/* support.ino - support for Sonoff-Tasmota Copyright (C) 2018 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ IPAddress syslog_host_addr; // Syslog host IP address uint32_t syslog_host_hash = 0; // Syslog host name hash /*********************************************************************************************\ * Watchdog extension (https://github.com/esp8266/Arduino/issues/1532) \*********************************************************************************************/ Ticker tickerOSWatch; #define OSWATCH_RESET_TIME 120 static unsigned long oswatch_last_loop_time; byte oswatch_blocked_loop = 0; #ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception //void OsWatchTicker() ICACHE_RAM_ATTR; #endif // USE_WS2812_DMA #ifdef USE_KNX bool knx_started = false; #endif // USE_KNX void OsWatchTicker() { unsigned long t = millis(); unsigned long last_run = abs(t - oswatch_last_loop_time); #ifdef DEBUG_THEO snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WifiGetRssiAsQuality(WiFi.RSSI()), last_run); AddLog(LOG_LEVEL_DEBUG); #endif // DEBUG_THEO if (last_run >= (OSWATCH_RESET_TIME * 1000)) { // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space RtcSettings.oswatch_blocked_loop = 1; RtcSettingsSave(); // ESP.restart(); // normal reboot ESP.reset(); // hard reset } } void OsWatchInit() { oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop; RtcSettings.oswatch_blocked_loop = 0; oswatch_last_loop_time = millis(); tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker); } void OsWatchLoop() { oswatch_last_loop_time = millis(); // while(1) delay(1000); // this will trigger the os watch } String GetResetReason() { char buff[32]; if (oswatch_blocked_loop) { strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff)); return String(buff); } else { return ESP.getResetReason(); } } boolean OsWatchBlockedLoop() { return oswatch_blocked_loop; } /*********************************************************************************************\ * Miscellaneous \*********************************************************************************************/ #ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // Functions not available in 2.3.0 // http://clc-wiki.net/wiki/C_standard_library:string.h:memchr void* memchr(const void* ptr, int value, size_t num) { unsigned char *p = (unsigned char*)ptr; while (num--) { if (*p != (unsigned char)value) { p++; } else { return p; } } return 0; } // http://clc-wiki.net/wiki/C_standard_library:string.h:strspn // Get span until any character in string size_t strcspn(const char *str1, const char *str2) { size_t ret = 0; while (*str1) { if (strchr(str2, *str1)) { // Slow return ret; } else { str1++; ret++; } } return ret; } #endif // ARDUINO_ESP8266_RELEASE_2_3_0 // Get span until single character in string size_t strchrspn(const char *str1, int character) { size_t ret = 0; char *start = (char*)str1; char *end = strchr(str1, character); if (end) ret = end - start; return ret; } // Function to return a substring defined by a delimiter at an index char* subStr(char* dest, char* str, const char *delim, int index) { char *act; char *sub; char *ptr; int i; // Since strtok consumes the first arg, make a copy strncpy(dest, str, strlen(str)+1); for (i = 1, act = dest; i <= index; i++, act = NULL) { sub = strtok_r(act, delim, &ptr); if (sub == NULL) break; } sub = Trim(sub); return sub; } double CharToDouble(char *str) { // simple ascii to double, because atof or strtod are too large char strbuf[24]; strlcpy(strbuf, str, sizeof(strbuf)); char *pt; double left = atoi(strbuf); double right = 0; short len = 0; pt = strtok (strbuf, "."); if (pt) { pt = strtok (NULL, "."); if (pt) { right = atoi(pt); len = strlen(pt); double fac = 1; while (len) { fac /= 10.0; len--; } // pow is also very large //double fac=pow(10,-len); right *= fac; } } double result = left + right; if (left < 0) { result = left - right; } return result; } int TextToInt(char *str) { char *p; uint8_t radix = 10; if ('#' == str[0]) { radix = 16; str++; } return strtol(str, &p, radix); } char* dtostrfd(double number, unsigned char prec, char *s) { return dtostrf(number, 1, prec, s); } char* Unescape(char* buffer, uint16_t* size) { uint8_t* read = (uint8_t*)buffer; uint8_t* write = (uint8_t*)buffer; uint16_t start_size = *size; uint16_t end_size = *size; uint8_t che = 0; while (start_size > 0) { uint8_t ch = *read++; start_size--; if (ch != '\\') { *write++ = ch; } else { if (start_size > 0) { uint8_t chi = *read++; start_size--; end_size--; switch (chi) { case '\\': che = '\\'; break; // 5C Backslash case 'a': che = '\a'; break; // 07 Bell (Alert) case 'b': che = '\b'; break; // 08 Backspace case 'e': che = '\e'; break; // 1B Escape case 'f': che = '\f'; break; // 0C Formfeed case 'n': che = '\n'; break; // 0A Linefeed (Newline) case 'r': che = '\r'; break; // 0D Carriage return case 's': che = ' '; break; // 20 Space case 't': che = '\t'; break; // 09 Horizontal tab case 'v': che = '\v'; break; // 0B Vertical tab // case '?': che = '\?'; break; // 3F Question mark default : { che = chi; *write++ = ch; end_size++; } } *write++ = che; } } } *size = end_size; return buffer; } char* RemoveSpace(char* p) { char* write = p; char* read = p; char ch = '.'; while (ch != '\0') { ch = *read++; if (!isspace(ch)) { *write++ = ch; } } *write = '\0'; return p; } char* UpperCase(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = toupper(ch); } return dest; } char* UpperCase_P(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = pgm_read_byte(read++); *write++ = toupper(ch); } return dest; } char* LTrim(char* p) { while ((*p != '\0') && (isblank(*p))) { p++; // Trim leading spaces } return p; } char* RTrim(char* p) { char* q = p + strlen(p) -1; while ((q >= p) && (isblank(*q))) { q--; // Trim trailing spaces } q++; *q = '\0'; return p; } char* Trim(char* p) { if (*p == '\0') { return p; } while (isspace(*p)) { p++; } // Trim leading spaces if (*p == '\0') { return p; } char* q = p + strlen(p) -1; while (isspace(*q) && q >= p) { q--; } // Trim trailing spaces q++; *q = '\0'; return p; } char* NoAlNumToUnderscore(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_'; } return dest; } void SetShortcut(char* str, uint8_t action) { if ('\0' != str[0]) { // There must be at least one character in the buffer str[0] = '0' + action; // SC_CLEAR, SC_DEFAULT, SC_USER str[1] = '\0'; } } uint8_t Shortcut(const char* str) { uint8_t result = 10; if ('\0' == str[1]) { // Only allow single character input for shortcut if (('"' == str[0]) || ('0' == str[0])) { result = SC_CLEAR; } else { result = atoi(str); // 1 = SC_DEFAULT, 2 = SC_USER if (0 == result) { result = 10; } } } return result; } boolean ParseIp(uint32_t* addr, const char* str) { uint8_t *part = (uint8_t*)addr; byte i; *addr = 0; for (i = 0; i < 4; i++) { part[i] = strtoul(str, NULL, 10); // Convert byte str = strchr(str, '.'); if (str == NULL || *str == '\0') { break; // No more separators, exit } str++; // Point to next character after separator } return (3 == i); } void MakeValidMqtt(byte option, char* str) { // option 0 = replace by underscore // option 1 = delete character uint16_t i = 0; while (str[i] > 0) { // if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) { if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) { if (option) { uint16_t j = i; while (str[j] > 0) { str[j] = str[j +1]; j++; } i--; } else { str[i] = '_'; } } i++; } } // Function to parse & check if version_str is newer than our currently installed version. bool NewerVersion(char* version_str) { uint32_t version = 0; uint8_t i = 0; char *str_ptr; char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it. if (!version_dup) { return false; // Bail if we can't duplicate. Assume bad. } // Loop through the version string, splitting on '.' seperators. for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(NULL, ".", &str_ptr), i++) { int field = atoi(str); // The fields in a version string can only range from 0-255. if ((field < 0) || (field > 255)) { free(version_dup); return false; } // Shuffle the accumulated bytes across, and add the new byte. version = (version << 8) + field; // Check alpha delimiter after 1.2.3 only if ((2 == i) && isalpha(str[strlen(str)-1])) { field = str[strlen(str)-1] & 0x1f; version = (version << 8) + field; i++; } } free(version_dup); // We no longer need this. // A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1). // If not, then don't consider it a valid version string. if ((i < 2) || (i > sizeof(VERSION))) { return false; } // Keep shifting the parsed version until we hit the maximum number of tokens. // VERSION stores the major number of the version in the most significant byte of the uint32_t. while (i < sizeof(VERSION)) { version <<= 8; i++; } // Now we should have a fully constructed version number in uint32_t form. return (version > VERSION); } char* GetPowerDevice(char* dest, uint8_t idx, size_t size, uint8_t option) { char sidx[8]; strncpy_P(dest, S_RSLT_POWER, size); // POWER if ((devices_present + option) > 1) { snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x strncat(dest, sidx, size); // POWERx } return dest; } char* GetPowerDevice(char* dest, uint8_t idx, size_t size) { return GetPowerDevice(dest, idx, size, 0); } float ConvertTemp(float c) { float result = c; if (!isnan(c) && Settings.flag.temperature_conversion) { result = c * 1.8 + 32; // Fahrenheit } return result; } char TempUnit() { return (Settings.flag.temperature_conversion) ? 'F' : 'C'; } void SetGlobalValues(float temperature, float humidity) { global_update = uptime; global_temperature = temperature; global_humidity = humidity; } void ResetGlobalValues() { if ((uptime - global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes global_update = 0; global_temperature = 0; global_humidity = 0; } } double FastPrecisePow(double a, double b) { // https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/ // calculate approximation with fraction of the exponent int e = (int)b; union { double d; int x[2]; } u = { a }; u.x[1] = (int)((b - e) * (u.x[1] - 1072632447) + 1072632447); u.x[0] = 0; // exponentiation by squaring with the exponent's integer part // double r = u.d makes everything much slower, not sure why double r = 1.0; while (e) { if (e & 1) { r *= a; } a *= a; e >>= 1; } return r * u.d; } uint32_t SqrtInt(uint32_t num) { if (num <= 1) { return num; } uint32_t x = num / 2; uint32_t y; do { y = (x + num / x) / 2; if (y >= x) { return x; } x = y; } while (true); } uint32_t RoundSqrtInt(uint32_t num) { uint32_t s = SqrtInt(4 * num); if (s & 1) { s++; } return s / 2; } char* GetTextIndexed(char* destination, size_t destination_size, uint16_t index, const char* haystack) { // Returns empty string if not found // Returns text of found char* write = destination; const char* read = haystack; index++; while (index--) { size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } if (0 == ch) { if (index) { write = destination; } break; } } *write = '\0'; return destination; } int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack) { // Returns -1 of not found // Returns index and command if found int result = -1; const char* read = haystack; char* write = destination; while (true) { result++; size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } *write = '\0'; if (!strcasecmp(needle, destination)) { break; } if (0 == ch) { result = -1; break; } } return result; } int GetStateNumber(char *state_text) { char command[CMDSZ]; int state_number = -1; if (GetCommandCode(command, sizeof(command), state_text, kOptionOff) >= 0) { state_number = 0; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionOn) >= 0) { state_number = 1; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionToggle) >= 0) { state_number = 2; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlink) >= 0) { state_number = 3; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlinkOff) >= 0) { state_number = 4; } return state_number; } boolean GetUsedInModule(byte val, uint8_t *arr) { int offset = 0; if (!val) { return false; } // None #ifndef USE_I2C if (GPIO_I2C_SCL == val) { return true; } if (GPIO_I2C_SDA == val) { return true; } #endif #ifndef USE_SR04 if (GPIO_SR04_TRIG == val) { return true; } if (GPIO_SR04_ECHO == val) { return true; } #endif #ifndef USE_WS2812 if (GPIO_WS2812 == val) { return true; } #endif #ifndef USE_IR_REMOTE if (GPIO_IRSEND == val) { return true; } #ifndef USE_IR_RECEIVE if (GPIO_IRRECV == val) { return true; } #endif #endif #ifndef USE_MHZ19 if (GPIO_MHZ_TXD == val) { return true; } if (GPIO_MHZ_RXD == val) { return true; } #endif int pzem = 3; #ifndef USE_PZEM004T pzem--; if (GPIO_PZEM004_RX == val) { return true; } #endif #ifndef USE_PZEM_AC pzem--; if (GPIO_PZEM016_RX == val) { return true; } #endif #ifndef USE_PZEM_DC pzem--; if (GPIO_PZEM017_RX == val) { return true; } #endif if (!pzem && (GPIO_PZEM0XX_TX == val)) { return true; } #ifndef USE_SENSEAIR if (GPIO_SAIR_TX == val) { return true; } if (GPIO_SAIR_RX == val) { return true; } #endif #ifndef USE_SPI if (GPIO_SPI_CS == val) { return true; } if (GPIO_SPI_DC == val) { return true; } #endif #ifndef USE_DISPLAY if (GPIO_BACKLIGHT == val) { return true; } #endif #ifndef USE_PMS5003 if (GPIO_PMS5003 == val) { return true; } #endif #ifndef USE_NOVA_SDS if (GPIO_SDS0X1_TX == val) { return true; } if (GPIO_SDS0X1_RX == val) { return true; } #endif #ifndef USE_SERIAL_BRIDGE if (GPIO_SBR_TX == val) { return true; } if (GPIO_SBR_RX == val) { return true; } #endif #ifndef USE_SR04 if (GPIO_SR04_TRIG == val) { return true; } if (GPIO_SR04_ECHO == val) { return true; } #endif #ifndef USE_SDM120 if (GPIO_SDM120_TX == val) { return true; } if (GPIO_SDM120_RX == val) { return true; } #endif #ifndef USE_SDM630 if (GPIO_SDM630_TX == val) { return true; } if (GPIO_SDM630_RX == val) { return true; } #endif #ifndef USE_TM1638 if (GPIO_TM16CLK == val) { return true; } if (GPIO_TM16DIO == val) { return true; } if (GPIO_TM16STB == val) { return true; } #endif #ifndef USE_HX711 if (GPIO_HX711_SCK == val) { return true; } if (GPIO_HX711_DAT == val) { return true; } #endif if ((val >= GPIO_REL1) && (val < GPIO_REL1 + MAX_RELAYS)) { offset = (GPIO_REL1_INV - GPIO_REL1); } if ((val >= GPIO_REL1_INV) && (val < GPIO_REL1_INV + MAX_RELAYS)) { offset = -(GPIO_REL1_INV - GPIO_REL1); } if ((val >= GPIO_LED1) && (val < GPIO_LED1 + MAX_LEDS)) { offset = (GPIO_LED1_INV - GPIO_LED1); } if ((val >= GPIO_LED1_INV) && (val < GPIO_LED1_INV + MAX_LEDS)) { offset = -(GPIO_LED1_INV - GPIO_LED1); } if ((val >= GPIO_PWM1) && (val < GPIO_PWM1 + MAX_PWMS)) { offset = (GPIO_PWM1_INV - GPIO_PWM1); } if ((val >= GPIO_PWM1_INV) && (val < GPIO_PWM1_INV + MAX_PWMS)) { offset = -(GPIO_PWM1_INV - GPIO_PWM1); } for (byte i = 0; i < MAX_GPIO_PIN; i++) { if (arr[i] == val) { return true; } if (arr[i] == val + offset) { return true; } } return false; } void SetSerialBaudrate(int baudrate) { Settings.baudrate = baudrate / 1200; if (Serial.baudRate() != baudrate) { if (seriallog_level) { snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate); AddLog(LOG_LEVEL_INFO); } delay(100); Serial.flush(); Serial.begin(baudrate, serial_config); delay(10); Serial.println(); } } void ClaimSerial() { serial_local = 1; AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial")); SetSeriallog(LOG_LEVEL_NONE); baudrate = Serial.baudRate(); Settings.baudrate = baudrate / 1200; } void SerialSendRaw(char *codes) { char *p; char stemp[3]; uint8_t code; int size = strlen(codes); while (size > 0) { snprintf(stemp, sizeof(stemp), codes); code = strtol(stemp, &p, 16); Serial.write(code); size -= 2; codes += 2; } } uint32_t GetHash(const char *buffer, size_t size) { uint32_t hash = 0; for (uint16_t i = 0; i <= size; i++) { hash += (uint8_t)*buffer++ * (i +1); } return hash; } void ShowSource(int source) { if ((source > 0) && (source < SRC_MAX)) { char stemp1[20]; snprintf_P(log_data, sizeof(log_data), PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource)); AddLog(LOG_LEVEL_DEBUG); } } uint8_t ValidGPIO(uint8_t pin, uint8_t gpio) { uint8_t result = gpio; if ((WEMOS == Settings.module) && (!Settings.flag3.user_esp8285_enable)) { if ((pin == 9) || (pin == 10)) { result = GPIO_NONE; } // Disable possible flash GPIO9 and GPIO10 } return result; } /*********************************************************************************************\ * Sleep aware time scheduler functions borrowed from ESPEasy \*********************************************************************************************/ long TimeDifference(unsigned long prev, unsigned long next) { // Return the time difference as a signed value, taking into account the timers may overflow. // Returned timediff is between -24.9 days and +24.9 days. // Returned value is positive when "next" is after "prev" long signed_diff = 0; // To cast a value to a signed long, the difference may not exceed half 0xffffffffUL (= 4294967294) const unsigned long half_max_unsigned_long = 2147483647u; // = 2^31 -1 if (next >= prev) { const unsigned long diff = next - prev; if (diff <= half_max_unsigned_long) { // Normal situation, just return the difference. signed_diff = static_cast(diff); // Difference is a positive value. } else { // prev has overflow, return a negative difference value signed_diff = static_cast((0xffffffffUL - next) + prev + 1u); signed_diff = -1 * signed_diff; } } else { // next < prev const unsigned long diff = prev - next; if (diff <= half_max_unsigned_long) { // Normal situation, return a negative difference value signed_diff = static_cast(diff); signed_diff = -1 * signed_diff; } else { // next has overflow, return a positive difference value signed_diff = static_cast((0xffffffffUL - prev) + next + 1u); } } return signed_diff; } long TimePassedSince(unsigned long timestamp) { // Compute the number of milliSeconds passed since timestamp given. // Note: value can be negative if the timestamp has not yet been reached. return TimeDifference(timestamp, millis()); } bool TimeReached(unsigned long timer) { // Check if a certain timeout has been reached. const long passed = TimePassedSince(timer); return (passed >= 0); } void SetNextTimeInterval(unsigned long& timer, const unsigned long step) { timer += step; const long passed = TimePassedSince(timer); if (passed < 0) { return; } // Event has not yet happened, which is fine. if (static_cast(passed) > step) { // No need to keep running behind, start again. timer = millis() + step; return; } // Try to get in sync again. timer = millis() + (step - passed); } /*********************************************************************************************\ * Fill feature list \*********************************************************************************************/ void GetFeatures() { feature_drv1 = 0x00000000; // xdrv_01_mqtt.ino, xdrv_01_light.ino, xdrv_04_snfbridge.ino // feature_drv1 |= 0x00000001; // feature_drv1 |= 0x00000002; #ifdef USE_I2C feature_drv1 |= 0x00000004; // sonoff.ino #endif #ifdef USE_SPI feature_drv1 |= 0x00000008; // sonoff.ino #endif #ifdef USE_DISCOVERY feature_drv1 |= 0x00000010; // sonoff.ino #endif #ifdef USE_ARDUINO_OTA feature_drv1 |= 0x00000020; // sonoff.ino #endif #ifdef USE_MQTT_TLS feature_drv1 |= 0x00000040; // sonoff.ino #endif #ifdef USE_WEBSERVER feature_drv1 |= 0x00000080; // xdrv_02_webserver.ino #endif #ifdef WEBSERVER_ADVERTISE feature_drv1 |= 0x00000100; // xdrv_02_webserver.ino #endif #ifdef USE_EMULATION feature_drv1 |= 0x00000200; // xplg_wemohue.ino #endif #if (MQTT_LIBRARY_TYPE == MQTT_PUBSUBCLIENT) feature_drv1 |= 0x00000400; // xdrv_01_mqtt.ino #endif #if (MQTT_LIBRARY_TYPE == MQTT_TASMOTAMQTT) feature_drv1 |= 0x00000800; // xdrv_01_mqtt.ino #endif #if (MQTT_LIBRARY_TYPE == MQTT_ESPMQTTARDUINO) // Obsolete since 6.2.1.11 feature_drv1 |= 0x00001000; // xdrv_01_mqtt.ino #endif #ifdef MQTT_HOST_DISCOVERY feature_drv1 |= 0x00002000; // xdrv_01_mqtt.ino #endif #ifdef USE_ARILUX_RF feature_drv1 |= 0x00004000; // xdrv_04_light.ino #endif #ifdef USE_WS2812 feature_drv1 |= 0x00008000; // xdrv_04_light.ino #endif #ifdef USE_WS2812_DMA feature_drv1 |= 0x00010000; // xdrv_04_light.ino #endif #ifdef USE_IR_REMOTE feature_drv1 |= 0x00020000; // xdrv_05_irremote.ino #endif #ifdef USE_IR_HVAC feature_drv1 |= 0x00040000; // xdrv_05_irremote.ino #endif #ifdef USE_IR_RECEIVE feature_drv1 |= 0x00080000; // xdrv_05_irremote.ino #endif #ifdef USE_DOMOTICZ feature_drv1 |= 0x00100000; // xdrv_07_domoticz.ino #endif #ifdef USE_DISPLAY feature_drv1 |= 0x00200000; // xdrv_13_display.ino #endif #ifdef USE_HOME_ASSISTANT feature_drv1 |= 0x00400000; // xdrv_12_home_assistant.ino #endif #ifdef USE_SERIAL_BRIDGE feature_drv1 |= 0x00800000; // xdrv_08_serial_bridge.ino #endif #ifdef USE_TIMERS feature_drv1 |= 0x01000000; // xdrv_09_timers.ino #endif #ifdef USE_SUNRISE feature_drv1 |= 0x02000000; // xdrv_09_timers.ino #endif #ifdef USE_TIMERS_WEB feature_drv1 |= 0x04000000; // xdrv_09_timers.ino #endif #ifdef USE_RULES feature_drv1 |= 0x08000000; // xdrv_10_rules.ino #endif #ifdef USE_KNX feature_drv1 |= 0x10000000; // xdrv_11_knx.ino #endif #ifdef USE_WPS feature_drv1 |= 0x20000000; // support.ino #endif #ifdef USE_SMARTCONFIG feature_drv1 |= 0x40000000; // support.ino #endif #if (MQTT_LIBRARY_TYPE == MQTT_ARDUINOMQTT) feature_drv1 |= 0x80000000; // xdrv_01_mqtt.ino #endif /*********************************************************************************************/ feature_drv2 = 0x00000000; #ifdef USE_CONFIG_OVERRIDE feature_drv2 |= 0x00000001; // user_config(_override).h #endif #ifdef BE_MINIMAL feature_drv2 |= 0x00000002; // user_config(_override).h #endif #ifdef USE_SENSORS feature_drv2 |= 0x00000004; // user_config(_override).h #endif #ifdef USE_CLASSIC feature_drv2 |= 0x00000008; // user_config(_override).h #endif #ifdef USE_KNX_NO_EMULATION feature_drv2 |= 0x00000010; // user_config(_override).h #endif #ifdef USE_DISPLAY_MODES1TO5 feature_drv2 |= 0x00000020; // xdrv_13_display.ino #endif #ifdef USE_DISPLAY_GRAPH feature_drv2 |= 0x00000040; // xdrv_13_display.ino #endif #ifdef USE_DISPLAY_LCD feature_drv2 |= 0x00000080; // xdsp_01_lcd.ino #endif #ifdef USE_DISPLAY_SSD1306 feature_drv2 |= 0x00000100; // xdsp_02_ssd1306.ino #endif #ifdef USE_DISPLAY_MATRIX feature_drv2 |= 0x00000200; // xdsp_03_matrix.ino #endif #ifdef USE_DISPLAY_ILI9341 feature_drv2 |= 0x00000400; // xdsp_04_ili9341.ino #endif #ifdef USE_DISPLAY_EPAPER feature_drv2 |= 0x00000800; // xdsp_05_epaper.ino #endif #ifdef USE_DISPLAY_SH1106 feature_drv2 |= 0x00001000; // xdsp_06_sh1106.ino #endif #ifdef USE_MP3_PLAYER feature_drv2 |= 0x00002000; // xdrv_14_mp3.ino #endif #ifdef USE_PCA9685 feature_drv2 |= 0x00004000; // xdrv_15_pca9685.ino #endif #ifdef USE_TUYA_DIMMER feature_drv2 |= 0x00008000; // xdrv_16_tuyadimmer.ino #endif #ifdef NO_EXTRA_4K_HEAP feature_drv2 |= 0x00800000; // sonoff_post.h #endif #ifdef VTABLES_IN_IRAM feature_drv2 |= 0x01000000; // platformio.ini #endif #ifdef VTABLES_IN_DRAM feature_drv2 |= 0x02000000; // platformio.ini #endif #ifdef VTABLES_IN_FLASH feature_drv2 |= 0x04000000; // platformio.ini #endif #ifdef PIO_FRAMEWORK_ARDUINO_LWIP_HIGHER_BANDWIDTH feature_drv2 |= 0x08000000; // platformio.ini #endif #ifdef PIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY feature_drv2 |= 0x10000000; // platformio.ini #endif #ifdef PIO_FRAMEWORK_ARDUINO_LWIP2_HIGHER_BANDWIDTH feature_drv2 |= 0x20000000; // platformio.ini #endif #ifdef DEBUG_THEO feature_drv2 |= 0x40000000; // xdrv_99_debug.ino #endif #ifdef USE_DEBUG_DRIVER feature_drv2 |= 0x80000000; // xdrv_99_debug.ino #endif /*********************************************************************************************/ feature_sns1 = 0x00000000; // xsns_01_counter.ino, xsns_04_snfsc.ino // feature_sns1 |= 0x00000001; #ifdef USE_ADC_VCC feature_sns1 |= 0x00000002; // support.ino (ADC) #endif #ifdef USE_ENERGY_SENSOR feature_sns1 |= 0x00000004; // xdrv_03_energy.ino #endif #ifdef USE_PZEM004T feature_sns1 |= 0x00000008; // xnrg_03_pzem004t.ino #endif #ifdef USE_DS18B20 feature_sns1 |= 0x00000010; // xsns_05_ds18b20.ino #endif #ifdef USE_DS18x20_LEGACY feature_sns1 |= 0x00000020; // xsns_05_ds18x20_legacy.ino #endif #ifdef USE_DS18x20 feature_sns1 |= 0x00000040; // xsns_05_ds18x20.ino #endif #ifdef USE_DHT feature_sns1 |= 0x00000080; // xsns_06_dht.ino #endif #ifdef USE_SHT feature_sns1 |= 0x00000100; // xsns_07_sht1x.ino #endif #ifdef USE_HTU feature_sns1 |= 0x00000200; // xsns_08_htu21.ino #endif #ifdef USE_BMP feature_sns1 |= 0x00000400; // xsns_09_bmp.ino #endif #ifdef USE_BME680 feature_sns1 |= 0x00000800; // xsns_09_bmp.ino - BME680 #endif #ifdef USE_BH1750 feature_sns1 |= 0x00001000; // xsns_10_bh1750.ino #endif #ifdef USE_VEML6070 feature_sns1 |= 0x00002000; // xsns_11_veml6070.ino #endif #ifdef USE_ADS1115_I2CDEV feature_sns1 |= 0x00004000; // xsns_12_ads1115_i2cdev.ino #endif #ifdef USE_ADS1115 feature_sns1 |= 0x00008000; // xsns_12_ads1115.ino #endif #ifdef USE_INA219 feature_sns1 |= 0x00010000; // xsns_13_ina219.ino #endif #ifdef USE_SHT3X feature_sns1 |= 0x00020000; // xsns_14_sht3x.ino #endif #ifdef USE_MHZ19 feature_sns1 |= 0x00040000; // xsns_15_mhz19.ino #endif #ifdef USE_TSL2561 feature_sns1 |= 0x00080000; // xsns_16_tsl2561.ino #endif #ifdef USE_SENSEAIR feature_sns1 |= 0x00100000; // xsns_17_senseair.ino #endif #ifdef USE_PMS5003 feature_sns1 |= 0x00200000; // xsns_18_pms5003.ino #endif #ifdef USE_MGS feature_sns1 |= 0x00400000; // xsns_19_mgs.ino #endif #ifdef USE_NOVA_SDS feature_sns1 |= 0x00800000; // xsns_20_novasds.ino #endif #ifdef USE_SGP30 feature_sns1 |= 0x01000000; // xsns_21_sgp30.ino #endif #ifdef USE_SR04 feature_sns1 |= 0x02000000; // xsns_22_sr04.ino #endif #ifdef USE_SDM120 feature_sns1 |= 0x04000000; // xsns_23_sdm120.ino #endif #ifdef USE_SI1145 feature_sns1 |= 0x08000000; // xsns_24_si1145.ino #endif #ifdef USE_SDM630 feature_sns1 |= 0x10000000; // xsns_25_sdm630.ino #endif #ifdef USE_LM75AD feature_sns1 |= 0x20000000; // xsns_26_lm75ad.ino #endif #ifdef USE_APDS9960 feature_sns1 |= 0x40000000; // xsns_27_apds9960.ino #endif #ifdef USE_TM1638 feature_sns1 |= 0x80000000; // xsns_28_tm1638.ino #endif /*********************************************************************************************/ feature_sns2 = 0x00000000; #ifdef USE_MCP230xx feature_sns2 |= 0x00000001; // xsns_29_mcp230xx.ino #endif #ifdef USE_MPR121 feature_sns2 |= 0x00000002; // xsns_30_mpr121.ino #endif #ifdef USE_CCS811 feature_sns2 |= 0x00000004; // xsns_31_ccs811.ino #endif #ifdef USE_MPU6050 feature_sns2 |= 0x00000008; // xsns_32_mpu6050.ino #endif #ifdef USE_MCP230xx_OUTPUT feature_sns2 |= 0x00000010; // xsns_29_mcp230xx.ino #endif #ifdef USE_MCP230xx_DISPLAYOUTPUT feature_sns2 |= 0x00000020; // xsns_29_mcp230xx.ino #endif #ifdef USE_HLW8012 feature_sns2 |= 0x00000040; // xnrg_01_hlw8012.ino #endif #ifdef USE_CSE7766 feature_sns2 |= 0x00000080; // xnrg_02_cse7766.ino #endif #ifdef USE_MCP39F501 feature_sns2 |= 0x00000100; // xnrg_04_mcp39f501.ino #endif #ifdef USE_PZEM_AC feature_sns2 |= 0x00000200; // xnrg_05_pzem_ac.ino #endif #ifdef USE_DS3231 feature_sns2 |= 0x00000400; // xsns_33_ds3231.ino #endif #ifdef USE_HX711 feature_sns2 |= 0x00000800; // xsns_34_hx711.ino #endif #ifdef USE_PZEM_DC feature_sns2 |= 0x00001000; // xnrg_06_pzem_dc.ino #endif #ifdef USE_TX20_WIND_SENSOR feature_sns2 |= 0x00002000; // xsns_35_tx20.ino #endif } /*********************************************************************************************\ * Wifi \*********************************************************************************************/ #define WIFI_CONFIG_SEC 180 // seconds before restart #define WIFI_CHECK_SEC 20 // seconds #define WIFI_RETRY_OFFSET_SEC 20 // seconds uint8_t wifi_counter; uint8_t wifi_retry_init; uint8_t wifi_retry; uint8_t wifi_status; uint8_t wps_result; uint8_t wifi_config_type = 0; uint8_t wifi_config_counter = 0; int WifiGetRssiAsQuality(int rssi) { int quality = 0; if (rssi <= -100) { quality = 0; } else if (rssi >= -50) { quality = 100; } else { quality = 2 * (rssi + 100); } return quality; } boolean WifiConfigCounter() { if (wifi_config_counter) { wifi_config_counter = WIFI_CONFIG_SEC; } return (wifi_config_counter); } extern "C" { #include "user_interface.h" } void WifiWpsStatusCallback(wps_cb_status status); void WifiWpsStatusCallback(wps_cb_status status) { /* from user_interface.h: enum wps_cb_status { WPS_CB_ST_SUCCESS = 0, WPS_CB_ST_FAILED, WPS_CB_ST_TIMEOUT, WPS_CB_ST_WEP, // WPS failed because that WEP is not supported WPS_CB_ST_SCAN_ERR, // can not find the target WPS AP }; */ wps_result = status; if (WPS_CB_ST_SUCCESS == wps_result) { wifi_wps_disable(); } else { snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WPS_FAILED_WITH_STATUS " %d"), wps_result); AddLog(LOG_LEVEL_DEBUG); wifi_config_counter = 2; } } boolean WifiWpsConfigDone(void) { return (!wps_result); } boolean WifiWpsConfigBegin(void) { wps_result = 99; if (!wifi_wps_disable()) { return false; } if (!wifi_wps_enable(WPS_TYPE_PBC)) { return false; } // so far only WPS_TYPE_PBC is supported (SDK 2.0.0) if (!wifi_set_wps_cb((wps_st_cb_t) &WifiWpsStatusCallback)) { return false; } if (!wifi_wps_start()) { return false; } return true; } void WifiConfig(uint8_t type) { if (!wifi_config_type) { if ((WIFI_RETRY == type) || (WIFI_WAIT == type)) { return; } #if defined(USE_WEBSERVER) && defined(USE_EMULATION) UdpDisconnect(); #endif // USE_EMULATION WiFi.disconnect(); // Solve possible Wifi hangs wifi_config_type = type; #ifndef USE_WPS if (WIFI_WPSCONFIG == wifi_config_type) { wifi_config_type = WIFI_MANAGER; } #endif // USE_WPS #ifndef USE_WEBSERVER if (WIFI_MANAGER == wifi_config_type) { wifi_config_type = WIFI_SMARTCONFIG; } #endif // USE_WEBSERVER #ifndef USE_SMARTCONFIG if (WIFI_SMARTCONFIG == wifi_config_type) { wifi_config_type = WIFI_SERIAL; } #endif // USE_SMARTCONFIG wifi_config_counter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd wifi_counter = wifi_config_counter +5; blinks = 1999; if (WIFI_RESTART == wifi_config_type) { restart_flag = 2; } else if (WIFI_SERIAL == wifi_config_type) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_6_SERIAL " " D_ACTIVE_FOR_3_MINUTES)); } #ifdef USE_SMARTCONFIG else if (WIFI_SMARTCONFIG == wifi_config_type) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_1_SMARTCONFIG " " D_ACTIVE_FOR_3_MINUTES)); WiFi.beginSmartConfig(); } #endif // USE_SMARTCONFIG #ifdef USE_WPS else if (WIFI_WPSCONFIG == wifi_config_type) { if (WifiWpsConfigBegin()) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_ACTIVE_FOR_3_MINUTES)); } else { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_FAILED_TO_START)); wifi_config_counter = 3; } } #endif // USE_WPS #ifdef USE_WEBSERVER else if (WIFI_MANAGER == wifi_config_type) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_2_WIFIMANAGER " " D_ACTIVE_FOR_3_MINUTES)); WifiManagerBegin(); } #endif // USE_WEBSERVER } } void WiFiSetSleepMode() { /* Excerpt from the esp8266 non os sdk api reference (v2.2.1): * Sets sleep type for power saving. Set WIFI_NONE_SLEEP to disable power saving. * - Default mode: WIFI_MODEM_SLEEP. * - In order to lower the power comsumption, ESP8266 changes the TCP timer * tick from 250ms to 3s in WIFI_LIGHT_SLEEP mode, which leads to increased timeout for * TCP timer. Therefore, the WIFI_MODEM_SLEEP or deep-sleep mode should be used * where there is a requirement for the accurancy of the TCP timer. * * Sleep is disabled in core 2.4.1 and 2.4.2 as there are bugs in their SDKs * See https://github.com/arendst/Sonoff-Tasmota/issues/2559 */ // Sleep explanation: https://github.com/esp8266/Arduino/blob/3f0c601cfe81439ce17e9bd5d28994a7ed144482/libraries/ESP8266WiFi/src/ESP8266WiFiGeneric.cpp#L255 #if defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2) #else // Enabled in 2.3.0, 2.4.0 and stage if (sleep) { WiFi.setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times } else { WiFi.setSleepMode(WIFI_MODEM_SLEEP); // Disable sleep (Esp8288/Arduino core and sdk default) } #endif } void WifiBegin(uint8_t flag) { const char kWifiPhyMode[] = " BGN"; #if defined(USE_WEBSERVER) && defined(USE_EMULATION) UdpDisconnect(); #endif // USE_EMULATION #ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // (!strncmp_P(ESP.getSdkVersion(),PSTR("1.5.3"),5)) AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_PATCH_ISSUE_2186)); WiFi.mode(WIFI_OFF); // See https://github.com/esp8266/Arduino/issues/2186 #endif WiFi.persistent(false); // Solve possible wifi init errors (re-add at 6.2.1.16 #4044, #4083) WiFi.disconnect(true); // Delete SDK wifi config delay(200); WiFi.mode(WIFI_STA); // Disable AP mode WiFiSetSleepMode(); // if (WiFi.getPhyMode() != WIFI_PHY_MODE_11N) { WiFi.setPhyMode(WIFI_PHY_MODE_11N); } if (!WiFi.getAutoConnect()) { WiFi.setAutoConnect(true); } // WiFi.setAutoReconnect(true); switch (flag) { case 0: // AP1 case 1: // AP2 Settings.sta_active = flag; break; case 2: // Toggle Settings.sta_active ^= 1; } // 3: Current AP if ('\0' == Settings.sta_ssid[Settings.sta_active][0]) { Settings.sta_active ^= 1; } // Skip empty SSID if (Settings.ip_address[0]) { WiFi.config(Settings.ip_address[0], Settings.ip_address[1], Settings.ip_address[2], Settings.ip_address[3]); // Set static IP } WiFi.hostname(my_hostname); WiFi.begin(Settings.sta_ssid[Settings.sta_active], Settings.sta_pwd[Settings.sta_active]); snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s " D_IN_MODE " 11%c " D_AS " %s..."), Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], kWifiPhyMode[WiFi.getPhyMode() & 0x3], my_hostname); AddLog(LOG_LEVEL_INFO); } void WifiState(uint8_t state) { if (state == global_state.wifi_down) { if (state) { rules_flag.wifi_connected = 1; } else { rules_flag.wifi_disconnected = 1; } } global_state.wifi_down = state ^1; } void WifiCheckIp() { if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0)) { WifiState(1); wifi_counter = WIFI_CHECK_SEC; wifi_retry = wifi_retry_init; AddLog_P((wifi_status != WL_CONNECTED) ? LOG_LEVEL_INFO : LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CONNECTED)); if (wifi_status != WL_CONNECTED) { // AddLog_P(LOG_LEVEL_INFO, PSTR("Wifi: Set IP addresses")); Settings.ip_address[1] = (uint32_t)WiFi.gatewayIP(); Settings.ip_address[2] = (uint32_t)WiFi.subnetMask(); Settings.ip_address[3] = (uint32_t)WiFi.dnsIP(); } wifi_status = WL_CONNECTED; } else { WifiState(0); uint8_t wifi_config_tool = Settings.sta_config; wifi_status = WiFi.status(); switch (wifi_status) { case WL_CONNECTED: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_NO_IP_ADDRESS)); wifi_status = 0; wifi_retry = wifi_retry_init; break; case WL_NO_SSID_AVAIL: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED)); if (WIFI_WAIT == Settings.sta_config) { wifi_retry = wifi_retry_init; } else { if (wifi_retry > (wifi_retry_init / 2)) { wifi_retry = wifi_retry_init / 2; } else if (wifi_retry) { wifi_retry = 0; } } break; case WL_CONNECT_FAILED: AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD)); if (wifi_retry > (wifi_retry_init / 2)) { wifi_retry = wifi_retry_init / 2; } else if (wifi_retry) { wifi_retry = 0; } break; default: // WL_IDLE_STATUS and WL_DISCONNECTED if (!wifi_retry || ((wifi_retry_init / 2) == wifi_retry)) { AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_TIMEOUT)); } else { if (('\0' == Settings.sta_ssid[0][0]) && ('\0' == Settings.sta_ssid[1][0])) { wifi_config_tool = WIFI_CONFIG_NO_SSID; // Skip empty SSIDs and start Wifi config tool wifi_retry = 0; } else { AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_ATTEMPTING_CONNECTION)); } } } if (wifi_retry) { if (wifi_retry_init == wifi_retry) { WifiBegin(3); // Select default SSID } if ((Settings.sta_config != WIFI_WAIT) && ((wifi_retry_init / 2) == wifi_retry)) { WifiBegin(2); // Select alternate SSID } wifi_counter = 1; wifi_retry--; } else { WifiConfig(wifi_config_tool); wifi_counter = 1; wifi_retry = wifi_retry_init; } } } void WifiCheck(uint8_t param) { wifi_counter--; switch (param) { case WIFI_SERIAL: case WIFI_SMARTCONFIG: case WIFI_MANAGER: case WIFI_WPSCONFIG: WifiConfig(param); break; default: if (wifi_config_counter) { wifi_config_counter--; wifi_counter = wifi_config_counter +5; if (wifi_config_counter) { #ifdef USE_SMARTCONFIG if ((WIFI_SMARTCONFIG == wifi_config_type) && WiFi.smartConfigDone()) { wifi_config_counter = 0; } #endif // USE_SMARTCONFIG #ifdef USE_WPS if ((WIFI_WPSCONFIG == wifi_config_type) && WifiWpsConfigDone()) { wifi_config_counter = 0; } #endif // USE_WPS if (!wifi_config_counter) { if (strlen(WiFi.SSID().c_str())) { strlcpy(Settings.sta_ssid[0], WiFi.SSID().c_str(), sizeof(Settings.sta_ssid[0])); } if (strlen(WiFi.psk().c_str())) { strlcpy(Settings.sta_pwd[0], WiFi.psk().c_str(), sizeof(Settings.sta_pwd[0])); } Settings.sta_active = 0; snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WCFG_1_SMARTCONFIG D_CMND_SSID "1 %s"), Settings.sta_ssid[0]); AddLog(LOG_LEVEL_INFO); } } if (!wifi_config_counter) { #ifdef USE_SMARTCONFIG if (WIFI_SMARTCONFIG == wifi_config_type) { WiFi.stopSmartConfig(); } #endif // USE_SMARTCONFIG // SettingsSdkErase(); // Disabled v6.1.0b due to possible bad wifi connects restart_flag = 2; } } else { if (wifi_counter <= 0) { AddLog_P(LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CHECKING_CONNECTION)); wifi_counter = WIFI_CHECK_SEC; WifiCheckIp(); } if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0) && !wifi_config_type) { WifiState(1); #ifdef BE_MINIMAL if (1 == RtcSettings.ota_loader) { RtcSettings.ota_loader = 0; ota_state_flag = 3; } #endif // BE_MINIMAL #ifdef USE_DISCOVERY if (!mdns_begun) { mdns_begun = MDNS.begin(my_hostname); snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS "%s"), (mdns_begun) ? D_INITIALIZED : D_FAILED); AddLog(LOG_LEVEL_INFO); } #endif // USE_DISCOVERY #ifdef USE_WEBSERVER if (Settings.webserver) { StartWebserver(Settings.webserver, WiFi.localIP()); #ifdef USE_DISCOVERY #ifdef WEBSERVER_ADVERTISE MDNS.addService("http", "tcp", WEB_PORT); #endif // WEBSERVER_ADVERTISE #endif // USE_DISCOVERY } else { StopWebserver(); } #ifdef USE_EMULATION if (Settings.flag2.emulation) { UdpConnect(); } #endif // USE_EMULATION #endif // USE_WEBSERVER #ifdef USE_KNX if (!knx_started && Settings.flag.knx_enabled) { KNXStart(); knx_started = true; } #endif // USE_KNX } else { WifiState(0); #if defined(USE_WEBSERVER) && defined(USE_EMULATION) UdpDisconnect(); #endif // USE_EMULATION mdns_begun = false; #ifdef USE_KNX knx_started = false; #endif // USE_KNX } } } } int WifiState() { int state; if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0)) { state = WIFI_RESTART; } if (wifi_config_type) { state = wifi_config_type; } return state; } void WifiConnect() { WiFi.persistent(false); // Solve possible wifi init errors wifi_status = 0; wifi_retry_init = WIFI_RETRY_OFFSET_SEC + ((ESP.getChipId() & 0xF) * 2); wifi_retry = wifi_retry_init; wifi_counter = 1; } /* // Enable from 6.0.0a until 6.1.0a - disabled due to possible cause of bad wifi connect on core 2.3.0 void WifiDisconnect() { // Courtesy of EspEasy WiFi.persistent(true); // use SDK storage of SSID/WPA parameters ETS_UART_INTR_DISABLE(); wifi_station_disconnect(); // this will store empty ssid/wpa into sdk storage ETS_UART_INTR_ENABLE(); WiFi.persistent(false); // Do not use SDK storage of SSID/WPA parameters } void EspRestart() { // This results in exception 3 on restarts delay(100); // Allow time for message xfer - disabled v6.1.0b WifiDisconnect(); ESP.restart(); } */ void EspRestart() { ESP.restart(); } #ifdef USE_DISCOVERY /*********************************************************************************************\ * mDNS \*********************************************************************************************/ #ifdef MQTT_HOST_DISCOVERY boolean MdnsDiscoverMqttServer() { if (!mdns_begun) { return false; } int n = MDNS.queryService("mqtt", "tcp"); // Search for mqtt service snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_QUERY_DONE " %d"), n); AddLog(LOG_LEVEL_INFO); if (n > 0) { // Note: current strategy is to get the first MQTT service (even when many are found) snprintf_P(Settings.mqtt_host, sizeof(Settings.mqtt_host), MDNS.IP(0).toString().c_str()); Settings.mqtt_port = MDNS.port(0); snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_MQTT_SERVICE_FOUND " %s, " D_IP_ADDRESS " %s, " D_PORT " %d"), MDNS.hostname(0).c_str(), Settings.mqtt_host, Settings.mqtt_port); AddLog(LOG_LEVEL_INFO); } return n > 0; } #endif // MQTT_HOST_DISCOVERY #endif // USE_DISCOVERY /*********************************************************************************************\ * Basic I2C routines \*********************************************************************************************/ #ifdef USE_I2C #define I2C_RETRY_COUNTER 3 uint32_t i2c_buffer = 0; bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size) { byte x = I2C_RETRY_COUNTER; i2c_buffer = 0; do { Wire.beginTransmission(addr); // start transmission to device Wire.write(reg); // sends register address to read from if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request... Wire.requestFrom((int)addr, (int)size); // send data n-bytes read if (Wire.available() == size) { for (byte i = 0; i < size; i++) { i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA } } } x--; } while (Wire.endTransmission(true) != 0 && x != 0); // end transmission return (x); } bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 1); *data = (uint8_t)i2c_buffer; return status; } bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (uint16_t)i2c_buffer; return status; } bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (int16_t)i2c_buffer; return status; } bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16(&ldata, addr, reg); *data = (ldata >> 8) | (ldata << 8); return status; } bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16LE(&ldata, addr, reg); *data = (int16_t)ldata; return status; } bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 3); *data = i2c_buffer; return status; } uint8_t I2cRead8(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 1); return (uint8_t)i2c_buffer; } uint16_t I2cRead16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (uint16_t)i2c_buffer; } int16_t I2cReadS16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (int16_t)i2c_buffer; } uint16_t I2cRead16LE(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); uint16_t temp = (uint16_t)i2c_buffer; return (temp >> 8) | (temp << 8); } int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg) { return (int16_t)I2cRead16LE(addr, reg); } int32_t I2cRead24(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 3); return i2c_buffer; } bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size) { byte x = I2C_RETRY_COUNTER; do { Wire.beginTransmission((uint8_t)addr); // start transmission to device Wire.write(reg); // sends register address to write to uint8_t bytes = size; while (bytes--) { Wire.write((val >> (8 * bytes)) & 0xFF); // write data } x--; } while (Wire.endTransmission(true) != 0 && x != 0); // end transmission return (x); } bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 1); } bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 2); } int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); Wire.endTransmission(); if (len != Wire.requestFrom((uint8_t)addr, (byte)len)) { return 1; } while (len--) { *reg_data = (uint8_t)Wire.read(); reg_data++; } return 0; } int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); while (len--) { Wire.write(*reg_data); reg_data++; } Wire.endTransmission(); return 0; } void I2cScan(char *devs, unsigned int devs_len) { // Return error codes defined in twi.h and core_esp8266_si2c.c // I2C_OK 0 // I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover // I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond slave clock stretch time // I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by slave/another_master after n bits // I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master? byte error = 0; byte address = 0; byte any = 0; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT)); for (address = 1; address <= 127; address++) { Wire.beginTransmission(address); error = Wire.endTransmission(); if (0 == error) { any = 1; snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address); } else if (error != 2) { // Seems to happen anyway using this scan any = 2; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address); break; } } if (any) { strncat(devs, "\"}", devs_len); } else { snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}")); } } boolean I2cDevice(byte addr) { for (byte address = 1; address <= 127; address++) { Wire.beginTransmission(address); if (!Wire.endTransmission() && (address == addr)) { return true; } } return false; } #endif // USE_I2C /*********************************************************************************************\ * Real Time Clock * * Sources: Time by Michael Margolis and Paul Stoffregen (https://github.com/PaulStoffregen/Time) * Timezone by Jack Christensen (https://github.com/JChristensen/Timezone) \*********************************************************************************************/ extern "C" { #include "sntp.h" } #define SECS_PER_MIN ((uint32_t)(60UL)) #define SECS_PER_HOUR ((uint32_t)(3600UL)) #define SECS_PER_DAY ((uint32_t)(SECS_PER_HOUR * 24UL)) #define LEAP_YEAR(Y) (((1970+Y)>0) && !((1970+Y)%4) && (((1970+Y)%100) || !((1970+Y)%400))) Ticker TickerRtc; static const uint8_t kDaysInMonth[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // API starts months from 1, this array starts from 0 static const char kMonthNamesEnglish[] = "JanFebMarAprMayJunJulAugSepOctNovDec"; uint32_t utc_time = 0; uint32_t local_time = 0; uint32_t daylight_saving_time = 0; uint32_t standard_time = 0; uint32_t ntp_time = 0; uint32_t midnight = 1451602800; uint32_t restart_time = 0; int16_t time_timezone = 0; // Timezone * 10 uint8_t midnight_now = 0; uint8_t ntp_sync_minute = 0; String GetBuildDateAndTime() { // "2017-03-07T11:08:02" - ISO8601:2004 char bdt[21]; char *p; char mdate[] = __DATE__; // "Mar 7 2017" char *smonth = mdate; int day = 0; int year = 0; // sscanf(mdate, "%s %d %d", bdt, &day, &year); // Not implemented in 2.3.0 and probably too much code byte i = 0; for (char *str = strtok_r(mdate, " ", &p); str && i < 3; str = strtok_r(NULL, " ", &p)) { switch (i++) { case 0: // Month smonth = str; break; case 1: // Day day = atoi(str); break; case 2: // Year year = atoi(str); } } int month = (strstr(kMonthNamesEnglish, smonth) -kMonthNamesEnglish) /3 +1; snprintf_P(bdt, sizeof(bdt), PSTR("%d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%s"), year, month, day, __TIME__); return String(bdt); } /* * timestamps in https://en.wikipedia.org/wiki/ISO_8601 format * * DT_UTC - current data and time in Greenwich, England (aka GMT) * DT_LOCAL - current date and time taking timezone into account * DT_RESTART - the date and time this device last started, in local timezone * * Format: * "2017-03-07T11:08:02-07:00" - if DT_LOCAL and SetOption52 = 1 * "2017-03-07T11:08:02" - otherwise */ String GetDateAndTime(byte time_type) { // "2017-03-07T11:08:02-07:00" - ISO8601:2004 char dt[27]; TIME_T tmpTime; switch (time_type) { case DT_UTC: BreakTime(utc_time, tmpTime); tmpTime.year += 1970; break; case DT_RESTART: if (restart_time == 0) { return ""; } BreakTime(restart_time, tmpTime); tmpTime.year += 1970; break; default: tmpTime = RtcTime; } snprintf_P(dt, sizeof(dt), PSTR("%04d-%02d-%02dT%02d:%02d:%02d"), tmpTime.year, tmpTime.month, tmpTime.day_of_month, tmpTime.hour, tmpTime.minute, tmpTime.second); if (Settings.flag3.time_append_timezone && (time_type == DT_LOCAL)) { snprintf_P(dt, sizeof(dt), PSTR("%s%+03d:%02d"), dt, time_timezone / 10, abs((time_timezone % 10) * 6)); // if timezone = +2:30 then time_timezone = 25 } return String(dt); } String GetUptime() { char dt[16]; TIME_T ut; if (restart_time) { BreakTime(utc_time - restart_time, ut); } else { BreakTime(uptime, ut); } // "P128DT14H35M44S" - ISO8601:2004 - https://en.wikipedia.org/wiki/ISO_8601 Durations // snprintf_P(dt, sizeof(dt), PSTR("P%dDT%02dH%02dM%02dS"), ut.days, ut.hour, ut.minute, ut.second); // "128 14:35:44" - OpenVMS // "128T14:35:44" - Tasmota snprintf_P(dt, sizeof(dt), PSTR("%dT%02d:%02d:%02d"), ut.days, ut.hour, ut.minute, ut.second); return String(dt); } uint32_t GetMinutesUptime() { TIME_T ut; if (restart_time) { BreakTime(utc_time - restart_time, ut); } else { BreakTime(uptime, ut); } return (ut.days *1440) + (ut.hour *60) + ut.minute; } uint32_t GetMinutesPastMidnight() { uint32_t minutes = 0; if (RtcTime.valid) { minutes = (RtcTime.hour *60) + RtcTime.minute; } return minutes; } void BreakTime(uint32_t time_input, TIME_T &tm) { // break the given time_input into time components // this is a more compact version of the C library localtime function // note that year is offset from 1970 !!! uint8_t year; uint8_t month; uint8_t month_length; uint32_t time; unsigned long days; time = time_input; tm.second = time % 60; time /= 60; // now it is minutes tm.minute = time % 60; time /= 60; // now it is hours tm.hour = time % 24; time /= 24; // now it is days tm.days = time; tm.day_of_week = ((time + 4) % 7) + 1; // Sunday is day 1 year = 0; days = 0; while((unsigned)(days += (LEAP_YEAR(year) ? 366 : 365)) <= time) { year++; } tm.year = year; // year is offset from 1970 days -= LEAP_YEAR(year) ? 366 : 365; time -= days; // now it is days in this year, starting at 0 tm.day_of_year = time; days = 0; month = 0; month_length = 0; for (month = 0; month < 12; month++) { if (1 == month) { // february if (LEAP_YEAR(year)) { month_length = 29; } else { month_length = 28; } } else { month_length = kDaysInMonth[month]; } if (time >= month_length) { time -= month_length; } else { break; } } strlcpy(tm.name_of_month, kMonthNames + (month *3), 4); tm.month = month + 1; // jan is month 1 tm.day_of_month = time + 1; // day of month tm.valid = (time_input > 1451602800); // 2016-01-01 } uint32_t MakeTime(TIME_T &tm) { // assemble time elements into time_t // note year argument is offset from 1970 int i; uint32_t seconds; // seconds from 1970 till 1 jan 00:00:00 of the given year seconds = tm.year * (SECS_PER_DAY * 365); for (i = 0; i < tm.year; i++) { if (LEAP_YEAR(i)) { seconds += SECS_PER_DAY; // add extra days for leap years } } // add days for this year, months start from 1 for (i = 1; i < tm.month; i++) { if ((2 == i) && LEAP_YEAR(tm.year)) { seconds += SECS_PER_DAY * 29; } else { seconds += SECS_PER_DAY * kDaysInMonth[i-1]; // monthDay array starts from 0 } } seconds+= (tm.day_of_month - 1) * SECS_PER_DAY; seconds+= tm.hour * SECS_PER_HOUR; seconds+= tm.minute * SECS_PER_MIN; seconds+= tm.second; return seconds; } uint32_t RuleToTime(TimeRule r, int yr) { TIME_T tm; uint32_t t; uint8_t m; uint8_t w; // temp copies of r.month and r.week m = r.month; w = r.week; if (0 == w) { // Last week = 0 if (++m > 12) { // for "Last", go to the next month m = 1; yr++; } w = 1; // and treat as first week of next month, subtract 7 days later } tm.hour = r.hour; tm.minute = 0; tm.second = 0; tm.day_of_month = 1; tm.month = m; tm.year = yr - 1970; t = MakeTime(tm); // First day of the month, or first day of next month for "Last" rules BreakTime(t, tm); t += (7 * (w - 1) + (r.dow - tm.day_of_week + 7) % 7) * SECS_PER_DAY; if (0 == r.week) { t -= 7 * SECS_PER_DAY; // back up a week if this is a "Last" rule } return t; } String GetTime(int type) { char stime[25]; // Skip newline uint32_t time = utc_time; if (1 == type) time = local_time; if (2 == type) time = daylight_saving_time; if (3 == type) time = standard_time; snprintf_P(stime, sizeof(stime), sntp_get_real_time(time)); return String(stime); } uint32_t LocalTime() { return local_time; } uint32_t Midnight() { return midnight; } boolean MidnightNow() { boolean mnflg = midnight_now; if (mnflg) midnight_now = 0; return mnflg; } void RtcSecond() { int32_t stdoffset; int32_t dstoffset; TIME_T tmpTime; if ((ntp_sync_minute > 59) && (RtcTime.minute > 2)) ntp_sync_minute = 1; // If sync prepare for a new cycle uint8_t offset = (uptime < 30) ? RtcTime.second : (((ESP.getChipId() & 0xF) * 3) + 3) ; // First try ASAP to sync. If fails try once every 60 seconds based on chip id if ((WL_CONNECTED == WiFi.status()) && (offset == RtcTime.second) && ((RtcTime.year < 2016) || (ntp_sync_minute == RtcTime.minute) || ntp_force_sync)) { ntp_time = sntp_get_current_timestamp(); if (ntp_time > 1451602800) { // Fix NTP bug in core 2.4.1/SDK 2.2.1 (returns Thu Jan 01 08:00:10 1970 after power on) ntp_force_sync = 0; utc_time = ntp_time; ntp_sync_minute = 60; // Sync so block further requests if (restart_time == 0) { restart_time = utc_time - uptime; // save first ntp time as restart time } BreakTime(utc_time, tmpTime); RtcTime.year = tmpTime.year + 1970; daylight_saving_time = RuleToTime(Settings.tflag[1], RtcTime.year); standard_time = RuleToTime(Settings.tflag[0], RtcTime.year); snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"), GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str()); AddLog(LOG_LEVEL_DEBUG); if (local_time < 1451602800) { // 2016-01-01 rules_flag.time_init = 1; } else { rules_flag.time_set = 1; } } else { ntp_sync_minute++; // Try again in next minute } } utc_time++; local_time = utc_time; if (local_time > 1451602800) { // 2016-01-01 int32_t time_offset = Settings.timezone * SECS_PER_HOUR; if (99 == Settings.timezone) { dstoffset = Settings.toffset[1] * SECS_PER_MIN; stdoffset = Settings.toffset[0] * SECS_PER_MIN; if (Settings.tflag[1].hemis) { // Southern hemisphere if ((utc_time >= (standard_time - dstoffset)) && (utc_time < (daylight_saving_time - stdoffset))) { time_offset = stdoffset; // Standard Time } else { time_offset = dstoffset; // Daylight Saving Time } } else { // Northern hemisphere if ((utc_time >= (daylight_saving_time - stdoffset)) && (utc_time < (standard_time - dstoffset))) { time_offset = dstoffset; // Daylight Saving Time } else { time_offset = stdoffset; // Standard Time } } } local_time += time_offset; time_timezone = time_offset / 360; // (SECS_PER_HOUR / 10) fails as it is defined as UL } BreakTime(local_time, RtcTime); if (!RtcTime.hour && !RtcTime.minute && !RtcTime.second && RtcTime.valid) { midnight = local_time; midnight_now = 1; } RtcTime.year += 1970; } void RtcInit() { sntp_setservername(0, Settings.ntp_server[0]); sntp_setservername(1, Settings.ntp_server[1]); sntp_setservername(2, Settings.ntp_server[2]); sntp_stop(); sntp_set_timezone(0); // UTC time sntp_init(); utc_time = 0; BreakTime(utc_time, RtcTime); TickerRtc.attach(1, RtcSecond); } #ifndef USE_ADC_VCC /*********************************************************************************************\ * ADC support \*********************************************************************************************/ uint16_t adc_last_value = 0; uint16_t AdcRead() { uint16_t analog = 0; for (byte i = 0; i < 32; i++) { analog += analogRead(A0); delay(1); } analog >>= 5; return analog; } #ifdef USE_RULES void AdcEvery250ms() { uint16_t new_value = AdcRead(); if ((new_value < adc_last_value -10) || (new_value > adc_last_value +10)) { adc_last_value = new_value; uint16_t value = adc_last_value / 10; snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value); XdrvRulesProcess(); } } #endif // USE_RULES void AdcShow(boolean json) { uint16_t analog = AdcRead(); if (json) { snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"ANALOG\":{\"A0\":%d}"), mqtt_data, analog); #ifdef USE_WEBSERVER } else { snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ANALOG, mqtt_data, "", 0, analog); #endif // USE_WEBSERVER } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ #define XSNS_02 boolean Xsns02(byte function) { boolean result = false; if (pin[GPIO_ADC0] < 99) { switch (function) { #ifdef USE_RULES case FUNC_EVERY_250_MSECOND: AdcEvery250ms(); break; #endif // USE_RULES case FUNC_JSON_APPEND: AdcShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_APPEND: AdcShow(0); break; #endif // USE_WEBSERVER } } return result; } #endif // USE_ADC_VCC /*********************************************************************************************\ * Syslog * * Example: * snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_LOG "Any value %d"), value); * AddLog(LOG_LEVEL_DEBUG); * \*********************************************************************************************/ void SetSeriallog(byte loglevel) { Settings.seriallog_level = loglevel; seriallog_level = loglevel; seriallog_timer = 0; } #ifdef USE_WEBSERVER void GetLog(byte idx, char** entry_pp, size_t* len_p) { char* entry_p = NULL; size_t len = 0; if (idx) { char* it = web_log; do { byte cur_idx = *it; it++; size_t tmp = strchrspn(it, '\1'); tmp++; // Skip terminating '\1' if (cur_idx == idx) { // Found the requested entry len = tmp; entry_p = it; break; } it += tmp; } while (it < web_log + WEB_LOG_SIZE && *it != '\0'); } *entry_pp = entry_p; *len_p = len; } #endif // USE_WEBSERVER void Syslog() { // Destroys log_data char syslog_preamble[64]; // Hostname + Id if (syslog_host_hash != GetHash(Settings.syslog_host, strlen(Settings.syslog_host))) { syslog_host_hash = GetHash(Settings.syslog_host, strlen(Settings.syslog_host)); WiFi.hostByName(Settings.syslog_host, syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash } if (PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) { snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), my_hostname); memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble)); log_data[sizeof(log_data) -1] = '\0'; memcpy(log_data, syslog_preamble, strlen(syslog_preamble)); PortUdp.write(log_data); PortUdp.endPacket(); } else { syslog_level = 0; syslog_timer = SYSLOG_TIMER; snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER); AddLog(LOG_LEVEL_INFO); } } void AddLog(byte loglevel) { char mxtime[10]; // "13:45:21 " snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d "), RtcTime.hour, RtcTime.minute, RtcTime.second); if (loglevel <= seriallog_level) { Serial.printf("%s%s\n", mxtime, log_data); } #ifdef USE_WEBSERVER if (Settings.webserver && (loglevel <= Settings.weblog_level)) { // Delimited, zero-terminated buffer of log lines. // Each entry has this format: [index][log data]['\1'] if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string while (web_log_index == web_log[0] || // If log already holds the next index, remove it strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0' { char* it = web_log; it++; // Skip web_log_index it += strchrspn(it, '\1'); // Skip log line it++; // Skip delimiting "\1" memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line } snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data); if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string } #endif // USE_WEBSERVER if ((WL_CONNECTED == WiFi.status()) && (loglevel <= syslog_level)) { Syslog(); } } void AddLog_P(byte loglevel, const char *formatP) { snprintf_P(log_data, sizeof(log_data), formatP); AddLog(loglevel); } void AddLog_P(byte loglevel, const char *formatP, const char *formatP2) { char message[100]; snprintf_P(log_data, sizeof(log_data), formatP); snprintf_P(message, sizeof(message), formatP2); strncat(log_data, message, sizeof(log_data)); AddLog(loglevel); } void AddLogSerial(byte loglevel, uint8_t *buffer, int count) { snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_SERIAL D_RECEIVED)); for (int i = 0; i < count; i++) { snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer++)); } AddLog(loglevel); } void AddLogSerial(byte loglevel) { AddLogSerial(loglevel, (uint8_t*)serial_in_buffer, serial_in_byte_counter); } void AddLogMissed(char *sensor, uint8_t misses) { snprintf_P(log_data, sizeof(log_data), PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses); AddLog(LOG_LEVEL_DEBUG); } /*********************************************************************************************\ * \*********************************************************************************************/