/* xdrv_23_zigbee.ino - zigbee support for Tasmota Copyright (C) 2020 Theo Arends and Stephan Hadinger This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ZIGBEE #include #ifndef ZIGBEE_SAVE_DELAY_SECONDS #define ZIGBEE_SAVE_DELAY_SECONDS 2; // wait for 2s before saving Zigbee info #endif const uint16_t kZigbeeSaveDelaySeconds = ZIGBEE_SAVE_DELAY_SECONDS; // wait for x seconds typedef int32_t (*Z_DeviceTimer)(uint16_t shortaddr, uint16_t groupaddr, uint16_t cluster, uint8_t endpoint, uint32_t value); typedef struct Z_Device { uint64_t longaddr; // 0x00 means unspecified char * manufacturerId; char * modelId; char * friendlyName; std::vector endpoints; // encoded as high 16 bits is endpoint, low 16 bits is ProfileId std::vector clusters_in; // encoded as high 16 bits is endpoint, low 16 bits is cluster number std::vector clusters_out; // encoded as high 16 bits is endpoint, low 16 bits is cluster number // json buffer used for attribute reporting DynamicJsonBuffer *json_buffer; JsonObject *json; // sequence number for Zigbee frames uint16_t shortaddr; // unique key if not null, or unspecified if null uint8_t seqNumber; // Light information for Hue integration integration, last known values int8_t bulbtype; // number of channel for the bulb: 0-5, or 0xFF if no Hue integration uint8_t power; // power state (boolean) uint8_t colormode; // 0x00: Hue/Sat, 0x01: XY, 0x02: CT uint8_t dimmer; // last Dimmer value: 0-254 uint8_t sat; // last Sat: 0..254 uint16_t ct; // last CT: 153-500 uint16_t hue; // last Hue: 0..359 uint16_t x, y; // last color [x,y] } Z_Device; // Category for Deferred actions, this allows to selectively remove active deferred or update them typedef enum Z_Def_Category { Z_CAT_NONE = 0, // no category, it will happen anyways Z_CAT_READ_ATTR, // Attribute reporting, either READ_ATTRIBUTE or REPORT_ATTRIBUTE, we coalesce all attributes reported if we can Z_CAT_VIRTUAL_ATTR, // Creation of a virtual attribute, typically after a time-out. Ex: Aqara presence sensor Z_CAT_READ_0006, // Read 0x0006 cluster Z_CAT_READ_0008, // Read 0x0008 cluster Z_CAT_READ_0102, // Read 0x0300 cluster Z_CAT_READ_0300, // Read 0x0300 cluster } Z_Def_Category; typedef struct Z_Deferred { // below are per device timers, used for example to query the new state of the device uint32_t timer; // millis() when to fire the timer, 0 if no timer uint16_t shortaddr; // identifier of the device uint16_t groupaddr; // group address (if needed) uint16_t cluster; // cluster to use for the timer uint8_t endpoint; // endpoint to use for timer uint8_t category; // which category of deferred is it uint32_t value; // any raw value to use for the timer Z_DeviceTimer func; // function to call when timer occurs } Z_Deferred; // All devices are stored in a Vector // Invariants: // - shortaddr is unique if not null // - longaddr is unique if not null // - shortaddr and longaddr cannot be both null // - clusters_in and clusters_out containt only endpoints listed in endpoints class Z_Devices { public: Z_Devices() {}; // Probe the existence of device keys // Results: // - 0x0000 = not found // - 0xFFFF = bad parameter // - 0x = the device's short address uint16_t isKnownShortAddr(uint16_t shortaddr) const; uint16_t isKnownLongAddr(uint64_t longaddr) const; uint16_t isKnownIndex(uint32_t index) const; uint16_t isKnownFriendlyName(const char * name) const; uint64_t getDeviceLongAddr(uint16_t shortaddr) const; // Add new device, provide ShortAddr and optional longAddr // If it is already registered, update information, otherwise create the entry void updateDevice(uint16_t shortaddr, uint64_t longaddr = 0); // Add an endpoint to a device void addEndoint(uint16_t shortaddr, uint8_t endpoint); // Add endpoint profile void addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId); // Add cluster void addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out); uint8_t findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster); void setManufId(uint16_t shortaddr, const char * str); void setModelId(uint16_t shortaddr, const char * str); void setFriendlyName(uint16_t shortaddr, const char * str); const char * getFriendlyName(uint16_t shortaddr) const; const char * getModelId(uint16_t shortaddr) const; // get next sequence number for (increment at each all) uint8_t getNextSeqNumber(uint16_t shortaddr); // Dump json String dumpLightState(uint16_t shortaddr) const; String dump(uint32_t dump_mode, uint16_t status_shortaddr = 0) const; // Hue support void setHueBulbtype(uint16_t shortaddr, int8_t bulbtype); int8_t getHueBulbtype(uint16_t shortaddr) const ; void updateHueState(uint16_t shortaddr, const uint8_t *power, const uint8_t *colormode, const uint8_t *dimmer, const uint8_t *sat, const uint16_t *ct, const uint16_t *hue, const uint16_t *x, const uint16_t *y); bool getHueState(uint16_t shortaddr, uint8_t *power, uint8_t *colormode, uint8_t *dimmer, uint8_t *sat, uint16_t *ct, uint16_t *hue, uint16_t *x, uint16_t *y) const ; // Timers void resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category); void setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func); void runTimer(void); // Append or clear attributes Json structure void jsonClear(uint16_t shortaddr); void jsonAppend(uint16_t shortaddr, const JsonObject &values); const JsonObject *jsonGet(uint16_t shortaddr); void jsonPublishFlush(uint16_t shortaddr); // publish the json message and clear buffer bool jsonIsConflict(uint16_t shortaddr, const JsonObject &values); void jsonPublishNow(uint16_t shortaddr, JsonObject &values); // Iterator size_t devicesSize(void) const { return _devices.size(); } const Z_Device &devicesAt(size_t i) const { return *(_devices.at(i)); } // Remove device from list bool removeDevice(uint16_t shortaddr); // Mark data as 'dirty' and requiring to save in Flash void dirty(void); void clean(void); // avoid writing to flash the last changes void shrinkToFit(uint16_t shortaddr); // Find device by name, can be short_addr, long_addr, number_in_array or name uint16_t parseDeviceParam(const char * param, bool short_must_be_known = false) const; private: std::vector _devices = {}; std::vector _deferred = {}; // list of deferred calls // std::vector _devices = std::vector(4); // std::vector _deferred = std::vector(4); // list of deferred calls uint32_t _saveTimer = 0; uint8_t _seqNumber = 0; // global seqNumber if device is unknown template < typename T> static bool findInVector(const std::vector & vecOfElements, const T & element); template < typename T> static int32_t findEndpointInVector(const std::vector & vecOfElements, uint8_t element); // find the first endpoint match for a cluster static int32_t findClusterEndpoint(const std::vector & vecOfElements, uint16_t element); Z_Device & getShortAddr(uint16_t shortaddr); // find Device from shortAddr, creates it if does not exist const Z_Device & getShortAddrConst(uint16_t shortaddr) const ; // find Device from shortAddr, creates it if does not exist Z_Device & getLongAddr(uint64_t longaddr); // find Device from shortAddr, creates it if does not exist int32_t findShortAddr(uint16_t shortaddr) const; int32_t findLongAddr(uint64_t longaddr) const; int32_t findFriendlyName(const char * name) const; // Create a new entry in the devices list - must be called if it is sure it does not already exist Z_Device & createDeviceEntry(uint16_t shortaddr, uint64_t longaddr = 0); void freeDeviceEntry(Z_Device *device); }; Z_Devices zigbee_devices = Z_Devices(); // Local coordinator information uint64_t localIEEEAddr = 0; // https://thispointer.com/c-how-to-find-an-element-in-vector-and-get-its-index/ template < typename T> bool Z_Devices::findInVector(const std::vector & vecOfElements, const T & element) { // Find given element in vector auto it = std::find(vecOfElements.begin(), vecOfElements.end(), element); if (it != vecOfElements.end()) { return true; } else { return false; } } template < typename T> int32_t Z_Devices::findEndpointInVector(const std::vector & vecOfElements, uint8_t element) { // Find given element in vector int32_t found = 0; for (auto &elem : vecOfElements) { if ( ((elem >> 16) & 0xFF) == element) { return found; } found++; } return -1; } // // Find the first endpoint match for a cluster, whether in or out // Clusters are stored in the format 0x00EECCCC (EE=endpoint, CCCC=cluster number) // In: // _devices.clusters_in or _devices.clusters_out // cluster number looked for // Out: // Index of found Endpoint_Cluster number, or -1 if not found // int32_t Z_Devices::findClusterEndpoint(const std::vector & vecOfElements, uint16_t cluster) { int32_t found = 0; for (auto &elem : vecOfElements) { if ((elem & 0xFFFF) == cluster) { return found; } found++; } return -1; } // // Create a new Z_Device entry in _devices. Only to be called if you are sure that no // entry with same shortaddr or longaddr exists. // Z_Device & Z_Devices::createDeviceEntry(uint16_t shortaddr, uint64_t longaddr) { if (!shortaddr && !longaddr) { return *(Z_Device*) nullptr; } // it is not legal to create an enrty with both short/long addr null //Z_Device* device_alloc = (Z_Device*) malloc(sizeof(Z_Device)); Z_Device* device_alloc = new Z_Device{ longaddr, nullptr, // ManufId nullptr, // DeviceId nullptr, // FriendlyName std::vector(), // at least one endpoint std::vector(), // try not to allocate if not needed std::vector(), // try not to allocate if not needed nullptr, nullptr, shortaddr, 0, // seqNumber // Hue support -1, // no Hue support 0, // power 0, // colormode 0, // dimmer 0, // sat 200, // ct 0, // hue 0, 0, // x, y }; device_alloc->json_buffer = new DynamicJsonBuffer(16); _devices.push_back(device_alloc); dirty(); return *(_devices.back()); } void Z_Devices::freeDeviceEntry(Z_Device *device) { if (device->manufacturerId) { free(device->manufacturerId); } if (device->modelId) { free(device->modelId); } if (device->friendlyName) { free(device->friendlyName); } free(device); } void Z_Devices::shrinkToFit(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); device.endpoints.shrink_to_fit(); device.clusters_in.shrink_to_fit(); device.clusters_out.shrink_to_fit(); } // // Scan all devices to find a corresponding shortaddr // Looks info device.shortaddr entry // In: // shortaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findShortAddr(uint16_t shortaddr) const { if (!shortaddr) { return -1; } // does not make sense to look for 0x0000 shortaddr (localhost) int32_t found = 0; if (shortaddr) { for (auto &elem : _devices) { if (elem->shortaddr == shortaddr) { return found; } found++; } } return -1; } // // Scan all devices to find a corresponding longaddr // Looks info device.longaddr entry // In: // longaddr (non null) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findLongAddr(uint64_t longaddr) const { if (!longaddr) { return -1; } int32_t found = 0; if (longaddr) { for (auto &elem : _devices) { if (elem->longaddr == longaddr) { return found; } found++; } } return -1; } // // Scan all devices to find a corresponding friendlyNme // Looks info device.friendlyName entry // In: // friendlyName (null terminated, should not be empty) // Out: // index in _devices of entry, -1 if not found // int32_t Z_Devices::findFriendlyName(const char * name) const { if (!name) { return -1; } // if pointer is null size_t name_len = strlen(name); int32_t found = 0; if (name_len) { for (auto &elem : _devices) { if (elem->friendlyName) { if (strcmp(elem->friendlyName, name) == 0) { return found; } } found++; } } return -1; } // Probe if device is already known but don't create any entry uint16_t Z_Devices::isKnownShortAddr(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { return shortaddr; } else { return 0; // unknown } } uint16_t Z_Devices::isKnownLongAddr(uint64_t longaddr) const { int32_t found = findLongAddr(longaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.shortaddr; // can be zero, if not yet registered } else { return 0; } } uint16_t Z_Devices::isKnownIndex(uint32_t index) const { if (index < devicesSize()) { const Z_Device & device = devicesAt(index); return device.shortaddr; } else { return 0; } } uint16_t Z_Devices::isKnownFriendlyName(const char * name) const { if ((!name) || (0 == strlen(name))) { return 0xFFFF; } // Error int32_t found = findFriendlyName(name); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.shortaddr; // can be zero, if not yet registered } else { return 0; } } uint64_t Z_Devices::getDeviceLongAddr(uint16_t shortaddr) const { const Z_Device & device = getShortAddrConst(shortaddr); return device.longaddr; } // // We have a seen a shortaddr on the network, get the corresponding // Z_Device & Z_Devices::getShortAddr(uint16_t shortaddr) { if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal int32_t found = findShortAddr(shortaddr); if (found >= 0) { return *(_devices[found]); } //Serial.printf("Device entry created for shortaddr = 0x%02X, found = %d\n", shortaddr, found); return createDeviceEntry(shortaddr, 0); } // Same version but Const const Z_Device & Z_Devices::getShortAddrConst(uint16_t shortaddr) const { if (!shortaddr) { return *(Z_Device*) nullptr; } // this is not legal int32_t found = findShortAddr(shortaddr); if (found >= 0) { return *(_devices[found]); } return *((Z_Device*)nullptr); } // find the Device object by its longaddr (unique key if not null) Z_Device & Z_Devices::getLongAddr(uint64_t longaddr) { if (!longaddr) { return *(Z_Device*) nullptr; } int32_t found = findLongAddr(longaddr); if (found > 0) { return *(_devices[found]); } return createDeviceEntry(0, longaddr); } // Remove device from list, return true if it was known, false if it was not recorded bool Z_Devices::removeDevice(uint16_t shortaddr) { int32_t found = findShortAddr(shortaddr); if (found >= 0) { freeDeviceEntry(_devices.at(found)); _devices.erase(_devices.begin() + found); dirty(); return true; } return false; } // // We have just seen a device on the network, update the info based on short/long addr // In: // shortaddr // longaddr (both can't be null at the same time) void Z_Devices::updateDevice(uint16_t shortaddr, uint64_t longaddr) { int32_t s_found = findShortAddr(shortaddr); // is there already a shortaddr entry int32_t l_found = findLongAddr(longaddr); // is there already a longaddr entry if ((s_found >= 0) && (l_found >= 0)) { // both shortaddr and longaddr are already registered if (s_found == l_found) { } else { // they don't match // the device with longaddr got a new shortaddr _devices[l_found]->shortaddr = shortaddr; // update the shortaddr corresponding to the longaddr // erase the previous shortaddr freeDeviceEntry(_devices.at(s_found)); _devices.erase(_devices.begin() + s_found); dirty(); } } else if (s_found >= 0) { // shortaddr already exists but longaddr not // add the longaddr to the entry _devices[s_found]->longaddr = longaddr; dirty(); } else if (l_found >= 0) { // longaddr entry exists, update shortaddr _devices[l_found]->shortaddr = shortaddr; dirty(); } else { // neither short/lonf addr are found. if (shortaddr || longaddr) { createDeviceEntry(shortaddr, longaddr); } } } // // Add an endpoint to a shortaddr // void Z_Devices::addEndoint(uint16_t shortaddr, uint8_t endpoint) { if (!shortaddr) { return; } if (0x00 == endpoint) { return; } uint32_t ep_profile = (endpoint << 16); Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found if (findEndpointInVector(device.endpoints, endpoint) < 0) { device.endpoints.push_back(ep_profile); dirty(); } } void Z_Devices::addEndointProfile(uint16_t shortaddr, uint8_t endpoint, uint16_t profileId) { if (!shortaddr) { return; } if (0x00 == endpoint) { return; } uint32_t ep_profile = (endpoint << 16) | profileId; Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found int32_t found = findEndpointInVector(device.endpoints, endpoint); if (found < 0) { device.endpoints.push_back(ep_profile); dirty(); } else { if (device.endpoints[found] != ep_profile) { device.endpoints[found] = ep_profile; dirty(); } } } void Z_Devices::addCluster(uint16_t shortaddr, uint8_t endpoint, uint16_t cluster, bool out) { if (!shortaddr) { return; } Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found uint32_t ep_cluster = (endpoint << 16) | cluster; if (!out) { if (!findInVector(device.clusters_in, ep_cluster)) { device.clusters_in.push_back(ep_cluster); dirty(); } } else { // out if (!findInVector(device.clusters_out, ep_cluster)) { device.clusters_out.push_back(ep_cluster); dirty(); } } } // Look for the best endpoint match to send a command for a specific Cluster ID // return 0x00 if none found uint8_t Z_Devices::findClusterEndpointIn(uint16_t shortaddr, uint16_t cluster){ int32_t short_found = findShortAddr(shortaddr); if (short_found < 0) return 0; // avoid creating an entry if the device was never seen Z_Device &device = getShortAddr(shortaddr); if (&device == nullptr) { return 0; } // don't crash if not found int32_t found = findClusterEndpoint(device.clusters_in, cluster); if (found >= 0) { return (device.clusters_in[found] >> 16) & 0xFF; } else { return 0; } } void Z_Devices::setManufId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found size_t str_len = str ? strlen(str) : 0; // len, handle both null ptr and zero length string if ((!device.manufacturerId) && (0 == str_len)) { return; } // if both empty, don't do anything if (device.manufacturerId) { // we already have a value if (strcmp(device.manufacturerId, str) != 0) { // new value free(device.manufacturerId); // free previous value device.manufacturerId = nullptr; } else { return; // same value, don't change anything } } if (str_len) { device.manufacturerId = (char*) malloc(str_len + 1); strlcpy(device.manufacturerId, str, str_len + 1); } dirty(); } void Z_Devices::setModelId(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found size_t str_len = str ? strlen(str) : 0; // len, handle both null ptr and zero length string if ((!device.modelId) && (0 == str_len)) { return; } // if both empty, don't do anything if (device.modelId) { // we already have a value if (strcmp(device.modelId, str) != 0) { // new value free(device.modelId); // free previous value device.modelId = nullptr; } else { return; // same value, don't change anything } } if (str_len) { device.modelId = (char*) malloc(str_len + 1); strlcpy(device.modelId, str, str_len + 1); } dirty(); } void Z_Devices::setFriendlyName(uint16_t shortaddr, const char * str) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found size_t str_len = str ? strlen(str) : 0; // len, handle both null ptr and zero length string if ((!device.friendlyName) && (0 == str_len)) { return; } // if both empty, don't do anything if (device.friendlyName) { // we already have a value if (strcmp(device.friendlyName, str) != 0) { // new value free(device.friendlyName); // free previous value device.friendlyName = nullptr; } else { return; // same value, don't change anything } } if (str_len) { device.friendlyName = (char*) malloc(str_len + 1); strlcpy(device.friendlyName, str, str_len + 1); } dirty(); } const char * Z_Devices::getFriendlyName(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.friendlyName; } return nullptr; } const char * Z_Devices::getModelId(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); return device.modelId; } return nullptr; } // get the next sequance number for the device, or use the global seq number if device is unknown uint8_t Z_Devices::getNextSeqNumber(uint16_t shortaddr) { int32_t short_found = findShortAddr(shortaddr); if (short_found >= 0) { Z_Device &device = getShortAddr(shortaddr); device.seqNumber += 1; return device.seqNumber; } else { _seqNumber += 1; return _seqNumber; } } // Hue support void Z_Devices::setHueBulbtype(uint16_t shortaddr, int8_t bulbtype) { Z_Device &device = getShortAddr(shortaddr); if (bulbtype != device.bulbtype) { device.bulbtype = bulbtype; dirty(); } } int8_t Z_Devices::getHueBulbtype(uint16_t shortaddr) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { return _devices[found]->bulbtype; } else { return -1; // Hue not activated } } // Hue support void Z_Devices::updateHueState(uint16_t shortaddr, const uint8_t *power, const uint8_t *colormode, const uint8_t *dimmer, const uint8_t *sat, const uint16_t *ct, const uint16_t *hue, const uint16_t *x, const uint16_t *y) { Z_Device &device = getShortAddr(shortaddr); if (power) { device.power = *power; } if (colormode){ device.colormode = *colormode; } if (dimmer) { device.dimmer = *dimmer; } if (sat) { device.sat = *sat; } if (ct) { device.ct = *ct; } if (hue) { device.hue = *hue; } if (x) { device.x = *x; } if (y) { device.y = *y; } } // return true if ok bool Z_Devices::getHueState(uint16_t shortaddr, uint8_t *power, uint8_t *colormode, uint8_t *dimmer, uint8_t *sat, uint16_t *ct, uint16_t *hue, uint16_t *x, uint16_t *y) const { int32_t found = findShortAddr(shortaddr); if (found >= 0) { const Z_Device &device = *(_devices[found]); if (power) { *power = device.power; } if (colormode){ *colormode = device.colormode; } if (dimmer) { *dimmer = device.dimmer; } if (sat) { *sat = device.sat; } if (ct) { *ct = device.ct; } if (hue) { *hue = device.hue; } if (x) { *x = device.x; } if (y) { *y = device.y; } return true; } else { return false; } } // Deferred actions // Parse for a specific category, of all deferred for a device if category == 0xFF void Z_Devices::resetTimersForDevice(uint16_t shortaddr, uint16_t groupaddr, uint8_t category) { // iterate the list of deferred, and remove any linked to the shortaddr for (auto it = _deferred.begin(); it != _deferred.end(); it++) { // Notice that the iterator is decremented after it is passed // to erase() but before erase() is executed // see https://www.techiedelight.com/remove-elements-vector-inside-loop-cpp/ if ((it->shortaddr == shortaddr) && (it->groupaddr == groupaddr)) { if ((0xFF == category) || (it->category == category)) { _deferred.erase(it--); } } } } // Set timer for a specific device void Z_Devices::setTimer(uint16_t shortaddr, uint16_t groupaddr, uint32_t wait_ms, uint16_t cluster, uint8_t endpoint, uint8_t category, uint32_t value, Z_DeviceTimer func) { // First we remove any existing timer for same device in same category, except for category=0x00 (they need to happen anyway) if (category) { // if category == 0, we leave all previous resetTimersForDevice(shortaddr, groupaddr, category); // remove any cluster } // Now create the new timer Z_Deferred deferred = { wait_ms + millis(), // timer shortaddr, groupaddr, cluster, endpoint, category, value, func }; _deferred.push_back(deferred); } // Run timer at each tick void Z_Devices::runTimer(void) { // visit all timers for (auto it = _deferred.begin(); it != _deferred.end(); it++) { Z_Deferred &defer = *it; uint32_t timer = defer.timer; if (TimeReached(timer)) { (*defer.func)(defer.shortaddr, defer.groupaddr, defer.cluster, defer.endpoint, defer.value); _deferred.erase(it--); // remove from list } } // check if we need to save to Flash if ((_saveTimer) && TimeReached(_saveTimer)) { saveZigbeeDevices(); _saveTimer = 0; } } // Clear the JSON buffer for coalesced and deferred attributes void Z_Devices::jsonClear(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found device.json = nullptr; device.json_buffer->clear(); } // Copy JSON from one object to another, this helps preserving the order of attributes void CopyJsonVariant(JsonObject &to, const String &key, const JsonVariant &val) { // first remove the potentially existing key in the target JSON, so new adds will be at the end of the list to.remove(key); // force remove to have metadata like LinkQuality at the end if (val.is()) { String sval = val.as(); // force a copy of the String value, avoiding crash to.set(key, sval); } else if (val.is()) { JsonArray &nested_arr = to.createNestedArray(key); CopyJsonArray(nested_arr, val.as()); // deep copy } else if (val.is()) { JsonObject &nested_obj = to.createNestedObject(key); CopyJsonObject(nested_obj, val.as()); // deep copy } else { to.set(key, val); // general case for non array, object or string } } // Shallow copy of array, we skip any sub-array or sub-object. It may be added in the future void CopyJsonArray(JsonArray &to, const JsonArray &arr) { for (auto v : arr) { if (v.is()) { String sval = v.as(); // force a copy of the String value to.add(sval); } else if (v.is()) { } else if (v.is()) { } else { to.add(v); } } } // Deep copy of object void CopyJsonObject(JsonObject &to, const JsonObject &from) { for (auto kv : from) { String key_string = kv.key; JsonVariant &val = kv.value; CopyJsonVariant(to, key_string, val); } } // does the new payload conflicts with the existing payload, i.e. values would be overwritten // true - one attribute (except LinkQuality) woudl be lost, there is conflict // false - new attributes can be safely added bool Z_Devices::jsonIsConflict(uint16_t shortaddr, const JsonObject &values) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return false; } // don't crash if not found if (&values == nullptr) { return false; } if (nullptr == device.json) { return false; // if no previous value, no conflict } // compare groups // Special case for group addresses. Group attribute is only present if the target // address is a group address, so just comparing attributes will not work. // Eg: if the first packet has no group attribute, and the second does, conflict would not be detected // Here we explicitly compute the group address of both messages, and compare them. No group means group=0x0000 // (we use the property of an missing attribute returning 0) // (note: we use .get() here which is case-sensitive. We know however that the attribute was set with the exact syntax D_CMND_ZIGBEE_GROUP, so we don't need a case-insensitive get()) uint16_t group1 = device.json->get(D_CMND_ZIGBEE_GROUP); uint16_t group2 = values.get(D_CMND_ZIGBEE_GROUP); if (group1 != group2) { return true; // if group addresses differ, then conflict } // parse all other parameters for (auto kv : values) { String key_string = kv.key; if (0 == strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_GROUP))) { // ignore group, it was handled already } else if (0 == strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_ENDPOINT))) { // attribute "Endpoint" or "Group" if (device.json->containsKey(kv.key)) { if (kv.value.as() != device.json->get(kv.key)) { return true; } } } else if (strcasecmp_P(kv.key, PSTR(D_CMND_ZIGBEE_LINKQUALITY))) { // exception = ignore duplicates for LinkQuality if (device.json->containsKey(kv.key)) { return true; // conflict! } } } return false; } void Z_Devices::jsonAppend(uint16_t shortaddr, const JsonObject &values) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found if (&values == nullptr) { return; } if (nullptr == device.json) { device.json = &(device.json_buffer->createObject()); } // Prepend Device, will be removed later if redundant char sa[8]; snprintf_P(sa, sizeof(sa), PSTR("0x%04X"), shortaddr); device.json->set(F(D_JSON_ZIGBEE_DEVICE), sa); // Prepend Friendly Name if it has one const char * fname = zigbee_devices.getFriendlyName(shortaddr); if (fname) { device.json->set(F(D_JSON_ZIGBEE_NAME), (char*) fname); // (char*) forces ArduinoJson to make a copy of the cstring } // copy all values from 'values' to 'json' CopyJsonObject(*device.json, values); } const JsonObject *Z_Devices::jsonGet(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return nullptr; } // don't crash if not found return device.json; } void Z_Devices::jsonPublishFlush(uint16_t shortaddr) { Z_Device & device = getShortAddr(shortaddr); if (&device == nullptr) { return; } // don't crash if not found JsonObject * json = device.json; if (json == nullptr) { return; } // abort if nothing in buffer const char * fname = zigbee_devices.getFriendlyName(shortaddr); bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname? // Remove redundant "Name" or "Device" if (use_fname) { json->remove(F(D_JSON_ZIGBEE_NAME)); } else { json->remove(F(D_JSON_ZIGBEE_DEVICE)); } String msg = ""; json->printTo(msg); zigbee_devices.jsonClear(shortaddr); if (use_fname) { Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"%s\":%s}}"), fname, msg.c_str()); } else { Response_P(PSTR("{\"" D_JSON_ZIGBEE_RECEIVED "\":{\"0x%04X\":%s}}"), shortaddr, msg.c_str()); } if (Settings.flag4.zigbee_distinct_topics) { char subtopic[16]; snprintf_P(subtopic, sizeof(subtopic), PSTR("%04X/" D_RSLT_SENSOR), shortaddr); MqttPublishPrefixTopic_P(TELE, subtopic, Settings.flag.mqtt_sensor_retain); } else { MqttPublishPrefixTopic_P(TELE, PSTR(D_RSLT_SENSOR), Settings.flag.mqtt_sensor_retain); } XdrvRulesProcess(); } void Z_Devices::jsonPublishNow(uint16_t shortaddr, JsonObject & values) { jsonPublishFlush(shortaddr); // flush any previous buffer jsonAppend(shortaddr, values); jsonPublishFlush(shortaddr); // publish now } void Z_Devices::dirty(void) { _saveTimer = kZigbeeSaveDelaySeconds * 1000 + millis(); } void Z_Devices::clean(void) { _saveTimer = 0; } // Parse the command parameters for either: // - a short address starting with "0x", example: 0x1234 // - a long address starting with "0x", example: 0x7CB03EBB0A0292DD // - a number 0..99, the index number in ZigbeeStatus // - a friendly name, between quotes, example: "Room_Temp" uint16_t Z_Devices::parseDeviceParam(const char * param, bool short_must_be_known) const { if (nullptr == param) { return 0; } size_t param_len = strlen(param); char dataBuf[param_len + 1]; strcpy(dataBuf, param); RemoveSpace(dataBuf); uint16_t shortaddr = 0; if (strlen(dataBuf) < 4) { // simple number 0..99 if ((XdrvMailbox.payload > 0) && (XdrvMailbox.payload <= 99)) { shortaddr = zigbee_devices.isKnownIndex(XdrvMailbox.payload - 1); } } else if ((dataBuf[0] == '0') && (dataBuf[1] == 'x')) { // starts with 0x if (strlen(dataBuf) < 18) { // expect a short address shortaddr = strtoull(dataBuf, nullptr, 0); if (short_must_be_known) { shortaddr = zigbee_devices.isKnownShortAddr(shortaddr); } // else we don't check if it's already registered to force unregistered devices } else { // expect a long address uint64_t longaddr = strtoull(dataBuf, nullptr, 0); shortaddr = zigbee_devices.isKnownLongAddr(longaddr); } } else { // expect a Friendly Name shortaddr = zigbee_devices.isKnownFriendlyName(dataBuf); } return shortaddr; } // Display the tracked status for a light String Z_Devices::dumpLightState(uint16_t shortaddr) const { DynamicJsonBuffer jsonBuffer; JsonObject& json = jsonBuffer.createObject(); char hex[8]; int32_t found = findShortAddr(shortaddr); if (found >= 0) { const Z_Device & device = devicesAt(found); const char * fname = getFriendlyName(shortaddr); bool use_fname = (Settings.flag4.zigbee_use_names) && (fname); // should we replace shortaddr with friendlyname? snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); JsonObject& dev = use_fname ? json.createNestedObject((char*) fname) // casting (char*) forces a copy : json.createNestedObject(hex); if (use_fname) { dev[F(D_JSON_ZIGBEE_DEVICE)] = hex; } else if (fname) { dev[F(D_JSON_ZIGBEE_NAME)] = (char*) fname; } // expose the last known status of the bulb, for Hue integration dev[F(D_JSON_ZIGBEE_LIGHT)] = device.bulbtype; // sign extend, 0xFF changed as -1 if (0 <= device.bulbtype) { // bulbtype is defined dev[F("Power")] = device.power; if (1 <= device.bulbtype) { dev[F("Dimmer")] = device.dimmer; } if (2 <= device.bulbtype) { dev[F("Colormode")] = device.colormode; } if ((2 == device.bulbtype) || (5 == device.bulbtype)) { dev[F("CT")] = device.ct; } if (3 <= device.bulbtype) { dev[F("Sat")] = device.sat; dev[F("Hue")] = device.hue; dev[F("X")] = device.x; dev[F("Y")] = device.y; } } } String payload = ""; payload.reserve(200); json.printTo(payload); return payload; } // Dump the internal memory of Zigbee devices // Mode = 1: simple dump of devices addresses // Mode = 2: simple dump of devices addresses and names // Mode = 3: Mode 2 + also dump the endpoints, profiles and clusters String Z_Devices::dump(uint32_t dump_mode, uint16_t status_shortaddr) const { DynamicJsonBuffer jsonBuffer; JsonArray& json = jsonBuffer.createArray(); JsonArray& devices = json; for (std::vector::const_iterator it = _devices.begin(); it != _devices.end(); ++it) { const Z_Device &device = **it; uint16_t shortaddr = device.shortaddr; char hex[22]; // ignore non-current device, if specified device is non-zero if ((status_shortaddr) && (status_shortaddr != shortaddr)) { continue; } JsonObject& dev = devices.createNestedObject(); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), shortaddr); dev[F(D_JSON_ZIGBEE_DEVICE)] = hex; if (device.friendlyName > 0) { dev[F(D_JSON_ZIGBEE_NAME)] = (char*) device.friendlyName; } if (2 <= dump_mode) { hex[0] = '0'; // prefix with '0x' hex[1] = 'x'; Uint64toHex(device.longaddr, &hex[2], 64); dev[F("IEEEAddr")] = hex; if (device.modelId) { dev[F(D_JSON_MODEL D_JSON_ID)] = device.modelId; } if (device.manufacturerId) { dev[F("Manufacturer")] = device.manufacturerId; } } // If dump_mode == 2, dump a lot more details if (3 <= dump_mode) { JsonObject& dev_endpoints = dev.createNestedObject(F("Endpoints")); for (std::vector::const_iterator ite = device.endpoints.begin() ; ite != device.endpoints.end(); ++ite) { uint32_t ep_profile = *ite; uint8_t endpoint = (ep_profile >> 16) & 0xFF; uint16_t profileId = ep_profile & 0xFFFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonObject& ep = dev_endpoints.createNestedObject(hex); snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), profileId); ep[F("ProfileId")] = hex; int32_t found = -1; for (uint32_t i = 0; i < sizeof(Z_ProfileIds) / sizeof(Z_ProfileIds[0]); i++) { if (pgm_read_word(&Z_ProfileIds[i]) == profileId) { found = i; break; } } if (found > 0) { GetTextIndexed(hex, sizeof(hex), found, Z_ProfileNames); ep[F("ProfileIdName")] = hex; } ep.createNestedArray(F("ClustersIn")); ep.createNestedArray(F("ClustersOut")); } for (std::vector::const_iterator itc = device.clusters_in.begin() ; itc != device.clusters_in.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersIn")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } for (std::vector::const_iterator itc = device.clusters_out.begin() ; itc != device.clusters_out.end(); ++itc) { uint16_t cluster = *itc & 0xFFFF; uint8_t endpoint = (*itc >> 16) & 0xFF; snprintf_P(hex, sizeof(hex), PSTR("0x%02X"), endpoint); JsonArray &cluster_arr = dev_endpoints[hex][F("ClustersOut")]; snprintf_P(hex, sizeof(hex), PSTR("0x%04X"), cluster); cluster_arr.add(hex); } } } String payload = ""; payload.reserve(200); json.printTo(payload); return payload; } #endif // USE_ZIGBEE