/* support.ino - support for Sonoff-Tasmota Copyright (C) 2019 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ IPAddress syslog_host_addr; // Syslog host IP address uint32_t syslog_host_hash = 0; // Syslog host name hash /*********************************************************************************************\ * Watchdog extension (https://github.com/esp8266/Arduino/issues/1532) \*********************************************************************************************/ #include Ticker tickerOSWatch; const uint32_t OSWATCH_RESET_TIME = 120; static unsigned long oswatch_last_loop_time; uint8_t oswatch_blocked_loop = 0; #ifndef USE_WS2812_DMA // Collides with Neopixelbus but solves exception //void OsWatchTicker() ICACHE_RAM_ATTR; #endif // USE_WS2812_DMA #ifdef USE_KNX bool knx_started = false; #endif // USE_KNX void OsWatchTicker(void) { unsigned long t = millis(); unsigned long last_run = abs(t - oswatch_last_loop_time); #ifdef DEBUG_THEO AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_APPLICATION D_OSWATCH " FreeRam %d, rssi %d, last_run %d"), ESP.getFreeHeap(), WifiGetRssiAsQuality(WiFi.RSSI()), last_run); #endif // DEBUG_THEO if (last_run >= (OSWATCH_RESET_TIME * 1000)) { // AddLog_P(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_OSWATCH " " D_BLOCKED_LOOP ". " D_RESTARTING)); // Save iram space RtcSettings.oswatch_blocked_loop = 1; RtcSettingsSave(); // ESP.restart(); // normal reboot ESP.reset(); // hard reset } } void OsWatchInit(void) { oswatch_blocked_loop = RtcSettings.oswatch_blocked_loop; RtcSettings.oswatch_blocked_loop = 0; oswatch_last_loop_time = millis(); tickerOSWatch.attach_ms(((OSWATCH_RESET_TIME / 3) * 1000), OsWatchTicker); } void OsWatchLoop(void) { oswatch_last_loop_time = millis(); // while(1) delay(1000); // this will trigger the os watch } String GetResetReason(void) { char buff[32]; if (oswatch_blocked_loop) { strncpy_P(buff, PSTR(D_JSON_BLOCKED_LOOP), sizeof(buff)); return String(buff); } else { return ESP.getResetReason(); } } bool OsWatchBlockedLoop(void) { return oswatch_blocked_loop; } /*********************************************************************************************\ * Miscellaneous \*********************************************************************************************/ #ifdef ARDUINO_ESP8266_RELEASE_2_3_0 // Functions not available in 2.3.0 // http://clc-wiki.net/wiki/C_standard_library:string.h:memchr void* memchr(const void* ptr, int value, size_t num) { unsigned char *p = (unsigned char*)ptr; while (num--) { if (*p != (unsigned char)value) { p++; } else { return p; } } return 0; } // http://clc-wiki.net/wiki/C_standard_library:string.h:strcspn // Get span until any character in string size_t strcspn(const char *str1, const char *str2) { size_t ret = 0; while (*str1) { if (strchr(str2, *str1)) { // Slow return ret; } else { str1++; ret++; } } return ret; } // https://opensource.apple.com/source/Libc/Libc-583/stdlib/FreeBSD/strtoull.c // Convert a string to an unsigned long long integer #ifndef __LONG_LONG_MAX__ #define __LONG_LONG_MAX__ 9223372036854775807LL #endif #ifndef ULLONG_MAX #define ULLONG_MAX (__LONG_LONG_MAX__ * 2ULL + 1) #endif unsigned long long strtoull(const char *__restrict nptr, char **__restrict endptr, int base) { const char *s = nptr; char c; do { c = *s++; } while (isspace((unsigned char)c)); // Trim leading spaces int neg = 0; if (c == '-') { // Set minus flag and/or skip sign neg = 1; c = *s++; } else { if (c == '+') { c = *s++; } } if ((base == 0 || base == 16) && (c == '0') && (*s == 'x' || *s == 'X')) { // Set Hexadecimal c = s[1]; s += 2; base = 16; } if (base == 0) { base = (c == '0') ? 8 : 10; } // Set Octal or Decimal unsigned long long acc = 0; int any = 0; if (base > 1 && base < 37) { unsigned long long cutoff = ULLONG_MAX / base; int cutlim = ULLONG_MAX % base; for ( ; ; c = *s++) { if (c >= '0' && c <= '9') c -= '0'; else if (c >= 'A' && c <= 'Z') c -= 'A' - 10; else if (c >= 'a' && c <= 'z') c -= 'a' - 10; else break; if (c >= base) break; if (any < 0 || acc > cutoff || (acc == cutoff && c > cutlim)) any = -1; else { any = 1; acc *= base; acc += c; } } if (any < 0) { acc = ULLONG_MAX; // Range error } else if (any && neg) { acc = -acc; } } if (endptr != nullptr) { *endptr = (char *)(any ? s - 1 : nptr); } return acc; } #endif // ARDUINO_ESP8266_RELEASE_2_3_0 // Get span until single character in string size_t strchrspn(const char *str1, int character) { size_t ret = 0; char *start = (char*)str1; char *end = strchr(str1, character); if (end) ret = end - start; return ret; } // Function to return a substring defined by a delimiter at an index char* subStr(char* dest, char* str, const char *delim, int index) { char *act; char *sub = nullptr; char *ptr; int i; // Since strtok consumes the first arg, make a copy strncpy(dest, str, strlen(str)+1); for (i = 1, act = dest; i <= index; i++, act = nullptr) { sub = strtok_r(act, delim, &ptr); if (sub == nullptr) break; } sub = Trim(sub); return sub; } double CharToDouble(const char *str) { // simple ascii to double, because atof or strtod are too large char strbuf[24]; strlcpy(strbuf, str, sizeof(strbuf)); char *pt = strbuf; while ((*pt != '\0') && isblank(*pt)) { pt++; } // Trim leading spaces signed char sign = 1; if (*pt == '-') { sign = -1; } if (*pt == '-' || *pt=='+') { pt++; } // Skip any sign double left = 0; if (*pt != '.') { left = atoi(pt); // Get left part while (isdigit(*pt)) { pt++; } // Skip number } double right = 0; if (*pt == '.') { pt++; right = atoi(pt); // Decimal part while (isdigit(*pt)) { pt++; right /= 10.0; } } double result = left + right; if (sign < 0) { return -result; // Add negative sign } return result; } int TextToInt(char *str) { char *p; uint8_t radix = 10; if ('#' == str[0]) { radix = 16; str++; } return strtol(str, &p, radix); } char* ulltoa(unsigned long long value, char *str, int radix) { char digits[64]; char *dst = str; int i = 0; int n = 0; // if (radix < 2 || radix > 36) { radix = 10; } do { n = value % radix; digits[i++] = (n < 10) ? (char)n+'0' : (char)n-10+'A'; value /= radix; } while (value != 0); while (i > 0) { *dst++ = digits[--i]; } *dst = 0; return str; } char* dtostrfd(double number, unsigned char prec, char *s) { if ((isnan(number)) || (isinf(number))) { // Fix for JSON output (https://stackoverflow.com/questions/1423081/json-left-out-infinity-and-nan-json-status-in-ecmascript) strcpy(s, "null"); return s; } else { return dtostrf(number, 1, prec, s); } } char* Unescape(char* buffer, uint16_t* size) { uint8_t* read = (uint8_t*)buffer; uint8_t* write = (uint8_t*)buffer; int16_t start_size = *size; int16_t end_size = *size; uint8_t che = 0; // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size); while (start_size > 0) { uint8_t ch = *read++; start_size--; if (ch != '\\') { *write++ = ch; } else { if (start_size > 0) { uint8_t chi = *read++; start_size--; end_size--; switch (chi) { case '\\': che = '\\'; break; // 5C Backslash case 'a': che = '\a'; break; // 07 Bell (Alert) case 'b': che = '\b'; break; // 08 Backspace case 'e': che = '\e'; break; // 1B Escape case 'f': che = '\f'; break; // 0C Formfeed case 'n': che = '\n'; break; // 0A Linefeed (Newline) case 'r': che = '\r'; break; // 0D Carriage return case 's': che = ' '; break; // 20 Space case 't': che = '\t'; break; // 09 Horizontal tab case 'v': che = '\v'; break; // 0B Vertical tab case 'x': { uint8_t* start = read; che = (uint8_t)strtol((const char*)read, (char**)&read, 16); start_size -= (uint16_t)(read - start); end_size -= (uint16_t)(read - start); break; } case '"': che = '\"'; break; // 22 Quotation mark // case '?': che = '\?'; break; // 3F Question mark default : { che = chi; *write++ = ch; end_size++; } } *write++ = che; } } } *size = end_size; *write++ = 0; // add the end string pointer reference // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t*)buffer, *size); return buffer; } char* RemoveSpace(char* p) { char* write = p; char* read = p; char ch = '.'; while (ch != '\0') { ch = *read++; if (!isspace(ch)) { *write++ = ch; } } // *write = '\0'; // Removed 20190223 as it buffer overflows on no isspace found - no need either return p; } char* LowerCase(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = tolower(ch); } return dest; } char* UpperCase(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = toupper(ch); } return dest; } char* UpperCase_P(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = pgm_read_byte(read++); *write++ = toupper(ch); } return dest; } char* Trim(char* p) { while ((*p != '\0') && isblank(*p)) { p++; } // Trim leading spaces char* q = p + strlen(p) -1; while ((q >= p) && isblank(*q)) { q--; } // Trim trailing spaces q++; *q = '\0'; return p; } char* NoAlNumToUnderscore(char* dest, const char* source) { char* write = dest; const char* read = source; char ch = '.'; while (ch != '\0') { ch = *read++; *write++ = (isalnum(ch) || ('\0' == ch)) ? ch : '_'; } return dest; } void SetShortcut(char* str, uint8_t action) { if ('\0' != str[0]) { // There must be at least one character in the buffer str[0] = '0' + action; // SC_CLEAR, SC_DEFAULT, SC_USER str[1] = '\0'; } } uint8_t Shortcut(const char* str) { uint8_t result = 10; if ('\0' == str[1]) { // Only allow single character input for shortcut if (('"' == str[0]) || ('0' == str[0])) { result = SC_CLEAR; } else { result = atoi(str); // 1 = SC_DEFAULT, 2 = SC_USER if (0 == result) { result = 10; } } } return result; } bool ValidIpAddress(const char* str) { const char* p = str; while (*p && ((*p == '.') || ((*p >= '0') && (*p <= '9')))) { p++; } return (*p == '\0'); } bool ParseIp(uint32_t* addr, const char* str) { uint8_t *part = (uint8_t*)addr; uint8_t i; *addr = 0; for (i = 0; i < 4; i++) { part[i] = strtoul(str, nullptr, 10); // Convert byte str = strchr(str, '.'); if (str == nullptr || *str == '\0') { break; // No more separators, exit } str++; // Point to next character after separator } return (3 == i); } void MakeValidMqtt(uint8_t option, char* str) { // option 0 = replace by underscore // option 1 = delete character uint16_t i = 0; while (str[i] > 0) { // if ((str[i] == '/') || (str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) { if ((str[i] == '+') || (str[i] == '#') || (str[i] == ' ')) { if (option) { uint16_t j = i; while (str[j] > 0) { str[j] = str[j +1]; j++; } i--; } else { str[i] = '_'; } } i++; } } // Function to parse & check if version_str is newer than our currently installed version. bool NewerVersion(char* version_str) { uint32_t version = 0; uint8_t i = 0; char *str_ptr; char* version_dup = strdup(version_str); // Duplicate the version_str as strtok_r will modify it. if (!version_dup) { return false; // Bail if we can't duplicate. Assume bad. } // Loop through the version string, splitting on '.' seperators. for (char *str = strtok_r(version_dup, ".", &str_ptr); str && i < sizeof(VERSION); str = strtok_r(nullptr, ".", &str_ptr), i++) { int field = atoi(str); // The fields in a version string can only range from 0-255. if ((field < 0) || (field > 255)) { free(version_dup); return false; } // Shuffle the accumulated bytes across, and add the new byte. version = (version << 8) + field; // Check alpha delimiter after 1.2.3 only if ((2 == i) && isalpha(str[strlen(str)-1])) { field = str[strlen(str)-1] & 0x1f; version = (version << 8) + field; i++; } } free(version_dup); // We no longer need this. // A version string should have 2-4 fields. e.g. 1.2, 1.2.3, or 1.2.3a (= 1.2.3.1). // If not, then don't consider it a valid version string. if ((i < 2) || (i > sizeof(VERSION))) { return false; } // Keep shifting the parsed version until we hit the maximum number of tokens. // VERSION stores the major number of the version in the most significant byte of the uint32_t. while (i < sizeof(VERSION)) { version <<= 8; i++; } // Now we should have a fully constructed version number in uint32_t form. return (version > VERSION); } char* GetPowerDevice(char* dest, uint8_t idx, size_t size, uint8_t option) { char sidx[8]; strncpy_P(dest, S_RSLT_POWER, size); // POWER if ((devices_present + option) > 1) { snprintf_P(sidx, sizeof(sidx), PSTR("%d"), idx); // x strncat(dest, sidx, size - strlen(dest) -1); // POWERx } return dest; } char* GetPowerDevice(char* dest, uint8_t idx, size_t size) { return GetPowerDevice(dest, idx, size, 0); } float ConvertTemp(float c) { float result = c; global_update = uptime; global_temperature = c; if (!isnan(c) && Settings.flag.temperature_conversion) { result = c * 1.8 + 32; // Fahrenheit } return result; } float ConvertTempToCelsius(float c) { float result = c; if (!isnan(c) && Settings.flag.temperature_conversion) { result = (c - 32) / 1.8; // Celsius } return result; } char TempUnit(void) { return (Settings.flag.temperature_conversion) ? 'F' : 'C'; } float ConvertHumidity(float h) { global_update = uptime; global_humidity = h; return h; } float ConvertPressure(float p) { float result = p; global_update = uptime; global_pressure = p; if (!isnan(p) && Settings.flag.pressure_conversion) { result = p * 0.75006375541921; // mmHg } return result; } String PressureUnit(void) { return (Settings.flag.pressure_conversion) ? String(D_UNIT_MILLIMETER_MERCURY) : String(D_UNIT_PRESSURE); } void ResetGlobalValues(void) { if ((uptime - global_update) > GLOBAL_VALUES_VALID) { // Reset after 5 minutes global_update = 0; global_temperature = 0; global_humidity = 0; global_pressure = 0; } } double FastPrecisePow(double a, double b) { // https://martin.ankerl.com/2012/01/25/optimized-approximative-pow-in-c-and-cpp/ // calculate approximation with fraction of the exponent int e = (int)b; union { double d; int x[2]; } u = { a }; u.x[1] = (int)((b - e) * (u.x[1] - 1072632447) + 1072632447); u.x[0] = 0; // exponentiation by squaring with the exponent's integer part // double r = u.d makes everything much slower, not sure why double r = 1.0; while (e) { if (e & 1) { r *= a; } a *= a; e >>= 1; } return r * u.d; } uint32_t SqrtInt(uint32_t num) { if (num <= 1) { return num; } uint32_t x = num / 2; uint32_t y; do { y = (x + num / x) / 2; if (y >= x) { return x; } x = y; } while (true); } uint32_t RoundSqrtInt(uint32_t num) { uint32_t s = SqrtInt(4 * num); if (s & 1) { s++; } return s / 2; } char* GetTextIndexed(char* destination, size_t destination_size, uint16_t index, const char* haystack) { // Returns empty string if not found // Returns text of found char* write = destination; const char* read = haystack; index++; while (index--) { size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } if (0 == ch) { if (index) { write = destination; } break; } } *write = '\0'; return destination; } int GetCommandCode(char* destination, size_t destination_size, const char* needle, const char* haystack) { // Returns -1 of not found // Returns index and command if found int result = -1; const char* read = haystack; char* write = destination; while (true) { result++; size_t size = destination_size -1; write = destination; char ch = '.'; while ((ch != '\0') && (ch != '|')) { ch = pgm_read_byte(read++); if (size && (ch != '|')) { *write++ = ch; size--; } } *write = '\0'; if (!strcasecmp(needle, destination)) { break; } if (0 == ch) { result = -1; break; } } return result; } int GetStateNumber(char *state_text) { char command[CMDSZ]; int state_number = -1; if (GetCommandCode(command, sizeof(command), state_text, kOptionOff) >= 0) { state_number = 0; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionOn) >= 0) { state_number = 1; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionToggle) >= 0) { state_number = 2; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlink) >= 0) { state_number = 3; } else if (GetCommandCode(command, sizeof(command), state_text, kOptionBlinkOff) >= 0) { state_number = 4; } return state_number; } void SetSerialBaudrate(int baudrate) { Settings.baudrate = baudrate / 1200; if (Serial.baudRate() != baudrate) { if (seriallog_level) { AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SET_BAUDRATE_TO " %d"), baudrate); } delay(100); Serial.flush(); Serial.begin(baudrate, serial_config); delay(10); Serial.println(); } } void ClaimSerial(void) { serial_local = true; AddLog_P(LOG_LEVEL_INFO, PSTR("SNS: Hardware Serial")); SetSeriallog(LOG_LEVEL_NONE); baudrate = Serial.baudRate(); Settings.baudrate = baudrate / 1200; } void SerialSendRaw(char *codes) { char *p; char stemp[3]; uint8_t code; int size = strlen(codes); while (size > 0) { strlcpy(stemp, codes, sizeof(stemp)); code = strtol(stemp, &p, 16); Serial.write(code); size -= 2; codes += 2; } } uint32_t GetHash(const char *buffer, size_t size) { uint32_t hash = 0; for (uint16_t i = 0; i <= size; i++) { hash += (uint8_t)*buffer++ * (i +1); } return hash; } void ShowSource(int source) { if ((source > 0) && (source < SRC_MAX)) { char stemp1[20]; AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SRC: %s"), GetTextIndexed(stemp1, sizeof(stemp1), source, kCommandSource)); } } void WebHexCode(uint8_t i, const char* code) { char scolor[10]; strlcpy(scolor, code, sizeof(scolor)); char* p = scolor; if ('#' == p[0]) { p++; } // Skip if (3 == strlen(p)) { // Convert 3 character to 6 character color code p[6] = p[3]; // \0 p[5] = p[2]; // 3 p[4] = p[2]; // 3 p[3] = p[1]; // 2 p[2] = p[1]; // 2 p[1] = p[0]; // 1 } uint32_t color = strtol(p, nullptr, 16); /* if (3 == strlen(p)) { // Convert 3 character to 6 character color code uint32_t w = ((color & 0xF00) << 8) | ((color & 0x0F0) << 4) | (color & 0x00F); // 00010203 color = w | (w << 4); // 00112233 } */ Settings.web_color[i][0] = (color >> 16) & 0xFF; // Red Settings.web_color[i][1] = (color >> 8) & 0xFF; // Green Settings.web_color[i][2] = color & 0xFF; // Blue } uint32_t WebColor(uint8_t i) { uint32_t tcolor = (Settings.web_color[i][0] << 16) | (Settings.web_color[i][1] << 8) | Settings.web_color[i][2]; return tcolor; } /*********************************************************************************************\ * Response data handling \*********************************************************************************************/ int Response_P(const char* format, ...) // Content send snprintf_P char data { // This uses char strings. Be aware of sending %% if % is needed va_list args; va_start(args, format); int len = vsnprintf_P(mqtt_data, sizeof(mqtt_data), format, args); va_end(args); return len; } int ResponseAppend_P(const char* format, ...) // Content send snprintf_P char data { // This uses char strings. Be aware of sending %% if % is needed va_list args; va_start(args, format); int mlen = strlen(mqtt_data); int len = vsnprintf_P(mqtt_data + mlen, sizeof(mqtt_data) - mlen, format, args); va_end(args); return len + mlen; } int ResponseJsonEnd(void) { return ResponseAppend_P(PSTR("}")); } /*********************************************************************************************\ * GPIO Module and Template management \*********************************************************************************************/ uint8_t ModuleNr() { // 0 = User module (255) // 1 up = Template module 0 up return (USER_MODULE == Settings.module) ? 0 : Settings.module +1; } bool ValidTemplateModule(uint8_t index) { for (uint8_t i = 0; i < sizeof(kModuleNiceList); i++) { if (index == pgm_read_byte(kModuleNiceList + i)) { return true; } } return false; } bool ValidModule(uint8_t index) { if (index == USER_MODULE) { return true; } return ValidTemplateModule(index); } String AnyModuleName(uint8_t index) { if (USER_MODULE == index) { return String(Settings.user_template.name); } else { return FPSTR(kModules[index].name); } } String ModuleName() { return AnyModuleName(Settings.module); } void ModuleGpios(myio *gp) { uint8_t *dest = (uint8_t *)gp; memset(dest, GPIO_NONE, sizeof(myio)); uint8_t src[sizeof(mycfgio)]; if (USER_MODULE == Settings.module) { memcpy(&src, &Settings.user_template.gp, sizeof(mycfgio)); } else { memcpy_P(&src, &kModules[Settings.module].gp, sizeof(mycfgio)); } // 11 85 00 85 85 00 00 00 15 38 85 00 00 81 // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)&src, sizeof(mycfgio)); uint8_t j = 0; for (uint8_t i = 0; i < sizeof(mycfgio); i++) { if (6 == i) { j = 9; } if (8 == i) { j = 12; } dest[j] = src[i]; j++; } // 11 85 00 85 85 00 00 00 00 00 00 00 15 38 85 00 00 81 // AddLogBuffer(LOG_LEVEL_DEBUG, (uint8_t *)gp, sizeof(myio)); } gpio_flag ModuleFlag() { gpio_flag flag; if (USER_MODULE == Settings.module) { flag = Settings.user_template.flag; } else { memcpy_P(&flag, &kModules[Settings.module].flag, sizeof(gpio_flag)); } return flag; } void ModuleDefault(uint8_t module) { if (USER_MODULE == module) { module = WEMOS; } // Generic Settings.user_template_base = module; memcpy_P(&Settings.user_template, &kModules[module], sizeof(mytmplt)); } void SetModuleType() { my_module_type = (USER_MODULE == Settings.module) ? Settings.user_template_base : Settings.module; } uint8_t ValidPin(uint8_t pin, uint8_t gpio) { uint8_t result = gpio; if (((pin > 5) && (pin < 9)) || (11 == pin)) { result = GPIO_NONE; // Disable flash pins GPIO6, GPIO7, GPIO8 and GPIO11 } if ((WEMOS == Settings.module) && (!Settings.flag3.user_esp8285_enable)) { if ((pin == 9) || (pin == 10)) { result = GPIO_NONE; } // Disable possible flash GPIO9 and GPIO10 } return result; } bool ValidGPIO(uint8_t pin, uint8_t gpio) { return (GPIO_USER == ValidPin(pin, gpio)); // Only allow GPIO_USER pins } bool ValidAdc() { gpio_flag flag = ModuleFlag(); uint8_t template_adc0 = flag.data &15; return (ADC0_USER == template_adc0); } bool GetUsedInModule(uint8_t val, uint8_t *arr) { int offset = 0; if (!val) { return false; } // None if ((val >= GPIO_KEY1) && (val < GPIO_KEY1 + MAX_KEYS)) { offset = (GPIO_KEY1_NP - GPIO_KEY1); } if ((val >= GPIO_KEY1_NP) && (val < GPIO_KEY1_NP + MAX_KEYS)) { offset = -(GPIO_KEY1_NP - GPIO_KEY1); } if ((val >= GPIO_KEY1_INV) && (val < GPIO_KEY1_INV + MAX_KEYS)) { offset = -(GPIO_KEY1_INV - GPIO_KEY1); } if ((val >= GPIO_KEY1_INV_NP) && (val < GPIO_KEY1_INV_NP + MAX_KEYS)) { offset = -(GPIO_KEY1_INV_NP - GPIO_KEY1); } if ((val >= GPIO_SWT1) && (val < GPIO_SWT1 + MAX_SWITCHES)) { offset = (GPIO_SWT1_NP - GPIO_SWT1); } if ((val >= GPIO_SWT1_NP) && (val < GPIO_SWT1_NP + MAX_SWITCHES)) { offset = -(GPIO_SWT1_NP - GPIO_SWT1); } if ((val >= GPIO_REL1) && (val < GPIO_REL1 + MAX_RELAYS)) { offset = (GPIO_REL1_INV - GPIO_REL1); } if ((val >= GPIO_REL1_INV) && (val < GPIO_REL1_INV + MAX_RELAYS)) { offset = -(GPIO_REL1_INV - GPIO_REL1); } if ((val >= GPIO_LED1) && (val < GPIO_LED1 + MAX_LEDS)) { offset = (GPIO_LED1_INV - GPIO_LED1); } if ((val >= GPIO_LED1_INV) && (val < GPIO_LED1_INV + MAX_LEDS)) { offset = -(GPIO_LED1_INV - GPIO_LED1); } if ((val >= GPIO_PWM1) && (val < GPIO_PWM1 + MAX_PWMS)) { offset = (GPIO_PWM1_INV - GPIO_PWM1); } if ((val >= GPIO_PWM1_INV) && (val < GPIO_PWM1_INV + MAX_PWMS)) { offset = -(GPIO_PWM1_INV - GPIO_PWM1); } if ((val >= GPIO_CNTR1) && (val < GPIO_CNTR1 + MAX_COUNTERS)) { offset = (GPIO_CNTR1_NP - GPIO_CNTR1); } if ((val >= GPIO_CNTR1_NP) && (val < GPIO_CNTR1_NP + MAX_COUNTERS)) { offset = -(GPIO_CNTR1_NP - GPIO_CNTR1); } for (uint8_t i = 0; i < MAX_GPIO_PIN; i++) { if (arr[i] == val) { return true; } if (arr[i] == val + offset) { return true; } } return false; } bool JsonTemplate(const char* dataBuf) { // {"NAME":"Generic","GPIO":[17,254,29,254,7,254,254,254,138,254,139,254,254],"FLAG":1,"BASE":255} if (strlen(dataBuf) < 9) { return false; } // Workaround exception if empty JSON like {} - Needs checks StaticJsonBuffer<350> jb; // 331 from https://arduinojson.org/v5/assistant/ JsonObject& obj = jb.parseObject(dataBuf); if (!obj.success()) { return false; } // All parameters are optional allowing for partial changes const char* name = obj[D_JSON_NAME]; if (name != nullptr) { strlcpy(Settings.user_template.name, name, sizeof(Settings.user_template.name)); } if (obj[D_JSON_GPIO].success()) { for (uint8_t i = 0; i < sizeof(mycfgio); i++) { Settings.user_template.gp.io[i] = obj[D_JSON_GPIO][i] | 0; } } if (obj[D_JSON_FLAG].success()) { uint8_t flag = obj[D_JSON_FLAG] | 0; memcpy(&Settings.user_template.flag, &flag, sizeof(gpio_flag)); } if (obj[D_JSON_BASE].success()) { uint8_t base = obj[D_JSON_BASE]; if ((0 == base) || !ValidTemplateModule(base -1)) { base = 18; } Settings.user_template_base = base -1; // Default WEMOS } return true; } void TemplateJson() { Response_P(PSTR("{\"" D_JSON_NAME "\":\"%s\",\"" D_JSON_GPIO "\":["), Settings.user_template.name); for (uint8_t i = 0; i < sizeof(Settings.user_template.gp); i++) { ResponseAppend_P(PSTR("%s%d"), (i>0)?",":"", Settings.user_template.gp.io[i]); } ResponseAppend_P(PSTR("],\"" D_JSON_FLAG "\":%d,\"" D_JSON_BASE "\":%d}"), Settings.user_template.flag, Settings.user_template_base +1); } /*********************************************************************************************\ * Sleep aware time scheduler functions borrowed from ESPEasy \*********************************************************************************************/ long TimeDifference(unsigned long prev, unsigned long next) { // Return the time difference as a signed value, taking into account the timers may overflow. // Returned timediff is between -24.9 days and +24.9 days. // Returned value is positive when "next" is after "prev" long signed_diff = 0; // To cast a value to a signed long, the difference may not exceed half 0xffffffffUL (= 4294967294) const unsigned long half_max_unsigned_long = 2147483647u; // = 2^31 -1 if (next >= prev) { const unsigned long diff = next - prev; if (diff <= half_max_unsigned_long) { // Normal situation, just return the difference. signed_diff = static_cast(diff); // Difference is a positive value. } else { // prev has overflow, return a negative difference value signed_diff = static_cast((0xffffffffUL - next) + prev + 1u); signed_diff = -1 * signed_diff; } } else { // next < prev const unsigned long diff = prev - next; if (diff <= half_max_unsigned_long) { // Normal situation, return a negative difference value signed_diff = static_cast(diff); signed_diff = -1 * signed_diff; } else { // next has overflow, return a positive difference value signed_diff = static_cast((0xffffffffUL - prev) + next + 1u); } } return signed_diff; } long TimePassedSince(unsigned long timestamp) { // Compute the number of milliSeconds passed since timestamp given. // Note: value can be negative if the timestamp has not yet been reached. return TimeDifference(timestamp, millis()); } bool TimeReached(unsigned long timer) { // Check if a certain timeout has been reached. const long passed = TimePassedSince(timer); return (passed >= 0); } void SetNextTimeInterval(unsigned long& timer, const unsigned long step) { timer += step; const long passed = TimePassedSince(timer); if (passed < 0) { return; } // Event has not yet happened, which is fine. if (static_cast(passed) > step) { // No need to keep running behind, start again. timer = millis() + step; return; } // Try to get in sync again. timer = millis() + (step - passed); } /*********************************************************************************************\ * Basic I2C routines \*********************************************************************************************/ #ifdef USE_I2C const uint8_t I2C_RETRY_COUNTER = 3; uint32_t i2c_buffer = 0; bool I2cValidRead(uint8_t addr, uint8_t reg, uint8_t size) { uint8_t retry = I2C_RETRY_COUNTER; bool status = false; i2c_buffer = 0; while (!status && retry) { Wire.beginTransmission(addr); // start transmission to device Wire.write(reg); // sends register address to read from if (0 == Wire.endTransmission(false)) { // Try to become I2C Master, send data and collect bytes, keep master status for next request... Wire.requestFrom((int)addr, (int)size); // send data n-bytes read if (Wire.available() == size) { for (uint8_t i = 0; i < size; i++) { i2c_buffer = i2c_buffer << 8 | Wire.read(); // receive DATA } status = true; } } retry--; } return status; } bool I2cValidRead8(uint8_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 1); *data = (uint8_t)i2c_buffer; return status; } bool I2cValidRead16(uint16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (uint16_t)i2c_buffer; return status; } bool I2cValidReadS16(int16_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 2); *data = (int16_t)i2c_buffer; return status; } bool I2cValidRead16LE(uint16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16(&ldata, addr, reg); *data = (ldata >> 8) | (ldata << 8); return status; } bool I2cValidReadS16_LE(int16_t *data, uint8_t addr, uint8_t reg) { uint16_t ldata; bool status = I2cValidRead16LE(&ldata, addr, reg); *data = (int16_t)ldata; return status; } bool I2cValidRead24(int32_t *data, uint8_t addr, uint8_t reg) { bool status = I2cValidRead(addr, reg, 3); *data = i2c_buffer; return status; } uint8_t I2cRead8(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 1); return (uint8_t)i2c_buffer; } uint16_t I2cRead16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (uint16_t)i2c_buffer; } int16_t I2cReadS16(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); return (int16_t)i2c_buffer; } uint16_t I2cRead16LE(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 2); uint16_t temp = (uint16_t)i2c_buffer; return (temp >> 8) | (temp << 8); } int16_t I2cReadS16_LE(uint8_t addr, uint8_t reg) { return (int16_t)I2cRead16LE(addr, reg); } int32_t I2cRead24(uint8_t addr, uint8_t reg) { I2cValidRead(addr, reg, 3); return i2c_buffer; } bool I2cWrite(uint8_t addr, uint8_t reg, uint32_t val, uint8_t size) { uint8_t x = I2C_RETRY_COUNTER; do { Wire.beginTransmission((uint8_t)addr); // start transmission to device Wire.write(reg); // sends register address to write to uint8_t bytes = size; while (bytes--) { Wire.write((val >> (8 * bytes)) & 0xFF); // write data } x--; } while (Wire.endTransmission(true) != 0 && x != 0); // end transmission return (x); } bool I2cWrite8(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 1); } bool I2cWrite16(uint8_t addr, uint8_t reg, uint16_t val) { return I2cWrite(addr, reg, val, 2); } int8_t I2cReadBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); Wire.endTransmission(); if (len != Wire.requestFrom((uint8_t)addr, (uint8_t)len)) { return 1; } while (len--) { *reg_data = (uint8_t)Wire.read(); reg_data++; } return 0; } int8_t I2cWriteBuffer(uint8_t addr, uint8_t reg, uint8_t *reg_data, uint16_t len) { Wire.beginTransmission((uint8_t)addr); Wire.write((uint8_t)reg); while (len--) { Wire.write(*reg_data); reg_data++; } Wire.endTransmission(); return 0; } void I2cScan(char *devs, unsigned int devs_len) { // Return error codes defined in twi.h and core_esp8266_si2c.c // I2C_OK 0 // I2C_SCL_HELD_LOW 1 = SCL held low by another device, no procedure available to recover // I2C_SCL_HELD_LOW_AFTER_READ 2 = I2C bus error. SCL held low beyond slave clock stretch time // I2C_SDA_HELD_LOW 3 = I2C bus error. SDA line held low by slave/another_master after n bits // I2C_SDA_HELD_LOW_AFTER_INIT 4 = line busy. SDA again held low by another device. 2nd master? uint8_t error = 0; uint8_t address = 0; uint8_t any = 0; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_DEVICES_FOUND_AT)); for (address = 1; address <= 127; address++) { Wire.beginTransmission(address); error = Wire.endTransmission(); if (0 == error) { any = 1; snprintf_P(devs, devs_len, PSTR("%s 0x%02x"), devs, address); } else if (error != 2) { // Seems to happen anyway using this scan any = 2; snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"Error %d at 0x%02x"), error, address); break; } } if (any) { strncat(devs, "\"}", devs_len - strlen(devs) -1); } else { snprintf_P(devs, devs_len, PSTR("{\"" D_CMND_I2CSCAN "\":\"" D_JSON_I2CSCAN_NO_DEVICES_FOUND "\"}")); } } bool I2cDevice(uint8_t addr) { for (uint8_t address = 1; address <= 127; address++) { Wire.beginTransmission(address); if (!Wire.endTransmission() && (address == addr)) { return true; } } return false; } #endif // USE_I2C /*********************************************************************************************\ * Syslog * * Example: * AddLog_P2(LOG_LEVEL_DEBUG, PSTR(D_LOG_LOG "Any value %d"), value); * \*********************************************************************************************/ void SetSeriallog(uint8_t loglevel) { Settings.seriallog_level = loglevel; seriallog_level = loglevel; seriallog_timer = 0; } #ifdef USE_WEBSERVER void GetLog(uint8_t idx, char** entry_pp, size_t* len_p) { char* entry_p = nullptr; size_t len = 0; if (idx) { char* it = web_log; do { uint8_t cur_idx = *it; it++; size_t tmp = strchrspn(it, '\1'); tmp++; // Skip terminating '\1' if (cur_idx == idx) { // Found the requested entry len = tmp; entry_p = it; break; } it += tmp; } while (it < web_log + WEB_LOG_SIZE && *it != '\0'); } *entry_pp = entry_p; *len_p = len; } #endif // USE_WEBSERVER void Syslog(void) { // Destroys log_data char syslog_preamble[64]; // Hostname + Id uint32_t current_hash = GetHash(Settings.syslog_host, strlen(Settings.syslog_host)); if (syslog_host_hash != current_hash) { syslog_host_hash = current_hash; WiFi.hostByName(Settings.syslog_host, syslog_host_addr); // If sleep enabled this might result in exception so try to do it once using hash } if (PortUdp.beginPacket(syslog_host_addr, Settings.syslog_port)) { snprintf_P(syslog_preamble, sizeof(syslog_preamble), PSTR("%s ESP-"), my_hostname); memmove(log_data + strlen(syslog_preamble), log_data, sizeof(log_data) - strlen(syslog_preamble)); log_data[sizeof(log_data) -1] = '\0'; memcpy(log_data, syslog_preamble, strlen(syslog_preamble)); PortUdp.write(log_data); PortUdp.endPacket(); delay(1); // Add time for UDP handling (#5512) } else { syslog_level = 0; syslog_timer = SYSLOG_TIMER; AddLog_P2(LOG_LEVEL_INFO, PSTR(D_LOG_APPLICATION D_SYSLOG_HOST_NOT_FOUND ". " D_RETRY_IN " %d " D_UNIT_SECOND), SYSLOG_TIMER); } } void AddLog(uint8_t loglevel) { char mxtime[10]; // "13:45:21 " snprintf_P(mxtime, sizeof(mxtime), PSTR("%02d" D_HOUR_MINUTE_SEPARATOR "%02d" D_MINUTE_SECOND_SEPARATOR "%02d "), RtcTime.hour, RtcTime.minute, RtcTime.second); if (loglevel <= seriallog_level) { Serial.printf("%s%s\r\n", mxtime, log_data); } #ifdef USE_WEBSERVER if (Settings.webserver && (loglevel <= Settings.weblog_level)) { // Delimited, zero-terminated buffer of log lines. // Each entry has this format: [index][log data]['\1'] if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string while (web_log_index == web_log[0] || // If log already holds the next index, remove it strlen(web_log) + strlen(log_data) + 13 > WEB_LOG_SIZE) // 13 = web_log_index + mxtime + '\1' + '\0' { char* it = web_log; it++; // Skip web_log_index it += strchrspn(it, '\1'); // Skip log line it++; // Skip delimiting "\1" memmove(web_log, it, WEB_LOG_SIZE -(it-web_log)); // Move buffer forward to remove oldest log line } snprintf_P(web_log, sizeof(web_log), PSTR("%s%c%s%s\1"), web_log, web_log_index++, mxtime, log_data); if (!web_log_index) web_log_index++; // Index 0 is not allowed as it is the end of char string } #endif // USE_WEBSERVER if (!global_state.wifi_down && (loglevel <= syslog_level)) { Syslog(); } } void AddLog_P(uint8_t loglevel, const char *formatP) { snprintf_P(log_data, sizeof(log_data), formatP); AddLog(loglevel); } void AddLog_P(uint8_t loglevel, const char *formatP, const char *formatP2) { char message[100]; snprintf_P(log_data, sizeof(log_data), formatP); snprintf_P(message, sizeof(message), formatP2); strncat(log_data, message, sizeof(log_data) - strlen(log_data) -1); AddLog(loglevel); } void AddLog_P2(uint8_t loglevel, PGM_P formatP, ...) { va_list arg; va_start(arg, formatP); vsnprintf_P(log_data, sizeof(log_data), formatP, arg); va_end(arg); AddLog(loglevel); } void AddLogBuffer(uint8_t loglevel, uint8_t *buffer, int count) { snprintf_P(log_data, sizeof(log_data), PSTR("DMP:")); for (int i = 0; i < count; i++) { snprintf_P(log_data, sizeof(log_data), PSTR("%s %02X"), log_data, *(buffer++)); } AddLog(loglevel); } void AddLogSerial(uint8_t loglevel) { AddLogBuffer(loglevel, (uint8_t*)serial_in_buffer, serial_in_byte_counter); } void AddLogMissed(char *sensor, uint8_t misses) { AddLog_P2(LOG_LEVEL_DEBUG, PSTR("SNS: %s missed %d"), sensor, SENSOR_MAX_MISS - misses); }