/*
support.ino - support for Sonoff-Tasmota
Copyright (C) 2018 Theo Arends
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
IPAddress syslog_host_addr; // Syslog host IP address
uint32_t syslog_host_hash = 0; // Syslog host name hash
/*********************************************************************************************\
* Watchdog extension (https://github.com/esp8266/Arduino/issues/1532)
\*********************************************************************************************/
Ticker tickerOSWatch;
#define OSWATCH_RESET_TIME 120
static unsigned long oswatch_last_loop_time;
byte oswatch_blocked_loop = 0;
#ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception
//void OsWatchTicker() ICACHE_RAM_ATTR;
#endif // USE_WS2812_DMA
#ifdef USE_KNX
bool knx_started = false;
#endif // USE_KNX
void OsWatchTicker()
{
unsigned long t = millis();
unsigned long last_run = abs(t - oswatch_last_loop_time);
#ifdef DEBUG_THEO
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WifiGetRssiAsQuality(WiFi.RSSI()), last_run);
AddLog(LOG_LEVEL_DEBUG);
#endif // DEBUG_THEO
if (last_run >= (OSWATCH_RESET_TIME * 1000)) {
// AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space
RtcSettings.oswatch_blocked_loop = 1;
RtcSettingsSave();
// ESP.restart(); // normal reboot
ESP.reset(); // hard reset
}
}
void OsWatchInit()
{
oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop;
RtcSettings.oswatch_blocked_loop = 0;
oswatch_last_loop_time = millis();
tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker);
}
void OsWatchLoop()
{
oswatch_last_loop_time = millis();
// while(1) delay(1000); // this will trigger the os watch
}
String GetResetReason()
{
char buff[32];
if (oswatch_blocked_loop) {
strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff));
return String(buff);
} else {
return ESP.getResetReason();
}
}
boolean OsWatchBlockedLoop()
{
return oswatch_blocked_loop;
}
/*********************************************************************************************\
* Miscellaneous
\*********************************************************************************************/
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0
// Functions not available in 2.3.0
// http://clc-wiki.net/wiki/C_standard_library:string.h:memchr
void* memchr(const void* ptr, int value, size_t num)
{
unsigned char *p = (unsigned char*)ptr;
while (num--) {
if (*p != (unsigned char)value) {
p++;
} else {
return p;
}
}
return 0;
}
// http://clc-wiki.net/wiki/C_standard_library:string.h:strspn
// Get span until any character in string
size_t strcspn(const char *str1, const char *str2)
{
size_t ret = 0;
while (*str1) {
if (strchr(str2, *str1)) { // Slow
return ret;
} else {
str1++;
ret++;
}
}
return ret;
}
#endif // ARDUINO_ESP8266_RELEASE_2_3_0
// Get span until single character in string
size_t strchrspn(const char *str1, int character)
{
size_t ret = 0;
char *start = (char*)str1;
char *end = strchr(str1, character);
if (end) ret = end - start;
return ret;
}
// Function to return a substring defined by a delimiter at an index
char* subStr(char* dest, char* str, const char *delim, int index)
{
char *act;
char *sub;
char *ptr;
int i;
// Since strtok consumes the first arg, make a copy
strncpy(dest, str, strlen(str)+1);
for (i = 1, act = dest; i <= index; i++, act = NULL) {
sub = strtok_r(act, delim, &ptr);
if (sub == NULL) break;
}
sub = Trim(sub);
return sub;
}
double CharToDouble(char *str)
{
// simple ascii to double, because atof or strtod are too large
char strbuf[24];
strlcpy(strbuf, str, sizeof(strbuf));
char *pt;
double left = atoi(strbuf);
double right = 0;
short len = 0;
pt = strtok (strbuf, ".");
if (pt) {
pt = strtok (NULL, ".");
if (pt) {
right = atoi(pt);
len = strlen(pt);
double fac = 1;
while (len) {
fac /= 10.0;
len--;
}
// pow is also very large
//double fac=pow(10,-len);
right *= fac;
}
}
double result = left + right;
if (left < 0) { result = left - right; }
return result;
}
int TextToInt(char *str)
{
char *p;
uint8_t radix = 10;
if ('#' == str[0]) {
radix = 16;
str++;
}
return strtol(str, &p, radix);
}
char* dtostrfd(double number, unsigned char prec, char *s)
{
return dtostrf(number, 1, prec, s);
}
char* Unescape(char* buffer, uint16_t* size)
{
uint8_t* read = (uint8_t*)buffer;
uint8_t* write = (uint8_t*)buffer;
uint16_t start_size = *size;
uint16_t end_size = *size;
uint8_t che = 0;
while (start_size > 0) {
uint8_t ch = *read++;
start_size--;
if (ch != '\\') {
*write++ = ch;
} else {
if (start_size > 0) {
uint8_t chi = *read++;
start_size--;
end_size--;
switch (chi) {
case '\\': che = '\\'; break; // 5C Backslash
case 'a': che = '\a'; break; // 07 Bell (Alert)
case 'b': che = '\b'; break; // 08 Backspace
case 'e': che = '\e'; break; // 1B Escape
case 'f': che = '\f'; break; // 0C Formfeed
case 'n': che = '\n'; break; // 0A Linefeed (Newline)
case 'r': che = '\r'; break; // 0D Carriage return
case 's': che = ' '; break; // 20 Space
case 't': che = '\t'; break; // 09 Horizontal tab
case 'v': che = '\v'; break; // 0B Vertical tab
// case '?': che = '\?'; break; // 3F Question mark
default : {
che = chi;
*write++ = ch;
end_size++;
}
}
*write++ = che;
}
}
}
*size = end_size;
return buffer;
}
char* RemoveSpace(char* p)
{
char* write = p;
char* read = p;
char ch = '.';
while (ch != '\0') {
ch = *read++;
if (!isspace(ch)) {
*write++ = ch;
}
}
*write = '\0';
return p;
}
char* UpperCase(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = toupper(ch);
}
return dest;
}
char* UpperCase_P(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = pgm_read_byte(read++);
*write++ = toupper(ch);
}
return dest;
}
char* LTrim(char* p)
{
while ((*p != '\0') && (isblank(*p))) {
p++; // Trim leading spaces
}
return p;
}
char* RTrim(char* p)
{
char* q = p + strlen(p) -1;
while ((q >= p) && (isblank(*q))) {
q--; // Trim trailing spaces
}
q++;
*q = '\0';
return p;
}
char* Trim(char* p)
{
if (*p == '\0') { return p; }
while (isspace(*p)) { p++; } // Trim leading spaces
if (*p == '\0') { return p; }
char* q = p + strlen(p) -1;
while (isspace(*q) && q >= p) { q--; } // Trim trailing spaces
q++;
*q = '\0';
return p;
}
char* NoAlNumToUnderscore(char* dest, const char* source)
{
char* write = dest;
const char* read = source;
char ch = '.';
while (ch != '\0') {
ch = *read++;
*write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_';
}
return dest;
}
void SetShortcut(char* str, uint8_t action)
{
if ('\0' != str[0]) { // There must be at least one character in the buffer
str[0] = '0' + action; // SC_CLEAR, SC_DEFAULT, SC_USER
str[1] = '\0';
}
}
uint8_t Shortcut(const char* str)
{
uint8_t result = 10;
if ('\0' == str[1]) { // Only allow single character input for shortcut
if (('"' == str[0]) || ('0' == str[0])) {
result = SC_CLEAR;
} else {
result = atoi(str); // 1 = SC_DEFAULT, 2 = SC_USER
if (0 == result) {
result = 10;
}
}
}
return result;
}
boolean ParseIp(uint32_t* addr, const char* str)
{
uint8_t *part = (uint8_t*)addr;
byte i;
*addr = 0;
for (i = 0; i < 4; i++) {
part[i] = strtoul(str, NULL, 10); // Convert byte
str = strchr(str, '.');
if (str == NULL || *str == '\0') {
break; // No more separators, exit
}
str++; // Point to next character after separator
}
return (3 == i);
}
void MakeValidMqtt(byte option, char* str)
{
// option 0 = replace by underscore
// option 1 = delete character
uint16_t i = 0;
while (str[i] > 0) {
// if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) {
if (option) {
uint16_t j = i;
while (str[j] > 0) {
str[j] = str[j +1];
j++;
}
i--;
} else {
str[i] = '_';
}
}
i++;
}
}
// Function to parse & check if version_str is newer than our currently installed version.
bool NewerVersion(char* version_str)
{
uint32_t version = 0;
uint8_t i = 0;
char *str_ptr;
char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it.
if (!version_dup) {
return false; // Bail if we can't duplicate. Assume bad.
}
// Loop through the version string, splitting on '.' seperators.
for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(NULL, ".", &str_ptr), i++) {
int field = atoi(str);
// The fields in a version string can only range from 0-255.
if ((field < 0) || (field > 255)) {
free(version_dup);
return false;
}
// Shuffle the accumulated bytes across, and add the new byte.
version = (version << 8) + field;
// Check alpha delimiter after 1.2.3 only
if ((2 == i) && isalpha(str[strlen(str)-1])) {
field = str[strlen(str)-1] & 0x1f;
version = (version << 8) + field;
i++;
}
}
free(version_dup); // We no longer need this.
// A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1).
// If not, then don't consider it a valid version string.
if ((i < 2) || (i > sizeof(VERSION))) {
return false;
}
// Keep shifting the parsed version until we hit the maximum number of tokens.
// VERSION stores the major number of the version in the most significant byte of the uint32_t.
while (i < sizeof(VERSION)) {
version <<= 8;
i++;
}
// Now we should have a fully constructed version number in uint32_t form.
return (version > VERSION);
}
char* GetPowerDevice(char* dest, uint8_t idx, size_t size, uint8_t option)
{
char sidx[8];
strncpy_P(dest, S_RSLT_POWER, size); // POWER
if ((devices_present + option) > 1) {
snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x
strncat(dest, sidx, size); // POWERx
}
return dest;
}
char* GetPowerDevice(char* dest, uint8_t idx, size_t size)
{
return GetPowerDevice(dest, idx, size, 0);
}
float ConvertTemp(float c)
{
float result = c;
if (!isnan(c) && Settings.flag.temperature_conversion) {
result = c * 1.8 + 32; // Fahrenheit
}
return result;
}
char TempUnit()
{
return (Settings.flag.temperature_conversion) ? 'F' : 'C';
}
void SetGlobalValues(float temperature, float humidity)
{
global_update = uptime;
global_temperature = temperature;
global_humidity = humidity;
}
void ResetGlobalValues()
{
if ((uptime - global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes
global_update = 0;
global_temperature = 0;
global_humidity = 0;
}
}
double FastPrecisePow(double a, double b)
{
// https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/
// calculate approximation with fraction of the exponent
int e = (int)b;
union {
double d;
int x[2];
} u = { a };
u.x[1] = (int)((b - e) * (u.x[1] - 1072632447) + 1072632447);
u.x[0] = 0;
// exponentiation by squaring with the exponent's integer part
// double r = u.d makes everything much slower, not sure why
double r = 1.0;
while (e) {
if (e & 1) {
r *= a;
}
a *= a;
e >>= 1;
}
return r * u.d;
}
uint32_t SqrtInt(uint32_t num)
{
if (num <= 1) {
return num;
}
uint32_t x = num / 2;
uint32_t y;
do {
y = (x + num / x) / 2;
if (y >= x) {
return x;
}
x = y;
} while (true);
}
uint32_t RoundSqrtInt(uint32_t num)
{
uint32_t s = SqrtInt(4 * num);
if (s & 1) {
s++;
}
return s / 2;
}
char* GetTextIndexed(char* destination, size_t destination_size, uint16_t index, const char* haystack)
{
// Returns empty string if not found
// Returns text of found
char* write = destination;
const char* read = haystack;
index++;
while (index--) {
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
if (0 == ch) {
if (index) {
write = destination;
}
break;
}
}
*write = '\0';
return destination;
}
int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack)
{
// Returns -1 of not found
// Returns index and command if found
int result = -1;
const char* read = haystack;
char* write = destination;
while (true) {
result++;
size_t size = destination_size -1;
write = destination;
char ch = '.';
while ((ch != '\0') && (ch != '|')) {
ch = pgm_read_byte(read++);
if (size && (ch != '|')) {
*write++ = ch;
size--;
}
}
*write = '\0';
if (!strcasecmp(needle, destination)) {
break;
}
if (0 == ch) {
result = -1;
break;
}
}
return result;
}
int GetStateNumber(char *state_text)
{
char command[CMDSZ];
int state_number = -1;
if (GetCommandCode(command, sizeof(command), state_text, kOptionOff) >= 0) {
state_number = 0;
}
else if (GetCommandCode(command, sizeof(command), state_text, kOptionOn) >= 0) {
state_number = 1;
}
else if (GetCommandCode(command, sizeof(command), state_text, kOptionToggle) >= 0) {
state_number = 2;
}
else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlink) >= 0) {
state_number = 3;
}
else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlinkOff) >= 0) {
state_number = 4;
}
return state_number;
}
boolean GetUsedInModule(byte val, uint8_t *arr)
{
int offset = 0;
if (!val) { return false; } // None
#ifndef USE_I2C
if (GPIO_I2C_SCL == val) { return true; }
if (GPIO_I2C_SDA == val) { return true; }
#endif
#ifndef USE_SR04
if (GPIO_SR04_TRIG == val) { return true; }
if (GPIO_SR04_ECHO == val) { return true; }
#endif
#ifndef USE_WS2812
if (GPIO_WS2812 == val) { return true; }
#endif
#ifndef USE_IR_REMOTE
if (GPIO_IRSEND == val) { return true; }
#ifndef USE_IR_RECEIVE
if (GPIO_IRRECV == val) { return true; }
#endif
#endif
#ifndef USE_MHZ19
if (GPIO_MHZ_TXD == val) { return true; }
if (GPIO_MHZ_RXD == val) { return true; }
#endif
int pzem = 3;
#ifndef USE_PZEM004T
pzem--;
if (GPIO_PZEM004_RX == val) { return true; }
#endif
#ifndef USE_PZEM_AC
pzem--;
if (GPIO_PZEM016_RX == val) { return true; }
#endif
#ifndef USE_PZEM_DC
pzem--;
if (GPIO_PZEM017_RX == val) { return true; }
#endif
if (!pzem && (GPIO_PZEM0XX_TX == val)) { return true; }
#ifndef USE_SENSEAIR
if (GPIO_SAIR_TX == val) { return true; }
if (GPIO_SAIR_RX == val) { return true; }
#endif
#ifndef USE_SPI
if (GPIO_SPI_CS == val) { return true; }
if (GPIO_SPI_DC == val) { return true; }
#endif
#ifndef USE_DISPLAY
if (GPIO_BACKLIGHT == val) { return true; }
#endif
#ifndef USE_PMS5003
if (GPIO_PMS5003 == val) { return true; }
#endif
#ifndef USE_NOVA_SDS
if (GPIO_SDS0X1_TX == val) { return true; }
if (GPIO_SDS0X1_RX == val) { return true; }
#endif
#ifndef USE_SERIAL_BRIDGE
if (GPIO_SBR_TX == val) { return true; }
if (GPIO_SBR_RX == val) { return true; }
#endif
#ifndef USE_SR04
if (GPIO_SR04_TRIG == val) { return true; }
if (GPIO_SR04_ECHO == val) { return true; }
#endif
#ifndef USE_SDM120
if (GPIO_SDM120_TX == val) { return true; }
if (GPIO_SDM120_RX == val) { return true; }
#endif
#ifndef USE_SDM630
if (GPIO_SDM630_TX == val) { return true; }
if (GPIO_SDM630_RX == val) { return true; }
#endif
#ifndef USE_TM1638
if (GPIO_TM16CLK == val) { return true; }
if (GPIO_TM16DIO == val) { return true; }
if (GPIO_TM16STB == val) { return true; }
#endif
#ifndef USE_HX711
if (GPIO_HX711_SCK == val) { return true; }
if (GPIO_HX711_DAT == val) { return true; }
#endif
if ((val >= GPIO_REL1) && (val < GPIO_REL1 + MAX_RELAYS)) {
offset = (GPIO_REL1_INV - GPIO_REL1);
}
if ((val >= GPIO_REL1_INV) && (val < GPIO_REL1_INV + MAX_RELAYS)) {
offset = -(GPIO_REL1_INV - GPIO_REL1);
}
if ((val >= GPIO_LED1) && (val < GPIO_LED1 + MAX_LEDS)) {
offset = (GPIO_LED1_INV - GPIO_LED1);
}
if ((val >= GPIO_LED1_INV) && (val < GPIO_LED1_INV + MAX_LEDS)) {
offset = -(GPIO_LED1_INV - GPIO_LED1);
}
if ((val >= GPIO_PWM1) && (val < GPIO_PWM1 + MAX_PWMS)) {
offset = (GPIO_PWM1_INV - GPIO_PWM1);
}
if ((val >= GPIO_PWM1_INV) && (val < GPIO_PWM1_INV + MAX_PWMS)) {
offset = -(GPIO_PWM1_INV - GPIO_PWM1);
}
for (byte i = 0; i < MAX_GPIO_PIN; i++) {
if (arr[i] == val) { return true; }
if (arr[i] == val + offset) { return true; }
}
return false;
}
void SetSerialBaudrate(int baudrate)
{
Settings.baudrate = baudrate / 1200;
if (Serial.baudRate() != baudrate) {
if (seriallog_level) {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate);
AddLog(LOG_LEVEL_INFO);
}
delay(100);
Serial.flush();
Serial.begin(baudrate, serial_config);
delay(10);
Serial.println();
}
}
void ClaimSerial()
{
serial_local = 1;
AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial"));
SetSeriallog(LOG_LEVEL_NONE);
baudrate = Serial.baudRate();
Settings.baudrate = baudrate / 1200;
}
void SerialSendRaw(char *codes)
{
char *p;
char stemp[3];
uint8_t code;
int size = strlen(codes);
while (size > 0) {
snprintf(stemp, sizeof(stemp), codes);
code = strtol(stemp, &p, 16);
Serial.write(code);
size -= 2;
codes += 2;
}
}
uint32_t GetHash(const char *buffer, size_t size)
{
uint32_t hash = 0;
for (uint16_t i = 0; i <= size; i++) {
hash += (uint8_t)*buffer++ * (i +1);
}
return hash;
}
void ShowSource(int source)
{
if ((source > 0) && (source < SRC_MAX)) {
char stemp1[20];
snprintf_P(log_data, sizeof(log_data), PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource));
AddLog(LOG_LEVEL_DEBUG);
}
}
uint8_t ValidGPIO(uint8_t pin, uint8_t gpio)
{
uint8_t result = gpio;
if ((WEMOS == Settings.module) && (!Settings.flag3.user_esp8285_enable)) {
if ((pin == 9) || (pin == 10)) { result = GPIO_NONE; } // Disable possible flash GPIO9 and GPIO10
}
return result;
}
/*********************************************************************************************\
* Sleep aware time scheduler functions borrowed from ESPEasy
\*********************************************************************************************/
long TimeDifference(unsigned long prev, unsigned long next)
{
// Return the time difference as a signed value, taking into account the timers may overflow.
// Returned timediff is between -24.9 days and +24.9 days.
// Returned value is positive when "next" is after "prev"
long signed_diff = 0;
// To cast a value to a signed long, the difference may not exceed half 0xffffffffUL (= 4294967294)
const unsigned long half_max_unsigned_long = 2147483647u; // = 2^31 -1
if (next >= prev) {
const unsigned long diff = next - prev;
if (diff <= half_max_unsigned_long) { // Normal situation, just return the difference.
signed_diff = static_cast(diff); // Difference is a positive value.
} else {
// prev has overflow, return a negative difference value
signed_diff = static_cast((0xffffffffUL - next) + prev + 1u);
signed_diff = -1 * signed_diff;
}
} else {
// next < prev
const unsigned long diff = prev - next;
if (diff <= half_max_unsigned_long) { // Normal situation, return a negative difference value
signed_diff = static_cast(diff);
signed_diff = -1 * signed_diff;
} else {
// next has overflow, return a positive difference value
signed_diff = static_cast((0xffffffffUL - prev) + next + 1u);
}
}
return signed_diff;
}
long TimePassedSince(unsigned long timestamp)
{
// Compute the number of milliSeconds passed since timestamp given.
// Note: value can be negative if the timestamp has not yet been reached.
return TimeDifference(timestamp, millis());
}
bool TimeReached(unsigned long timer)
{
// Check if a certain timeout has been reached.
const long passed = TimePassedSince(timer);
return (passed >= 0);
}
void SetNextTimeInterval(unsigned long& timer, const unsigned long step)
{
timer += step;
const long passed = TimePassedSince(timer);
if (passed < 0) { return; } // Event has not yet happened, which is fine.
if (static_cast(passed) > step) {
// No need to keep running behind, start again.
timer = millis() + step;
return;
}
// Try to get in sync again.
timer = millis() + (step - passed);
}
/*********************************************************************************************\
* Fill feature list
\*********************************************************************************************/
void GetFeatures()
{
feature_drv1 = 0x00000000; // xdrv_01_mqtt.ino, xdrv_01_light.ino, xdrv_04_snfbridge.ino
// feature_drv1 |= 0x00000001;
// feature_drv1 |= 0x00000002;
#ifdef USE_I2C
feature_drv1 |= 0x00000004; // sonoff.ino
#endif
#ifdef USE_SPI
feature_drv1 |= 0x00000008; // sonoff.ino
#endif
#ifdef USE_DISCOVERY
feature_drv1 |= 0x00000010; // sonoff.ino
#endif
#ifdef USE_ARDUINO_OTA
feature_drv1 |= 0x00000020; // sonoff.ino
#endif
#ifdef USE_MQTT_TLS
feature_drv1 |= 0x00000040; // sonoff.ino
#endif
#ifdef USE_WEBSERVER
feature_drv1 |= 0x00000080; // xdrv_02_webserver.ino
#endif
#ifdef WEBSERVER_ADVERTISE
feature_drv1 |= 0x00000100; // xdrv_02_webserver.ino
#endif
#ifdef USE_EMULATION
feature_drv1 |= 0x00000200; // xplg_wemohue.ino
#endif
#if (MQTT_LIBRARY_TYPE == MQTT_PUBSUBCLIENT)
feature_drv1 |= 0x00000400; // xdrv_01_mqtt.ino
#endif
#if (MQTT_LIBRARY_TYPE == MQTT_TASMOTAMQTT)
feature_drv1 |= 0x00000800; // xdrv_01_mqtt.ino
#endif
#if (MQTT_LIBRARY_TYPE == MQTT_ESPMQTTARDUINO) // Obsolete since 6.2.1.11
feature_drv1 |= 0x00001000; // xdrv_01_mqtt.ino
#endif
#ifdef MQTT_HOST_DISCOVERY
feature_drv1 |= 0x00002000; // xdrv_01_mqtt.ino
#endif
#ifdef USE_ARILUX_RF
feature_drv1 |= 0x00004000; // xdrv_04_light.ino
#endif
#ifdef USE_WS2812
feature_drv1 |= 0x00008000; // xdrv_04_light.ino
#endif
#ifdef USE_WS2812_DMA
feature_drv1 |= 0x00010000; // xdrv_04_light.ino
#endif
#ifdef USE_IR_REMOTE
feature_drv1 |= 0x00020000; // xdrv_05_irremote.ino
#endif
#ifdef USE_IR_HVAC
feature_drv1 |= 0x00040000; // xdrv_05_irremote.ino
#endif
#ifdef USE_IR_RECEIVE
feature_drv1 |= 0x00080000; // xdrv_05_irremote.ino
#endif
#ifdef USE_DOMOTICZ
feature_drv1 |= 0x00100000; // xdrv_07_domoticz.ino
#endif
#ifdef USE_DISPLAY
feature_drv1 |= 0x00200000; // xdrv_13_display.ino
#endif
#ifdef USE_HOME_ASSISTANT
feature_drv1 |= 0x00400000; // xdrv_12_home_assistant.ino
#endif
#ifdef USE_SERIAL_BRIDGE
feature_drv1 |= 0x00800000; // xdrv_08_serial_bridge.ino
#endif
#ifdef USE_TIMERS
feature_drv1 |= 0x01000000; // xdrv_09_timers.ino
#endif
#ifdef USE_SUNRISE
feature_drv1 |= 0x02000000; // xdrv_09_timers.ino
#endif
#ifdef USE_TIMERS_WEB
feature_drv1 |= 0x04000000; // xdrv_09_timers.ino
#endif
#ifdef USE_RULES
feature_drv1 |= 0x08000000; // xdrv_10_rules.ino
#endif
#ifdef USE_KNX
feature_drv1 |= 0x10000000; // xdrv_11_knx.ino
#endif
#ifdef USE_WPS
feature_drv1 |= 0x20000000; // support.ino
#endif
#ifdef USE_SMARTCONFIG
feature_drv1 |= 0x40000000; // support.ino
#endif
#if (MQTT_LIBRARY_TYPE == MQTT_ARDUINOMQTT)
feature_drv1 |= 0x80000000; // xdrv_01_mqtt.ino
#endif
/*********************************************************************************************/
feature_drv2 = 0x00000000;
#ifdef USE_CONFIG_OVERRIDE
feature_drv2 |= 0x00000001; // user_config(_override).h
#endif
#ifdef BE_MINIMAL
feature_drv2 |= 0x00000002; // user_config(_override).h
#endif
#ifdef USE_SENSORS
feature_drv2 |= 0x00000004; // user_config(_override).h
#endif
#ifdef USE_CLASSIC
feature_drv2 |= 0x00000008; // user_config(_override).h
#endif
#ifdef USE_KNX_NO_EMULATION
feature_drv2 |= 0x00000010; // user_config(_override).h
#endif
#ifdef USE_DISPLAY_MODES1TO5
feature_drv2 |= 0x00000020; // xdrv_13_display.ino
#endif
#ifdef USE_DISPLAY_GRAPH
feature_drv2 |= 0x00000040; // xdrv_13_display.ino
#endif
#ifdef USE_DISPLAY_LCD
feature_drv2 |= 0x00000080; // xdsp_01_lcd.ino
#endif
#ifdef USE_DISPLAY_SSD1306
feature_drv2 |= 0x00000100; // xdsp_02_ssd1306.ino
#endif
#ifdef USE_DISPLAY_MATRIX
feature_drv2 |= 0x00000200; // xdsp_03_matrix.ino
#endif
#ifdef USE_DISPLAY_ILI9341
feature_drv2 |= 0x00000400; // xdsp_04_ili9341.ino
#endif
#ifdef USE_DISPLAY_EPAPER
feature_drv2 |= 0x00000800; // xdsp_05_epaper.ino
#endif
#ifdef USE_DISPLAY_SH1106
feature_drv2 |= 0x00001000; // xdsp_06_sh1106.ino
#endif
#ifdef USE_MP3_PLAYER
feature_drv2 |= 0x00002000; // xdrv_14_mp3.ino
#endif
#ifdef USE_PCA9685
feature_drv2 |= 0x00004000; // xdrv_15_pca9685.ino
#endif
#ifdef USE_TUYA_DIMMER
feature_drv2 |= 0x00008000; // xdrv_16_tuyadimmer.ino
#endif
#ifdef NO_EXTRA_4K_HEAP
feature_drv2 |= 0x00800000; // sonoff_post.h
#endif
#ifdef VTABLES_IN_IRAM
feature_drv2 |= 0x01000000; // platformio.ini
#endif
#ifdef VTABLES_IN_DRAM
feature_drv2 |= 0x02000000; // platformio.ini
#endif
#ifdef VTABLES_IN_FLASH
feature_drv2 |= 0x04000000; // platformio.ini
#endif
#ifdef PIO_FRAMEWORK_ARDUINO_LWIP_HIGHER_BANDWIDTH
feature_drv2 |= 0x08000000; // platformio.ini
#endif
#ifdef PIO_FRAMEWORK_ARDUINO_LWIP2_LOW_MEMORY
feature_drv2 |= 0x10000000; // platformio.ini
#endif
#ifdef PIO_FRAMEWORK_ARDUINO_LWIP2_HIGHER_BANDWIDTH
feature_drv2 |= 0x20000000; // platformio.ini
#endif
#ifdef DEBUG_THEO
feature_drv2 |= 0x40000000; // xdrv_99_debug.ino
#endif
#ifdef USE_DEBUG_DRIVER
feature_drv2 |= 0x80000000; // xdrv_99_debug.ino
#endif
/*********************************************************************************************/
feature_sns1 = 0x00000000; // xsns_01_counter.ino, xsns_04_snfsc.ino
// feature_sns1 |= 0x00000001;
#ifdef USE_ADC_VCC
feature_sns1 |= 0x00000002; // support.ino (ADC)
#endif
#ifdef USE_ENERGY_SENSOR
feature_sns1 |= 0x00000004; // xdrv_03_energy.ino
#endif
#ifdef USE_PZEM004T
feature_sns1 |= 0x00000008; // xnrg_03_pzem004t.ino
#endif
#ifdef USE_DS18B20
feature_sns1 |= 0x00000010; // xsns_05_ds18b20.ino
#endif
#ifdef USE_DS18x20_LEGACY
feature_sns1 |= 0x00000020; // xsns_05_ds18x20_legacy.ino
#endif
#ifdef USE_DS18x20
feature_sns1 |= 0x00000040; // xsns_05_ds18x20.ino
#endif
#ifdef USE_DHT
feature_sns1 |= 0x00000080; // xsns_06_dht.ino
#endif
#ifdef USE_SHT
feature_sns1 |= 0x00000100; // xsns_07_sht1x.ino
#endif
#ifdef USE_HTU
feature_sns1 |= 0x00000200; // xsns_08_htu21.ino
#endif
#ifdef USE_BMP
feature_sns1 |= 0x00000400; // xsns_09_bmp.ino
#endif
#ifdef USE_BME680
feature_sns1 |= 0x00000800; // xsns_09_bmp.ino - BME680
#endif
#ifdef USE_BH1750
feature_sns1 |= 0x00001000; // xsns_10_bh1750.ino
#endif
#ifdef USE_VEML6070
feature_sns1 |= 0x00002000; // xsns_11_veml6070.ino
#endif
#ifdef USE_ADS1115_I2CDEV
feature_sns1 |= 0x00004000; // xsns_12_ads1115_i2cdev.ino
#endif
#ifdef USE_ADS1115
feature_sns1 |= 0x00008000; // xsns_12_ads1115.ino
#endif
#ifdef USE_INA219
feature_sns1 |= 0x00010000; // xsns_13_ina219.ino
#endif
#ifdef USE_SHT3X
feature_sns1 |= 0x00020000; // xsns_14_sht3x.ino
#endif
#ifdef USE_MHZ19
feature_sns1 |= 0x00040000; // xsns_15_mhz19.ino
#endif
#ifdef USE_TSL2561
feature_sns1 |= 0x00080000; // xsns_16_tsl2561.ino
#endif
#ifdef USE_SENSEAIR
feature_sns1 |= 0x00100000; // xsns_17_senseair.ino
#endif
#ifdef USE_PMS5003
feature_sns1 |= 0x00200000; // xsns_18_pms5003.ino
#endif
#ifdef USE_MGS
feature_sns1 |= 0x00400000; // xsns_19_mgs.ino
#endif
#ifdef USE_NOVA_SDS
feature_sns1 |= 0x00800000; // xsns_20_novasds.ino
#endif
#ifdef USE_SGP30
feature_sns1 |= 0x01000000; // xsns_21_sgp30.ino
#endif
#ifdef USE_SR04
feature_sns1 |= 0x02000000; // xsns_22_sr04.ino
#endif
#ifdef USE_SDM120
feature_sns1 |= 0x04000000; // xsns_23_sdm120.ino
#endif
#ifdef USE_SI1145
feature_sns1 |= 0x08000000; // xsns_24_si1145.ino
#endif
#ifdef USE_SDM630
feature_sns1 |= 0x10000000; // xsns_25_sdm630.ino
#endif
#ifdef USE_LM75AD
feature_sns1 |= 0x20000000; // xsns_26_lm75ad.ino
#endif
#ifdef USE_APDS9960
feature_sns1 |= 0x40000000; // xsns_27_apds9960.ino
#endif
#ifdef USE_TM1638
feature_sns1 |= 0x80000000; // xsns_28_tm1638.ino
#endif
/*********************************************************************************************/
feature_sns2 = 0x00000000;
#ifdef USE_MCP230xx
feature_sns2 |= 0x00000001; // xsns_29_mcp230xx.ino
#endif
#ifdef USE_MPR121
feature_sns2 |= 0x00000002; // xsns_30_mpr121.ino
#endif
#ifdef USE_CCS811
feature_sns2 |= 0x00000004; // xsns_31_ccs811.ino
#endif
#ifdef USE_MPU6050
feature_sns2 |= 0x00000008; // xsns_32_mpu6050.ino
#endif
#ifdef USE_MCP230xx_OUTPUT
feature_sns2 |= 0x00000010; // xsns_29_mcp230xx.ino
#endif
#ifdef USE_MCP230xx_DISPLAYOUTPUT
feature_sns2 |= 0x00000020; // xsns_29_mcp230xx.ino
#endif
#ifdef USE_HLW8012
feature_sns2 |= 0x00000040; // xnrg_01_hlw8012.ino
#endif
#ifdef USE_CSE7766
feature_sns2 |= 0x00000080; // xnrg_02_cse7766.ino
#endif
#ifdef USE_MCP39F501
feature_sns2 |= 0x00000100; // xnrg_04_mcp39f501.ino
#endif
#ifdef USE_PZEM_AC
feature_sns2 |= 0x00000200; // xnrg_05_pzem_ac.ino
#endif
#ifdef USE_DS3231
feature_sns2 |= 0x00000400; // xsns_33_ds3231.ino
#endif
#ifdef USE_HX711
feature_sns2 |= 0x00000800; // xsns_34_hx711.ino
#endif
#ifdef USE_PZEM_DC
feature_sns2 |= 0x00001000; // xnrg_06_pzem_dc.ino
#endif
#ifdef USE_TX20_WIND_SENSOR
feature_sns2 |= 0x00002000; // xsns_35_tx20.ino
#endif
}
/*********************************************************************************************\
* Wifi
\*********************************************************************************************/
#define WIFI_CONFIG_SEC 180 // seconds before restart
#define WIFI_CHECK_SEC 20 // seconds
#define WIFI_RETRY_OFFSET_SEC 20 // seconds
uint8_t wifi_counter;
uint8_t wifi_retry_init;
uint8_t wifi_retry;
uint8_t wifi_status;
uint8_t wps_result;
uint8_t wifi_config_type = 0;
uint8_t wifi_config_counter = 0;
int WifiGetRssiAsQuality(int rssi)
{
int quality = 0;
if (rssi <= -100) {
quality = 0;
} else if (rssi >= -50) {
quality = 100;
} else {
quality = 2 * (rssi + 100);
}
return quality;
}
boolean WifiConfigCounter()
{
if (wifi_config_counter) {
wifi_config_counter = WIFI_CONFIG_SEC;
}
return (wifi_config_counter);
}
extern "C" {
#include "user_interface.h"
}
void WifiWpsStatusCallback(wps_cb_status status);
void WifiWpsStatusCallback(wps_cb_status status)
{
/* from user_interface.h:
enum wps_cb_status {
WPS_CB_ST_SUCCESS = 0,
WPS_CB_ST_FAILED,
WPS_CB_ST_TIMEOUT,
WPS_CB_ST_WEP, // WPS failed because that WEP is not supported
WPS_CB_ST_SCAN_ERR, // can not find the target WPS AP
};
*/
wps_result = status;
if (WPS_CB_ST_SUCCESS == wps_result) {
wifi_wps_disable();
} else {
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WPS_FAILED_WITH_STATUS " %d"), wps_result);
AddLog(LOG_LEVEL_DEBUG);
wifi_config_counter = 2;
}
}
boolean WifiWpsConfigDone(void)
{
return (!wps_result);
}
boolean WifiWpsConfigBegin(void)
{
wps_result = 99;
if (!wifi_wps_disable()) { return false; }
if (!wifi_wps_enable(WPS_TYPE_PBC)) { return false; } // so far only WPS_TYPE_PBC is supported (SDK 2.0.0)
if (!wifi_set_wps_cb((wps_st_cb_t) &WifiWpsStatusCallback)) { return false; }
if (!wifi_wps_start()) { return false; }
return true;
}
void WifiConfig(uint8_t type)
{
if (!wifi_config_type) {
if ((WIFI_RETRY == type) || (WIFI_WAIT == type)) { return; }
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
WiFi.disconnect(); // Solve possible Wifi hangs
wifi_config_type = type;
#ifndef USE_WPS
if (WIFI_WPSCONFIG == wifi_config_type) { wifi_config_type = WIFI_MANAGER; }
#endif // USE_WPS
#ifndef USE_WEBSERVER
if (WIFI_MANAGER == wifi_config_type) { wifi_config_type = WIFI_SMARTCONFIG; }
#endif // USE_WEBSERVER
#ifndef USE_SMARTCONFIG
if (WIFI_SMARTCONFIG == wifi_config_type) { wifi_config_type = WIFI_SERIAL; }
#endif // USE_SMARTCONFIG
wifi_config_counter = WIFI_CONFIG_SEC; // Allow up to WIFI_CONFIG_SECS seconds for phone to provide ssid/pswd
wifi_counter = wifi_config_counter +5;
blinks = 1999;
if (WIFI_RESTART == wifi_config_type) {
restart_flag = 2;
}
else if (WIFI_SERIAL == wifi_config_type) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_6_SERIAL " " D_ACTIVE_FOR_3_MINUTES));
}
#ifdef USE_SMARTCONFIG
else if (WIFI_SMARTCONFIG == wifi_config_type) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_1_SMARTCONFIG " " D_ACTIVE_FOR_3_MINUTES));
WiFi.beginSmartConfig();
}
#endif // USE_SMARTCONFIG
#ifdef USE_WPS
else if (WIFI_WPSCONFIG == wifi_config_type) {
if (WifiWpsConfigBegin()) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_ACTIVE_FOR_3_MINUTES));
} else {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_3_WPSCONFIG " " D_FAILED_TO_START));
wifi_config_counter = 3;
}
}
#endif // USE_WPS
#ifdef USE_WEBSERVER
else if (WIFI_MANAGER == wifi_config_type) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_WCFG_2_WIFIMANAGER " " D_ACTIVE_FOR_3_MINUTES));
WifiManagerBegin();
}
#endif // USE_WEBSERVER
}
}
void WiFiSetSleepMode()
{
/* Excerpt from the esp8266 non os sdk api reference (v2.2.1):
* Sets sleep type for power saving. Set WIFI_NONE_SLEEP to disable power saving.
* - Default mode: WIFI_MODEM_SLEEP.
* - In order to lower the power comsumption, ESP8266 changes the TCP timer
* tick from 250ms to 3s in WIFI_LIGHT_SLEEP mode, which leads to increased timeout for
* TCP timer. Therefore, the WIFI_MODEM_SLEEP or deep-sleep mode should be used
* where there is a requirement for the accurancy of the TCP timer.
*
* Sleep is disabled in core 2.4.1 and 2.4.2 as there are bugs in their SDKs
* See https://github.com/arendst/Sonoff-Tasmota/issues/2559
*/
// Sleep explanation: https://github.com/esp8266/Arduino/blob/3f0c601cfe81439ce17e9bd5d28994a7ed144482/libraries/ESP8266WiFi/src/ESP8266WiFiGeneric.cpp#L255
#if defined(ARDUINO_ESP8266_RELEASE_2_4_1) || defined(ARDUINO_ESP8266_RELEASE_2_4_2)
#else // Enabled in 2.3.0, 2.4.0 and stage
if (sleep) {
WiFi.setSleepMode(WIFI_LIGHT_SLEEP); // Allow light sleep during idle times
} else {
WiFi.setSleepMode(WIFI_MODEM_SLEEP); // Disable sleep (Esp8288/Arduino core and sdk default)
}
#endif
}
void WifiBegin(uint8_t flag)
{
const char kWifiPhyMode[] = " BGN";
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
#ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // (!strncmp_P(ESP.getSdkVersion(),PSTR("1.5.3"),5))
AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_PATCH_ISSUE_2186));
WiFi.mode(WIFI_OFF); // See https://github.com/esp8266/Arduino/issues/2186
#endif
WiFi.persistent(false); // Solve possible wifi init errors (re-add at 6.2.1.16 #4044, #4083)
WiFi.disconnect(true); // Delete SDK wifi config
delay(200);
WiFi.mode(WIFI_STA); // Disable AP mode
WiFiSetSleepMode();
// if (WiFi.getPhyMode() != WIFI_PHY_MODE_11N) { WiFi.setPhyMode(WIFI_PHY_MODE_11N); }
if (!WiFi.getAutoConnect()) { WiFi.setAutoConnect(true); }
// WiFi.setAutoReconnect(true);
switch (flag) {
case 0: // AP1
case 1: // AP2
Settings.sta_active = flag;
break;
case 2: // Toggle
Settings.sta_active ^= 1;
} // 3: Current AP
if ('\0' == Settings.sta_ssid[Settings.sta_active][0]) { Settings.sta_active ^= 1; } // Skip empty SSID
if (Settings.ip_address[0]) {
WiFi.config(Settings.ip_address[0], Settings.ip_address[1], Settings.ip_address[2], Settings.ip_address[3]); // Set static IP
}
WiFi.hostname(my_hostname);
WiFi.begin(Settings.sta_ssid[Settings.sta_active], Settings.sta_pwd[Settings.sta_active]);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_CONNECTING_TO_AP "%d %s " D_IN_MODE " 11%c " D_AS " %s..."),
Settings.sta_active +1, Settings.sta_ssid[Settings.sta_active], kWifiPhyMode[WiFi.getPhyMode() & 0x3], my_hostname);
AddLog(LOG_LEVEL_INFO);
}
void WifiState(uint8_t state)
{
if (state == global_state.wifi_down) {
if (state) {
rules_flag.wifi_connected = 1;
} else {
rules_flag.wifi_disconnected = 1;
}
}
global_state.wifi_down = state ^1;
}
void WifiCheckIp()
{
if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0)) {
WifiState(1);
wifi_counter = WIFI_CHECK_SEC;
wifi_retry = wifi_retry_init;
AddLog_P((wifi_status != WL_CONNECTED) ? LOG_LEVEL_INFO : LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CONNECTED));
if (wifi_status != WL_CONNECTED) {
// AddLog_P(LOG_LEVEL_INFO, PSTR("Wifi: Set IP addresses"));
Settings.ip_address[1] = (uint32_t)WiFi.gatewayIP();
Settings.ip_address[2] = (uint32_t)WiFi.subnetMask();
Settings.ip_address[3] = (uint32_t)WiFi.dnsIP();
}
wifi_status = WL_CONNECTED;
} else {
WifiState(0);
uint8_t wifi_config_tool = Settings.sta_config;
wifi_status = WiFi.status();
switch (wifi_status) {
case WL_CONNECTED:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_NO_IP_ADDRESS));
wifi_status = 0;
wifi_retry = wifi_retry_init;
break;
case WL_NO_SSID_AVAIL:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_NOT_REACHED));
if (WIFI_WAIT == Settings.sta_config) {
wifi_retry = wifi_retry_init;
} else {
if (wifi_retry > (wifi_retry_init / 2)) {
wifi_retry = wifi_retry_init / 2;
}
else if (wifi_retry) {
wifi_retry = 0;
}
}
break;
case WL_CONNECT_FAILED:
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_WRONG_PASSWORD));
if (wifi_retry > (wifi_retry_init / 2)) {
wifi_retry = wifi_retry_init / 2;
}
else if (wifi_retry) {
wifi_retry = 0;
}
break;
default: // WL_IDLE_STATUS and WL_DISCONNECTED
if (!wifi_retry || ((wifi_retry_init / 2) == wifi_retry)) {
AddLog_P(LOG_LEVEL_INFO, S_LOG_WIFI, PSTR(D_CONNECT_FAILED_AP_TIMEOUT));
} else {
if (('\0' == Settings.sta_ssid[0][0]) && ('\0' == Settings.sta_ssid[1][0])) {
wifi_config_tool = WIFI_CONFIG_NO_SSID; // Skip empty SSIDs and start Wifi config tool
wifi_retry = 0;
} else {
AddLog_P(LOG_LEVEL_DEBUG, S_LOG_WIFI, PSTR(D_ATTEMPTING_CONNECTION));
}
}
}
if (wifi_retry) {
if (wifi_retry_init == wifi_retry) {
WifiBegin(3); // Select default SSID
}
if ((Settings.sta_config != WIFI_WAIT) && ((wifi_retry_init / 2) == wifi_retry)) {
WifiBegin(2); // Select alternate SSID
}
wifi_counter = 1;
wifi_retry--;
} else {
WifiConfig(wifi_config_tool);
wifi_counter = 1;
wifi_retry = wifi_retry_init;
}
}
}
void WifiCheck(uint8_t param)
{
wifi_counter--;
switch (param) {
case WIFI_SERIAL:
case WIFI_SMARTCONFIG:
case WIFI_MANAGER:
case WIFI_WPSCONFIG:
WifiConfig(param);
break;
default:
if (wifi_config_counter) {
wifi_config_counter--;
wifi_counter = wifi_config_counter +5;
if (wifi_config_counter) {
#ifdef USE_SMARTCONFIG
if ((WIFI_SMARTCONFIG == wifi_config_type) && WiFi.smartConfigDone()) {
wifi_config_counter = 0;
}
#endif // USE_SMARTCONFIG
#ifdef USE_WPS
if ((WIFI_WPSCONFIG == wifi_config_type) && WifiWpsConfigDone()) {
wifi_config_counter = 0;
}
#endif // USE_WPS
if (!wifi_config_counter) {
if (strlen(WiFi.SSID().c_str())) {
strlcpy(Settings.sta_ssid[0], WiFi.SSID().c_str(), sizeof(Settings.sta_ssid[0]));
}
if (strlen(WiFi.psk().c_str())) {
strlcpy(Settings.sta_pwd[0], WiFi.psk().c_str(), sizeof(Settings.sta_pwd[0]));
}
Settings.sta_active = 0;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_WIFI D_WCFG_1_SMARTCONFIG D_CMND_SSID "1 %s"), Settings.sta_ssid[0]);
AddLog(LOG_LEVEL_INFO);
}
}
if (!wifi_config_counter) {
#ifdef USE_SMARTCONFIG
if (WIFI_SMARTCONFIG == wifi_config_type) { WiFi.stopSmartConfig(); }
#endif // USE_SMARTCONFIG
// SettingsSdkErase(); // Disabled v6.1.0b due to possible bad wifi connects
restart_flag = 2;
}
} else {
if (wifi_counter <= 0) {
AddLog_P(LOG_LEVEL_DEBUG_MORE, S_LOG_WIFI, PSTR(D_CHECKING_CONNECTION));
wifi_counter = WIFI_CHECK_SEC;
WifiCheckIp();
}
if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0) && !wifi_config_type) {
WifiState(1);
#ifdef BE_MINIMAL
if (1 == RtcSettings.ota_loader) {
RtcSettings.ota_loader = 0;
ota_state_flag = 3;
}
#endif // BE_MINIMAL
#ifdef USE_DISCOVERY
if (!mdns_begun) {
mdns_begun = MDNS.begin(my_hostname);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS "%s"), (mdns_begun) ? D_INITIALIZED : D_FAILED);
AddLog(LOG_LEVEL_INFO);
}
#endif // USE_DISCOVERY
#ifdef USE_WEBSERVER
if (Settings.webserver) {
StartWebserver(Settings.webserver, WiFi.localIP());
#ifdef USE_DISCOVERY
#ifdef WEBSERVER_ADVERTISE
MDNS.addService("http", "tcp", WEB_PORT);
#endif // WEBSERVER_ADVERTISE
#endif // USE_DISCOVERY
} else {
StopWebserver();
}
#ifdef USE_EMULATION
if (Settings.flag2.emulation) { UdpConnect(); }
#endif // USE_EMULATION
#endif // USE_WEBSERVER
#ifdef USE_KNX
if (!knx_started && Settings.flag.knx_enabled) {
KNXStart();
knx_started = true;
}
#endif // USE_KNX
} else {
WifiState(0);
#if defined(USE_WEBSERVER) && defined(USE_EMULATION)
UdpDisconnect();
#endif // USE_EMULATION
mdns_begun = false;
#ifdef USE_KNX
knx_started = false;
#endif // USE_KNX
}
}
}
}
int WifiState()
{
int state;
if ((WL_CONNECTED == WiFi.status()) && (static_cast(WiFi.localIP()) != 0)) {
state = WIFI_RESTART;
}
if (wifi_config_type) { state = wifi_config_type; }
return state;
}
void WifiConnect()
{
WiFi.persistent(false); // Solve possible wifi init errors
wifi_status = 0;
wifi_retry_init = WIFI_RETRY_OFFSET_SEC + ((ESP.getChipId() & 0xF) * 2);
wifi_retry = wifi_retry_init;
wifi_counter = 1;
}
/*
// Enable from 6.0.0a until 6.1.0a - disabled due to possible cause of bad wifi connect on core 2.3.0
void WifiDisconnect()
{
// Courtesy of EspEasy
WiFi.persistent(true); // use SDK storage of SSID/WPA parameters
ETS_UART_INTR_DISABLE();
wifi_station_disconnect(); // this will store empty ssid/wpa into sdk storage
ETS_UART_INTR_ENABLE();
WiFi.persistent(false); // Do not use SDK storage of SSID/WPA parameters
}
void EspRestart()
{
// This results in exception 3 on restarts
delay(100); // Allow time for message xfer - disabled v6.1.0b
WifiDisconnect();
ESP.restart();
}
*/
void EspRestart()
{
ESP.restart();
}
#ifdef USE_DISCOVERY
/*********************************************************************************************\
* mDNS
\*********************************************************************************************/
#ifdef MQTT_HOST_DISCOVERY
boolean MdnsDiscoverMqttServer()
{
if (!mdns_begun) {
return false;
}
int n = MDNS.queryService("mqtt", "tcp"); // Search for mqtt service
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_QUERY_DONE " %d"), n);
AddLog(LOG_LEVEL_INFO);
if (n > 0) {
// Note: current strategy is to get the first MQTT service (even when many are found)
snprintf_P(Settings.mqtt_host, sizeof(Settings.mqtt_host), MDNS.IP(0).toString().c_str());
Settings.mqtt_port = MDNS.port(0);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_MDNS D_MQTT_SERVICE_FOUND " %s, " D_IP_ADDRESS " %s, " D_PORT " %d"),
MDNS.hostname(0).c_str(), Settings.mqtt_host, Settings.mqtt_port);
AddLog(LOG_LEVEL_INFO);
}
return n > 0;
}
#endif // MQTT_HOST_DISCOVERY
#endif // USE_DISCOVERY
/*********************************************************************************************\
* Basic I2C routines
\*********************************************************************************************/
#ifdef USE_I2C
#define I2C_RETRY_COUNTER 3
uint32_t i2c_buffer = 0;
bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size)
{
byte x = I2C_RETRY_COUNTER;
i2c_buffer = 0;
do {
Wire.beginTransmission(addr); // start transmission to device
Wire.write(reg); // sends register address to read from
if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request...
Wire.requestFrom((int)addr, (int)size); // send data n-bytes read
if (Wire.available() == size) {
for (byte i = 0; i < size; i++) {
i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA
}
}
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 1);
*data = (uint8_t)i2c_buffer;
return status;
}
bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (uint16_t)i2c_buffer;
return status;
}
bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 2);
*data = (int16_t)i2c_buffer;
return status;
}
bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16(&ldata, addr, reg);
*data = (ldata >> 8) | (ldata << 8);
return status;
}
bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg)
{
uint16_t ldata;
bool status = I2cValidRead16LE(&ldata, addr, reg);
*data = (int16_t)ldata;
return status;
}
bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg)
{
bool status = I2cValidRead(addr, reg, 3);
*data = i2c_buffer;
return status;
}
uint8_t I2cRead8(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 1);
return (uint8_t)i2c_buffer;
}
uint16_t I2cRead16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (uint16_t)i2c_buffer;
}
int16_t I2cReadS16(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
return (int16_t)i2c_buffer;
}
uint16_t I2cRead16LE(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 2);
uint16_t temp = (uint16_t)i2c_buffer;
return (temp >> 8) | (temp << 8);
}
int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg)
{
return (int16_t)I2cRead16LE(addr, reg);
}
int32_t I2cRead24(uint8_t addr, uint8_t reg)
{
I2cValidRead(addr, reg, 3);
return i2c_buffer;
}
bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size)
{
byte x = I2C_RETRY_COUNTER;
do {
Wire.beginTransmission((uint8_t)addr); // start transmission to device
Wire.write(reg); // sends register address to write to
uint8_t bytes = size;
while (bytes--) {
Wire.write((val >> (8 * bytes)) & 0xFF); // write data
}
x--;
} while (Wire.endTransmission(true) != 0 && x != 0); // end transmission
return (x);
}
bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 1);
}
bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val)
{
return I2cWrite(addr, reg, val, 2);
}
int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
Wire.endTransmission();
if (len != Wire.requestFrom((uint8_t)addr, (byte)len)) {
return 1;
}
while (len--) {
*reg_data = (uint8_t)Wire.read();
reg_data++;
}
return 0;
}
int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len)
{
Wire.beginTransmission((uint8_t)addr);
Wire.write((uint8_t)reg);
while (len--) {
Wire.write(*reg_data);
reg_data++;
}
Wire.endTransmission();
return 0;
}
void I2cScan(char *devs, unsigned int devs_len)
{
// Return error codes defined in twi.h and core_esp8266_si2c.c
// I2C_OK 0
// I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover
// I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond slave clock stretch time
// I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by slave/another_master after n bits
// I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master?
byte error = 0;
byte address = 0;
byte any = 0;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT));
for (address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();
if (0 == error) {
any = 1;
snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address);
}
else if (error != 2) { // Seems to happen anyway using this scan
any = 2;
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address);
break;
}
}
if (any) {
strncat(devs, "\"}", devs_len);
}
else {
snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}"));
}
}
boolean I2cDevice(byte addr)
{
for (byte address = 1; address <= 127; address++) {
Wire.beginTransmission(address);
if (!Wire.endTransmission() && (address == addr)) {
return true;
}
}
return false;
}
#endif // USE_I2C
/*********************************************************************************************\
* Real Time Clock
*
* Sources: Time by Michael Margolis and Paul Stoffregen (https://github.com/PaulStoffregen/Time)
* Timezone by Jack Christensen (https://github.com/JChristensen/Timezone)
\*********************************************************************************************/
extern "C" {
#include "sntp.h"
}
#define SECS_PER_MIN ((uint32_t)(60UL))
#define SECS_PER_HOUR ((uint32_t)(3600UL))
#define SECS_PER_DAY ((uint32_t)(SECS_PER_HOUR * 24UL))
#define LEAP_YEAR(Y) (((1970+Y)>0) && !((1970+Y)%4) && (((1970+Y)%100) || !((1970+Y)%400)))
Ticker TickerRtc;
static const uint8_t kDaysInMonth[] = { 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 }; // API starts months from 1, this array starts from 0
static const char kMonthNamesEnglish[] = "JanFebMarAprMayJunJulAugSepOctNovDec";
uint32_t utc_time = 0;
uint32_t local_time = 0;
uint32_t daylight_saving_time = 0;
uint32_t standard_time = 0;
uint32_t ntp_time = 0;
uint32_t midnight = 1451602800;
uint32_t restart_time = 0;
int16_t time_timezone = 0; // Timezone * 10
uint8_t midnight_now = 0;
uint8_t ntp_sync_minute = 0;
String GetBuildDateAndTime()
{
// "2017-03-07T11:08:02" - ISO8601:2004
char bdt[21];
char *p;
char mdate[] = __DATE__; // "Mar 7 2017"
char *smonth = mdate;
int day = 0;
int year = 0;
// sscanf(mdate, "%s %d %d", bdt, &day, &year); // Not implemented in 2.3.0 and probably too much code
byte i = 0;
for (char *str = strtok_r(mdate, " ", &p); str && i < 3; str = strtok_r(NULL, " ", &p)) {
switch (i++) {
case 0: // Month
smonth = str;
break;
case 1: // Day
day = atoi(str);
break;
case 2: // Year
year = atoi(str);
}
}
int month = (strstr(kMonthNamesEnglish, smonth) -kMonthNamesEnglish) /3 +1;
snprintf_P(bdt, sizeof(bdt), PSTR("%d" D_YEAR_MONTH_SEPARATOR "%02d" D_MONTH_DAY_SEPARATOR "%02d" D_DATE_TIME_SEPARATOR "%s"), year, month, day, __TIME__);
return String(bdt);
}
/*
* timestamps in https://en.wikipedia.org/wiki/ISO_8601 format
*
* DT_UTC - current data and time in Greenwich, England (aka GMT)
* DT_LOCAL - current date and time taking timezone into account
* DT_RESTART - the date and time this device last started, in local timezone
*
* Format:
* "2017-03-07T11:08:02-07:00" - if DT_LOCAL and SetOption52 = 1
* "2017-03-07T11:08:02" - otherwise
*/
String GetDateAndTime(byte time_type)
{
// "2017-03-07T11:08:02-07:00" - ISO8601:2004
char dt[27];
TIME_T tmpTime;
switch (time_type) {
case DT_UTC:
BreakTime(utc_time, tmpTime);
tmpTime.year += 1970;
break;
case DT_RESTART:
if (restart_time == 0) {
return "";
}
BreakTime(restart_time, tmpTime);
tmpTime.year += 1970;
break;
default:
tmpTime = RtcTime;
}
snprintf_P(dt, sizeof(dt), PSTR("%04d-%02d-%02dT%02d:%02d:%02d"),
tmpTime.year, tmpTime.month, tmpTime.day_of_month, tmpTime.hour, tmpTime.minute, tmpTime.second);
if (Settings.flag3.time_append_timezone && (time_type == DT_LOCAL)) {
snprintf_P(dt, sizeof(dt), PSTR("%s%+03d:%02d"), dt, time_timezone / 10, abs((time_timezone % 10) * 6)); // if timezone = +2:30 then time_timezone = 25
}
return String(dt);
}
String GetUptime()
{
char dt[16];
TIME_T ut;
if (restart_time) {
BreakTime(utc_time - restart_time, ut);
} else {
BreakTime(uptime, ut);
}
// "P128DT14H35M44S" - ISO8601:2004 - https://en.wikipedia.org/wiki/ISO_8601 Durations
// snprintf_P(dt, sizeof(dt), PSTR("P%dDT%02dH%02dM%02dS"), ut.days, ut.hour, ut.minute, ut.second);
// "128 14:35:44" - OpenVMS
// "128T14:35:44" - Tasmota
snprintf_P(dt, sizeof(dt), PSTR("%dT%02d:%02d:%02d"),
ut.days, ut.hour, ut.minute, ut.second);
return String(dt);
}
uint32_t GetMinutesUptime()
{
TIME_T ut;
if (restart_time) {
BreakTime(utc_time - restart_time, ut);
} else {
BreakTime(uptime, ut);
}
return (ut.days *1440) + (ut.hour *60) + ut.minute;
}
uint32_t GetMinutesPastMidnight()
{
uint32_t minutes = 0;
if (RtcTime.valid) {
minutes = (RtcTime.hour *60) + RtcTime.minute;
}
return minutes;
}
void BreakTime(uint32_t time_input, TIME_T &tm)
{
// break the given time_input into time components
// this is a more compact version of the C library localtime function
// note that year is offset from 1970 !!!
uint8_t year;
uint8_t month;
uint8_t month_length;
uint32_t time;
unsigned long days;
time = time_input;
tm.second = time % 60;
time /= 60; // now it is minutes
tm.minute = time % 60;
time /= 60; // now it is hours
tm.hour = time % 24;
time /= 24; // now it is days
tm.days = time;
tm.day_of_week = ((time + 4) % 7) + 1; // Sunday is day 1
year = 0;
days = 0;
while((unsigned)(days += (LEAP_YEAR(year) ? 366 : 365)) <= time) {
year++;
}
tm.year = year; // year is offset from 1970
days -= LEAP_YEAR(year) ? 366 : 365;
time -= days; // now it is days in this year, starting at 0
tm.day_of_year = time;
days = 0;
month = 0;
month_length = 0;
for (month = 0; month < 12; month++) {
if (1 == month) { // february
if (LEAP_YEAR(year)) {
month_length = 29;
} else {
month_length = 28;
}
} else {
month_length = kDaysInMonth[month];
}
if (time >= month_length) {
time -= month_length;
} else {
break;
}
}
strlcpy(tm.name_of_month, kMonthNames + (month *3), 4);
tm.month = month + 1; // jan is month 1
tm.day_of_month = time + 1; // day of month
tm.valid = (time_input > 1451602800); // 2016-01-01
}
uint32_t MakeTime(TIME_T &tm)
{
// assemble time elements into time_t
// note year argument is offset from 1970
int i;
uint32_t seconds;
// seconds from 1970 till 1 jan 00:00:00 of the given year
seconds = tm.year * (SECS_PER_DAY * 365);
for (i = 0; i < tm.year; i++) {
if (LEAP_YEAR(i)) {
seconds += SECS_PER_DAY; // add extra days for leap years
}
}
// add days for this year, months start from 1
for (i = 1; i < tm.month; i++) {
if ((2 == i) && LEAP_YEAR(tm.year)) {
seconds += SECS_PER_DAY * 29;
} else {
seconds += SECS_PER_DAY * kDaysInMonth[i-1]; // monthDay array starts from 0
}
}
seconds+= (tm.day_of_month - 1) * SECS_PER_DAY;
seconds+= tm.hour * SECS_PER_HOUR;
seconds+= tm.minute * SECS_PER_MIN;
seconds+= tm.second;
return seconds;
}
uint32_t RuleToTime(TimeRule r, int yr)
{
TIME_T tm;
uint32_t t;
uint8_t m;
uint8_t w; // temp copies of r.month and r.week
m = r.month;
w = r.week;
if (0 == w) { // Last week = 0
if (++m > 12) { // for "Last", go to the next month
m = 1;
yr++;
}
w = 1; // and treat as first week of next month, subtract 7 days later
}
tm.hour = r.hour;
tm.minute = 0;
tm.second = 0;
tm.day_of_month = 1;
tm.month = m;
tm.year = yr - 1970;
t = MakeTime(tm); // First day of the month, or first day of next month for "Last" rules
BreakTime(t, tm);
t += (7 * (w - 1) + (r.dow - tm.day_of_week + 7) % 7) * SECS_PER_DAY;
if (0 == r.week) {
t -= 7 * SECS_PER_DAY; // back up a week if this is a "Last" rule
}
return t;
}
String GetTime(int type)
{
char stime[25]; // Skip newline
uint32_t time = utc_time;
if (1 == type) time = local_time;
if (2 == type) time = daylight_saving_time;
if (3 == type) time = standard_time;
snprintf_P(stime, sizeof(stime), sntp_get_real_time(time));
return String(stime);
}
uint32_t LocalTime()
{
return local_time;
}
uint32_t Midnight()
{
return midnight;
}
boolean MidnightNow()
{
boolean mnflg = midnight_now;
if (mnflg) midnight_now = 0;
return mnflg;
}
void RtcSecond()
{
int32_t stdoffset;
int32_t dstoffset;
TIME_T tmpTime;
if ((ntp_sync_minute > 59) && (RtcTime.minute > 2)) ntp_sync_minute = 1; // If sync prepare for a new cycle
uint8_t offset = (uptime < 30) ? RtcTime.second : (((ESP.getChipId() & 0xF) * 3) + 3) ; // First try ASAP to sync. If fails try once every 60 seconds based on chip id
if ((WL_CONNECTED == WiFi.status()) && (offset == RtcTime.second) && ((RtcTime.year < 2016) || (ntp_sync_minute == RtcTime.minute) || ntp_force_sync)) {
ntp_time = sntp_get_current_timestamp();
if (ntp_time > 1451602800) { // Fix NTP bug in core 2.4.1/SDK 2.2.1 (returns Thu Jan 01 08:00:10 1970 after power on)
ntp_force_sync = 0;
utc_time = ntp_time;
ntp_sync_minute = 60; // Sync so block further requests
if (restart_time == 0) {
restart_time = utc_time - uptime; // save first ntp time as restart time
}
BreakTime(utc_time, tmpTime);
RtcTime.year = tmpTime.year + 1970;
daylight_saving_time = RuleToTime(Settings.tflag[1], RtcTime.year);
standard_time = RuleToTime(Settings.tflag[0], RtcTime.year);
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION "(" D_UTC_TIME ") %s, (" D_DST_TIME ") %s, (" D_STD_TIME ") %s"),
GetTime(0).c_str(), GetTime(2).c_str(), GetTime(3).c_str());
AddLog(LOG_LEVEL_DEBUG);
if (local_time < 1451602800) { // 2016-01-01
rules_flag.time_init = 1;
} else {
rules_flag.time_set = 1;
}
} else {
ntp_sync_minute++; // Try again in next minute
}
}
utc_time++;
local_time = utc_time;
if (local_time > 1451602800) { // 2016-01-01
int32_t time_offset = Settings.timezone * SECS_PER_HOUR;
if (99 == Settings.timezone) {
dstoffset = Settings.toffset[1] * SECS_PER_MIN;
stdoffset = Settings.toffset[0] * SECS_PER_MIN;
if (Settings.tflag[1].hemis) {
// Southern hemisphere
if ((utc_time >= (standard_time - dstoffset)) && (utc_time < (daylight_saving_time - stdoffset))) {
time_offset = stdoffset; // Standard Time
} else {
time_offset = dstoffset; // Daylight Saving Time
}
} else {
// Northern hemisphere
if ((utc_time >= (daylight_saving_time - stdoffset)) && (utc_time < (standard_time - dstoffset))) {
time_offset = dstoffset; // Daylight Saving Time
} else {
time_offset = stdoffset; // Standard Time
}
}
}
local_time += time_offset;
time_timezone = time_offset / 360; // (SECS_PER_HOUR / 10) fails as it is defined as UL
}
BreakTime(local_time, RtcTime);
if (!RtcTime.hour && !RtcTime.minute && !RtcTime.second && RtcTime.valid) {
midnight = local_time;
midnight_now = 1;
}
RtcTime.year += 1970;
}
void RtcInit()
{
sntp_setservername(0, Settings.ntp_server[0]);
sntp_setservername(1, Settings.ntp_server[1]);
sntp_setservername(2, Settings.ntp_server[2]);
sntp_stop();
sntp_set_timezone(0); // UTC time
sntp_init();
utc_time = 0;
BreakTime(utc_time, RtcTime);
TickerRtc.attach(1, RtcSecond);
}
#ifndef USE_ADC_VCC
/*********************************************************************************************\
* ADC support
\*********************************************************************************************/
uint16_t adc_last_value = 0;
uint16_t AdcRead()
{
uint16_t analog = 0;
for (byte i = 0; i < 32; i++) {
analog += analogRead(A0);
delay(1);
}
analog >>= 5;
return analog;
}
#ifdef USE_RULES
void AdcEvery250ms()
{
uint16_t new_value = AdcRead();
if ((new_value < adc_last_value -10) || (new_value > adc_last_value +10)) {
adc_last_value = new_value;
uint16_t value = adc_last_value / 10;
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("{\"ANALOG\":{\"A0div10\":%d}}"), (value > 99) ? 100 : value);
XdrvRulesProcess();
}
}
#endif // USE_RULES
void AdcShow(boolean json)
{
uint16_t analog = AdcRead();
if (json) {
snprintf_P(mqtt_data, sizeof(mqtt_data), PSTR("%s,\"ANALOG\":{\"A0\":%d}"), mqtt_data, analog);
#ifdef USE_WEBSERVER
} else {
snprintf_P(mqtt_data, sizeof(mqtt_data), HTTP_SNS_ANALOG, mqtt_data, "", 0, analog);
#endif // USE_WEBSERVER
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XSNS_02
boolean Xsns02(byte function)
{
boolean result = false;
if (pin[GPIO_ADC0] < 99) {
switch (function) {
#ifdef USE_RULES
case FUNC_EVERY_250_MSECOND:
AdcEvery250ms();
break;
#endif // USE_RULES
case FUNC_JSON_APPEND:
AdcShow(1);
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_APPEND:
AdcShow(0);
break;
#endif // USE_WEBSERVER
}
}
return result;
}
#endif // USE_ADC_VCC
/*********************************************************************************************\
* Syslog
*
* Example:
* snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_LOG "Any value %d"), value);
* AddLog(LOG_LEVEL_DEBUG);
*
\*********************************************************************************************/
void SetSeriallog(byte loglevel)
{
Settings.seriallog_level = loglevel;
seriallog_level = loglevel;
seriallog_timer = 0;
}
#ifdef USE_WEBSERVER
void GetLog(byte idx, char** entry_pp, size_t* len_p)
{
char* entry_p = NULL;
size_t len = 0;
if (idx) {
char* it = web_log;
do {
byte cur_idx = *it;
it++;
size_t tmp = strchrspn(it, '\1');
tmp++; // Skip terminating '\1'
if (cur_idx == idx) { // Found the requested entry
len = tmp;
entry_p = it;
break;
}
it += tmp;
} while (it < web_log + WEB_LOG_SIZE && *it != '\0');
}
*entry_pp = entry_p;
*len_p = len;
}
#endif // USE_WEBSERVER
void Syslog()
{
// Destroys log_data
char syslog_preamble[64]; // Hostname + Id
if (syslog_host_hash != GetHash(Settings.syslog_host, strlen(Settings.syslog_host))) {
syslog_host_hash = GetHash(Settings.syslog_host, strlen(Settings.syslog_host));
WiFi.hostByName(Settings.syslog_host, syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash
}
if (PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) {
snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), my_hostname);
memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble));
log_data[sizeof(log_data) -1] = '\0';
memcpy(log_data, syslog_preamble, strlen(syslog_preamble));
PortUdp.write(log_data);
PortUdp.endPacket();
} else {
syslog_level = 0;
syslog_timer = SYSLOG_TIMER;
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER);
AddLog(LOG_LEVEL_INFO);
}
}
void AddLog(byte loglevel)
{
char mxtime[10]; // "13:45:21 "
snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d "), RtcTime.hour, RtcTime.minute, RtcTime.second);
if (loglevel <= seriallog_level) {
Serial.printf("%s%s\n", mxtime, log_data);
}
#ifdef USE_WEBSERVER
if (Settings.webserver && (loglevel <= Settings.weblog_level)) {
// Delimited, zero-terminated buffer of log lines.
// Each entry has this format: [index][log data]['\1']
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
while (web_log_index == web_log[0] || // If log already holds the next index, remove it
strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0'
{
char* it = web_log;
it++; // Skip web_log_index
it += strchrspn(it, '\1'); // Skip log line
it++; // Skip delimiting "\1"
memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line
}
snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data);
if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string
}
#endif // USE_WEBSERVER
if ((WL_CONNECTED == WiFi.status()) && (loglevel <= syslog_level)) {
Syslog();
}
}
void AddLog_P(byte loglevel, const char *formatP)
{
snprintf_P(log_data, sizeof(log_data), formatP);
AddLog(loglevel);
}
void AddLog_P(byte loglevel, const char *formatP, const char *formatP2)
{
char message[100];
snprintf_P(log_data, sizeof(log_data), formatP);
snprintf_P(message, sizeof(message), formatP2);
strncat(log_data, message, sizeof(log_data));
AddLog(loglevel);
}
void AddLogSerial(byte loglevel, uint8_t *buffer, int count)
{
snprintf_P(log_data, sizeof(log_data), PSTR(D_LOG_SERIAL D_RECEIVED));
for (int i = 0; i < count; i++) {
snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer++));
}
AddLog(loglevel);
}
void AddLogSerial(byte loglevel)
{
AddLogSerial(loglevel, (uint8_t*)serial_in_buffer, serial_in_byte_counter);
}
void AddLogMissed(char *sensor, uint8_t misses)
{
snprintf_P(log_data, sizeof(log_data), PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses);
AddLog(LOG_LEVEL_DEBUG);
}
/*********************************************************************************************\
*
\*********************************************************************************************/