred requests to know the state of bulbs
uint32_t wait_ms = 1000; // start with 1.0 s delay
for (uint32_t i = 0; i < zigbee_devices.devicesSize(); i++) {
const Z_Device &device = zigbee_devices.devicesAt(i);
Z_Query_Bulb(device.shortaddr, wait_ms);
}
}
return 0; // continue
}
//
// Zigbee initialization is complete, let the party begin
//
int32_t Z_State_Ready(uint8_t value) {
zigbee.init_phase = false; // initialization phase complete
return 0; // continue
}
//
// Auto-responder for Read request from extenal devices.
//
// Mostly used for routers/end-devices
// json: holds the attributes in JSON format
void ZCLFrame::autoResponder(const uint16_t *attr_list_ids, size_t attr_len) {
Z_attribute_list attr_list;
for (uint32_t i=0; i 0xFEFF) ? uxy[i] : 0xFEFF;
}
if (0x0000 == attr_id) { attr.setUInt(changeUIntScale(hue, 0, 360, 0, 254)); }
if (0x0001 == attr_id) { attr.setUInt(changeUIntScale(sat, 0, 255, 0, 254)); }
if (0x0003 == attr_id) { attr.setUInt(uxy[0]); }
if (0x0004 == attr_id) { attr.setUInt(uxy[1]); }
if (0x0007 == attr_id) { attr.setUInt(LightGetColorTemp()); }
}
break;
#endif
case 0x000A0000: // Time
attr.setUInt((Rtc.utc_time > START_VALID_TIME) ? Rtc.utc_time - 946684800 : Rtc.utc_time);
break;
case 0x000AFF00: // TimeEpoch - Tasmota specific
attr.setUInt(Rtc.utc_time);
break;
case 0x000A0001: // TimeStatus
attr.setUInt((Rtc.utc_time > START_VALID_TIME) ? 0x02 : 0x00);
break;
case 0x000A0002: // TimeZone
attr.setUInt(Settings.toffset[0] * 60);
break;
case 0x000A0007: // LocalTime // TODO take DST
attr.setUInt(Settings.toffset[0] * 60 + ((Rtc.utc_time > START_VALID_TIME) ? Rtc.utc_time - 946684800 : Rtc.utc_time));
break;
}
if (!attr.isNone()) {
Z_parseAttributeKey(attr, _cluster_id);
attr_list.addAttribute(_cluster_id, attr_id) = attr;
}
}
SBuffer buf(200);
for (const auto & attr : attr_list) {
if (!ZbAppendWriteBuf(buf, attr, true)) { // true = need status indicator in Read Attribute Responses
return; // error
}
}
if (buf.len() > 0) {
// we have a non-empty output
// log first
AddLog_P(LOG_LEVEL_INFO, PSTR("ZIG: Auto-responder: ZbSend {\"Device\":\"0x%04X\""
",\"Cluster\":\"0x%04X\""
",\"Endpoint\":%d"
",\"Response\":%s}"
),
_srcaddr, _cluster_id, _srcendpoint,
attr_list.toString().c_str());
// send
// all good, send the packet
ZCLMessage zcl(buf.len()); // message is 4 bytes
zcl.shortaddr = _srcaddr;
zcl.cluster = _cluster_id;
zcl.endpoint = _srcendpoint;
zcl.cmd = ZCL_READ_ATTRIBUTES_RESPONSE;
zcl.clusterSpecific = false; /* not cluster specific */
zcl.needResponse = false; /* noresponse */
zcl.direct = true; /* direct response */
zcl.setTransac(_transact_seq);
zcl.buf.addBuffer(buf);
zigbeeZCLSendCmd(zcl);
}
}
#endif // USE_ZIGBEE