/* xnrg_30_dummy.ino - Dummy energy sensor support for Tasmota Copyright (C) 2021 Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_ENERGY_SENSOR #ifdef USE_ENERGY_DUMMY /*********************************************************************************************\ * Provides dummy energy monitoring for up to three channels based on relay count * * User is supposed to enter valid data for Voltage, Current and Power using commands * VoltageSet 240 (= 240V), CurrentSet 0.417 (= 417mA) and PowerSet 100 (= 100W) or * VoltageCal 24000 (= 240V), CurrentCal 41666 (= 0.417A) and PowerCal 10000 (= 100W) * Each phase or channel can be set using commands overriding above commands * EnergyConfig1, EnergyConfig2 and EnergyConfig3 for Current phases (0.417 = 417mA) * EnergyConfig4, EnergyConfig5 and EnergyConfig6 for Active Power phases (100 = 100W) * Active Power is adjusted to calculated Apparent Power (=U*I) if the latter is smaller than the first * * Enable by selecting any GPIO as Option A2 \*********************************************************************************************/ #define XNRG_30 30 #define NRG_DUMMY_U_COMMON true // Phase voltage = false, Common voltage = true #define NRG_DUMMY_F_COMMON true // Phase frequency = false, Common frequency = true #define NRG_DUMMY_DC false // AC = false, DC = true; #define NRG_DUMMY_OVERTEMP true // Use global temperature for overtemp detection #define NRG_DUMMY_UREF 24000 // Voltage 240.00 V (= P / I) #define NRG_DUMMY_IREF 41666 // Current 0.417 A (= P / U) #define NRG_DUMMY_PREF 10000 // Power 100.00 W (= U * I) #define NRG_DUMMY_FREF 5000 // Frequency 50.00 Hz /********************************************************************************************/ struct { int32_t current[3] = { 0 }; int32_t power[3] = { 0 }; } NrgDummy; void NrgDummyEverySecond(void) { if (Energy.power_on) { // Powered on for (uint32_t channel = 0; channel < Energy.phase_count; channel++) { Energy.voltage[channel] = ((float)Settings->energy_voltage_calibration / 100); // V Energy.frequency[channel] = ((float)Settings->energy_frequency_calibration / 100); // Hz if (bitRead(TasmotaGlobal.power, channel)) { // Emulate power read only if device is powered on Energy.active_power[channel] = (NrgDummy.power[channel]) ? ((float)NrgDummy.power[channel] / 1000) : ((float)Settings->energy_power_calibration / 100); // W if (0 == Energy.active_power[channel]) { Energy.current[channel] = 0; } else { Energy.current[channel] = (NrgDummy.current[channel]) ? ((float)NrgDummy.current[channel] / 1000) : ((float)Settings->energy_current_calibration / 100000); // A Energy.kWhtoday_delta[channel] += Energy.active_power[channel] * 1000 / 36; } Energy.data_valid[channel] = 0; } } EnergyUpdateToday(); } } bool NrgDummyCommand(void) { bool serviced = true; int32_t value = (int32_t)(CharToFloat(XdrvMailbox.data) * 1000); // 1.234 = 1234, -1.234 = -1234 uint32_t abs_value = abs(value) / 10; // 1.23 = 123, -1.23 = 123 if ((CMND_POWERCAL == Energy.command_code) || (CMND_VOLTAGECAL == Energy.command_code) || (CMND_CURRENTCAL == Energy.command_code)) { // Service in xdrv_03_energy.ino } else if (CMND_POWERSET == Energy.command_code) { if (XdrvMailbox.data_len) { if ((abs_value > 100) && (abs_value < 200000)) { // Between 1.00 and 2000.00 W Settings->energy_power_calibration = abs_value; } } } else if (CMND_VOLTAGESET == Energy.command_code) { if (XdrvMailbox.data_len) { if ((abs_value > 10000) && (abs_value < 26000)) { // Between 100.00 and 260.00 V Settings->energy_voltage_calibration = abs_value; } } } else if (CMND_CURRENTSET == Energy.command_code) { if (XdrvMailbox.data_len) { if ((abs_value > 1000) && (abs_value < 1000000)) { // Between 10.00 mA and 10.00000 A Settings->energy_current_calibration = abs_value; } } } else if (CMND_FREQUENCYSET == Energy.command_code) { if (XdrvMailbox.data_len) { if ((abs_value > 4500) && (abs_value < 6500)) { // Between 45.00 and 65.00 Hz Settings->energy_frequency_calibration = abs_value; } } } else if (CMND_ENERGYCONFIG == Energy.command_code) { AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Config index %d, payload %d, value %d, data '%s'"), XdrvMailbox.index, XdrvMailbox.payload, value, XdrvMailbox.data ? XdrvMailbox.data : "null" ); // EnergyConfig1 to 3 = Set Energy.current[channel] in A like 0.417 for 417mA if ((XdrvMailbox.index > 0) && (XdrvMailbox.index < 4)) { NrgDummy.current[XdrvMailbox.index -1] = value; } // EnergyConfig4 to 6 = Set Energy.active_power[channel] in W like 100 for 100W if ((XdrvMailbox.index > 3) && (XdrvMailbox.index < 7)) { NrgDummy.power[XdrvMailbox.index -4] = value; } } else serviced = false; // Unknown command return serviced; } void NrgDummyDrvInit(void) { if (TasmotaGlobal.gpio_optiona.dummy_energy && TasmotaGlobal.devices_present) { if (HLW_PREF_PULSE == Settings->energy_power_calibration) { Settings->energy_frequency_calibration = NRG_DUMMY_FREF; Settings->energy_voltage_calibration = NRG_DUMMY_UREF; Settings->energy_current_calibration = NRG_DUMMY_IREF; Settings->energy_power_calibration = NRG_DUMMY_PREF; } Energy.phase_count = (TasmotaGlobal.devices_present < ENERGY_MAX_PHASES) ? TasmotaGlobal.devices_present : ENERGY_MAX_PHASES; Energy.voltage_common = NRG_DUMMY_U_COMMON; // Phase voltage = false, Common voltage = true Energy.frequency_common = NRG_DUMMY_F_COMMON; // Phase frequency = false, Common frequency = true Energy.type_dc = NRG_DUMMY_DC; // AC = false, DC = true; Energy.use_overtemp = NRG_DUMMY_OVERTEMP; // Use global temperature for overtemp detection TasmotaGlobal.energy_driver = XNRG_30; } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xnrg30(uint8_t function) { bool result = false; switch (function) { case FUNC_ENERGY_EVERY_SECOND: NrgDummyEverySecond(); break; case FUNC_COMMAND: result = NrgDummyCommand(); break; case FUNC_PRE_INIT: NrgDummyDrvInit(); break; } return result; } #endif // USE_ENERGY_DUMMY #endif // USE_ENERGY_SENSOR