/*
xdrv_49_pid.ino - PID algorithm plugin for Sonoff-Tasmota
Copyright (C) 2021 Colin Law and Thomas Herrmann
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_PID
#ifndef FIRMWARE_MINIMAL
/*********************************************************************************************\
* Uses the library https://github.com/colinl/process-control.git from Github
* In user_config_override.h include code as follows:
#define USE_PID // include the pid feature (+4.3k)
#define PID_SETPOINT 19.5 // Setpoint value. This is the process value that the process is
// aiming for.
// May be adjusted via MQTT using cmnd PidSp
#define PID_PROPBAND 5 // Proportional band in process units (eg degrees). This controls
// the gain of the loop and is the range of process value over which
// the power output will go from 0 to full power. The units are that
// of the process and setpoint, so for example in a heating
// application it might be set to 1.5 degrees.
// May be adjusted via MQTT using cmnd PidPb
#define PID_INTEGRAL_TIME 1800 // Integral time seconds. This is a setting for the integral time,
// in seconds. It represents the time constant of the integration
// effect. The larger the value the slower the integral effect will be.
// Obviously the slower the process is the larger this should be. For
// example for a domestic room heated by convection radiators a setting
// of one hour might be appropriate (in seconds). To disable the
// integral effect set this to a large number.
// May be adjusted via MQTT using cmnd PidTi
#define PID_DERIVATIVE_TIME 15 // Derivative time seconds. This is a setting for the derivative time,
// in seconds. It represents the time constant of the derivative effect.
// The larger the value the greater will be the derivative effect.
// Typically this will be set to somewhat less than 25% of the integral
// setting, once the integral has been adjusted to the optimum value. To
// disable the derivative effect set this to 0. When initially tuning a
// loop it is often sensible to start with derivative zero and wind it in
// once other parameters have been setup.
// May be adjusted via MQTT using cmnd PidTd
#define PID_INITIAL_INT 0.5 // Initial integral value (0:1). This is an initial value which is used
// to preset the integrated error value when the flow is deployed in
// order to assist in homing in on the setpoint the first time. It should
// be set to an estimate of what the power requirement might be in order
// to maintain the process at the setpoint. For example for a domestic
// room heating application it might be set to 0.2 indicating that 20% of
// the available power might be required to maintain the setpoint. The
// value is of no consequence apart from device restart.
#define PID_MAX_INTERVAL 300 // This is the maximum time in seconds that is expected between samples.
// It is provided to cope with unusual situations such as a faulty sensor
// that might prevent the node from being supplied with a process value.
// If no new process value is received for this time then the power is set
// to the value defined for PID_MANUAL_POWER.
// May be adjusted via MQTT using cmnd PidMaxInterval
#define PID_DERIV_SMOOTH_FACTOR 3 // In situations where the process sensor has limited resolution (such as
// the DS18B20), the use of deriviative can be problematic as when the
// process is changing only slowly the steps in the value cause spikes in
// the derivative. To reduce the effect of these this parameter can be
// set to apply a filter to the derivative term. I have found that with
// the DS18B20 that a value of 3 here can be beneficial, providing
// effectively a low pass filter on the derivative at 1/3 of the derivative
// time. This feature may also be useful if the process value is particularly
// noisy. The smaller the value the greater the filtering effect but the
// more it will reduce the effectiveness of the derivative. A value of zero
// disables this feature.
// May be adjusted via MQTT using cmnd PidDSmooth
#define PID_AUTO 1 // Auto mode 1 or 0 (for manual). This can be used to enable or disable
// the control (1=enable, auto mode, 0=disabled, manual mode). When in
// manual mode the output is set the value definded for PID_MANUAL_POWER
// May be adjusted via MQTT using cmnd PidAuto
#define PID_MANUAL_POWER 0 // Power output when in manual mode or fallback mode if too long elapses
// between process values
// May be adjusted via MQTT using cmnd PidManualPower
#define PID_UPDATE_SECS 0 // How often to run the pid algorithm (integer secs) or 0 to run the algorithm
// each time a new pv value is received, for most applictions specify 0.
// Otherwise set this to a time
// that is short compared to the response of the process. For example,
// something like 15 seconds may well be appropriate for a domestic room
// heating application.
// May be adjusted via MQTT using cmnd PidUpdateSecs
#define PID_USE_TIMPROP 1 // To use an internal relay for a time proportioned output to drive the
// process, set this to indicate which timeprop output to use. For a device
// with just one relay then this will be 1.
// USE_TIMEPROP will be automativally included. You must set the output as
// explained in xdrv_48_timeprop.ino
// To disable, override to false in user_config_override.h. If USE_TIMEPROP is
// not explicitly defined, then it will not be added by default.
#define PID_USE_LOCAL_SENSOR // If defined then the local sensor will be used for pv. Leave undefined if
// this is not required. The rate that the sensor is read is defined by TELE_PERIOD
// If not using the sensor then you can supply process values via MQTT using
// cmnd PidPv
#define PID_LOCAL_SENSOR_NAME "DS18B20" // local sensor name when PID_USE_LOCAL_SENSOR is defined above
// the JSON payload is parsed for this sensor to find the present value
// eg "ESP32":{"Temperature":31.4},"DS18B20":{"Temperature":12.6}
#define PID_LOCAL_SENSOR_TYPE D_JSON_TEMPERATURE // Choose one of D_JSON_TEMPERATURE D_JSON_HUMIDITY D_JSON_PRESSURE
// or any string as the sensor type. The JSON payload is parsed for the
// value in this field
// eg "HDC1080":{"Temperature":24.8,"Humidity":79.2}
#define PID_SHUTTER 1 // if using the PID to control a 3-way valve, create Tasmota Shutter and define the
// number of the shutter here. Otherwise leave this commented out
#define PID_REPORT_MORE_SETTINGS true // If defined to true, the SENSOR output will provide more extensive json
// output in the PID section. Override to false to reduce json output
* Help with using the PID algorithm and with loop tuning can be found at
* http://blog.clanlaw.org.uk/2018/01/09/PID-tuning-with-node-red-contrib-pid.html
* This is directed towards using the algorithm in the node-red node node-red-contrib-pid but the algorithm here is based on
* the code there and the tuning technique described there should work just the same.
\*********************************************************************************************/
#ifndef PID_SETPOINT
#define PID_SETPOINT 19.5 // [PidSp] Setpoint value.
#endif
#ifndef PID_PROPBAND
#define PID_PROPBAND 5 // [PidPb] Proportional band in process units (eg degrees).
#endif
#ifndef PID_INTEGRAL_TIME
#define PID_INTEGRAL_TIME 1800 // [PidTi] Integral time seconds.
#endif
#ifndef PID_DERIVATIVE_TIME
#define PID_DERIVATIVE_TIME 15 // [PidTd] Derivative time seconds.
#endif
#ifndef PID_INITIAL_INT
#define PID_INITIAL_INT 0.5 // Initial integral value (0:1).
#endif
#ifndef PID_MAX_INTERVAL
#define PID_MAX_INTERVAL 300 // [PidMaxInterval] This is the maximum time in seconds between samples.
#endif
#ifndef PID_DERIV_SMOOTH_FACTOR
#define PID_DERIV_SMOOTH_FACTOR 3 // [PidDSmooth]
#endif
#ifndef PID_AUTO
#define PID_AUTO 1 // [PidAuto] Auto mode 1 or 0 (for manual).
#endif
#ifndef PID_MANUAL_POWER
#define PID_MANUAL_POWER 0 // [PidManualPower] Power output when in manual mode or fallback mode.
#endif
#ifndef PID_UPDATE_SECS
#define PID_UPDATE_SECS 0 // [PidUpdateSecs] How often to run the pid algorithm
#endif
#ifndef PID_USE_TIMPROP
#define PID_USE_TIMPROP 1 // To disable this feature define as false in user_config_override
#endif
// #define PID_USE_LOCAL_SENSOR // If defined then the local sensor will be used for pv.
#ifndef PID_LOCAL_SENSOR_NAME
#define PID_LOCAL_SENSOR_NAME "DS18B20" // local sensor name when PID_USE_LOCAL_SENSOR is defined
#endif
#ifndef PID_LOCAL_SENSOR_TYPE
#define PID_LOCAL_SENSOR_TYPE D_JSON_TEMPERATURE // local sensor type
#endif
//#define PID_SHUTTER 1 // Number of the shutter here. Otherwise leave this commented out
#ifndef PID_REPORT_MORE_SETTINGS
#define PID_REPORT_MORE_SETTINGS true // Override to false if less details are required in SENSOR JSON
#endif
#include "PID.h"
/* This might need to go to i18n.h */
#define D_PRFX_PID "Pid"
#define D_CMND_PID_SETPV "Pv"
#define D_CMND_PID_SETSETPOINT "Sp"
#define D_CMND_PID_SETPROPBAND "Pb"
#define D_CMND_PID_SETINTEGRAL_TIME "Ti"
#define D_CMND_PID_SETDERIVATIVE_TIME "Td"
#define D_CMND_PID_SETINITIAL_INT "Initint"
#define D_CMND_PID_SETDERIV_SMOOTH_FACTOR "DSmooth"
#define D_CMND_PID_SETAUTO "Auto"
#define D_CMND_PID_SETMANUAL_POWER "ManualPower"
#define D_CMND_PID_SETMAX_INTERVAL "MaxInterval"
#define D_CMND_PID_SETUPDATE_SECS "UpdateSecs"
#define D_CMND_PID_SETSHUTDOWN "Shutdown"
const char kPIDCommands[] PROGMEM = D_PRFX_PID "|" // Prefix
D_CMND_PID_SETPV "|"
D_CMND_PID_SETSETPOINT "|"
D_CMND_PID_SETPROPBAND "|"
D_CMND_PID_SETINTEGRAL_TIME "|"
D_CMND_PID_SETDERIVATIVE_TIME "|"
D_CMND_PID_SETINITIAL_INT "|"
D_CMND_PID_SETDERIV_SMOOTH_FACTOR "|"
D_CMND_PID_SETAUTO "|"
D_CMND_PID_SETMANUAL_POWER "|"
D_CMND_PID_SETMAX_INTERVAL "|"
D_CMND_PID_SETUPDATE_SECS "|"
D_CMND_PID_SETSHUTDOWN;
;
void (* const PIDCommand[])(void) PROGMEM = {
&CmndSetPv,
&CmndSetSp,
&CmndSetPb,
&CmndSetTi,
&CmndSetTd,
&CmndSetInitialInt,
&CmndSetDSmooth,
&CmndSetAuto,
&CmndSetManualPower,
&CmndSetMaxInterval,
&CmndSetUpdateSecs,
&CmndSetShutdown
};
struct {
PID pid;
int update_secs = PID_UPDATE_SECS <= 0 ? 0 : PID_UPDATE_SECS; // how often (secs) the pid alogorithm is run
int max_interval = PID_MAX_INTERVAL;
unsigned long last_pv_update_secs = 0;
bool run_pid_now = false; // tells PID_Every_Second to run the pid algorithm
long current_time_secs = 0; // a counter that counts seconds since initialisation
bool shutdown = false; // power commands will be ignored when true
} Pid;
void PIDInit()
{
Pid.pid.initialise( PID_SETPOINT, PID_PROPBAND, PID_INTEGRAL_TIME, PID_DERIVATIVE_TIME, PID_INITIAL_INT,
PID_MAX_INTERVAL, PID_DERIV_SMOOTH_FACTOR, PID_AUTO, PID_MANUAL_POWER );
}
void PIDEverySecond() {
static int sec_counter = 0;
Pid.current_time_secs++; // increment time
// run the pid algorithm if Pid.run_pid_now is true or if the right number of seconds has passed or if too long has
// elapsed since last pv update. If too long has elapsed the the algorithm will deal with that.
if (Pid.run_pid_now || Pid.current_time_secs - Pid.last_pv_update_secs > Pid.max_interval || (Pid.update_secs != 0 && sec_counter++ % Pid.update_secs == 0)) {
if (!Pid.run_pid_now) {
PIDShowSensor(); // set actual process value
}
PIDRun();
Pid.run_pid_now = false;
}
}
void PIDShowSensor() {
// Called each time new sensor data available, data in mqtt data in same format
// as published in tele/SENSOR
// Update period is specified in TELE_PERIOD
float sensor_reading = NAN;
#if defined PID_USE_LOCAL_SENSOR
// copy the string into a new buffer that will be modified and
// parsed to find the local sensor reading if it's there
String buf = ResponseData();
JsonParser parser((char*)buf.c_str());
JsonParserObject root = parser.getRootObject();
if (root) {
JsonParserToken value_token = root[PID_LOCAL_SENSOR_NAME].getObject()[PSTR(PID_LOCAL_SENSOR_TYPE)];
if (value_token.isNum()) {
sensor_reading = value_token.getFloat();
}
}
#endif // PID_USE_LOCAL_SENSOR
if (!isnan(sensor_reading)) {
// pass the value to the pid alogorithm to use as current pv
Pid.last_pv_update_secs = Pid.current_time_secs;
Pid.pid.setPv(sensor_reading, Pid.last_pv_update_secs);
// also trigger running the pid algorithm if we have been told to run it each pv sample
if (Pid.update_secs == 0) {
// this runs it at the next second
Pid.run_pid_now = true;
}
} else {
// limit sensor not seen message to every 60 seconds to avoid flooding the logs
if ((Pid.current_time_secs - Pid.last_pv_update_secs) > Pid.max_interval && ((Pid.current_time_secs - Pid.last_pv_update_secs)%60)==0) {
AddLog(LOG_LEVEL_ERROR, PSTR("PID: Local temperature sensor missing for longer than PID_MAX_INTERVAL"));
}
}
}
void CmndSetPv(void) {
Pid.last_pv_update_secs = Pid.current_time_secs;
if (XdrvMailbox.data_len > 0) {
Pid.pid.setPv(CharToFloat(XdrvMailbox.data), Pid.last_pv_update_secs);
}
// also trigger running the pid algorithm if we have been told to run it each pv sample
if (Pid.update_secs == 0) {
// this runs it at the next second
Pid.run_pid_now = true;
}
ResponseCmndFloat(Pid.pid.getPv(), 1);
}
void CmndSetSp(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setSp(CharToFloat(XdrvMailbox.data));
}
ResponseCmndFloat(Pid.pid.getSp(), 1);
}
void CmndSetPb(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setPb(CharToFloat(XdrvMailbox.data));
}
ResponseCmndFloat(Pid.pid.getPb(), 1);
}
void CmndSetTi(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setTi(CharToFloat(XdrvMailbox.data));
}
ResponseCmndFloat(Pid.pid.getTi(), 1);
}
void CmndSetTd(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setTd(CharToFloat(XdrvMailbox.data));
}
ResponseCmndFloat(Pid.pid.getTd(), 1);
}
void CmndSetInitialInt(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setInitialInt(CharToFloat(XdrvMailbox.data));
}
ResponseCmndNumber(Pid.pid.getInitialInt());
}
void CmndSetDSmooth(void) {
if (XdrvMailbox.data_len > 0) {
Pid.pid.setDSmooth(CharToFloat(XdrvMailbox.data));
}
ResponseCmndFloat(Pid.pid.getDSmooth(), 1);
}
void CmndSetAuto(void) {
if (XdrvMailbox.payload >= 0) {
if(!Pid.shutdown) {
Pid.pid.setAuto(XdrvMailbox.payload);
}
}
ResponseCmndNumber(Pid.pid.getAuto());
}
void CmndSetManualPower(void) {
if (XdrvMailbox.data_len > 0) {
if(!Pid.shutdown) {
Pid.pid.setManualPower(CharToFloat(XdrvMailbox.data));
}
}
ResponseCmndFloat(Pid.pid.getManualPower(), 2);
}
void CmndSetMaxInterval(void) {
if (XdrvMailbox.payload >= 0) {
Pid.pid.setMaxInterval(XdrvMailbox.payload);
Pid.max_interval=XdrvMailbox.payload;
}
ResponseCmndNumber(Pid.pid.getMaxInterval());
}
void CmndSetUpdateSecs(void) {
if (XdrvMailbox.payload >= 0) {
Pid.update_secs = (XdrvMailbox.payload);
}
if (Pid.update_secs < 0) {
Pid.update_secs = 0;
}
ResponseCmndNumber(Pid.update_secs);
}
void CmndSetShutdown(void) {
if (XdrvMailbox.payload >= 0) {
AddLog(LOG_LEVEL_INFO, PSTR("PID: Shutdown mode %s"), XdrvMailbox.payload>0 ? "activated" : "cleared");
Pid.shutdown = (XdrvMailbox.payload>0);
if(Pid.shutdown) {
Pid.pid.setAuto(0);
Pid.pid.setManualPower(0.0);
}
}
ResponseCmndNumber(Pid.shutdown);
}
void PIDShowValues(void) {
char str_buf[FLOATSZ];
char chr_buf;
int i_buf;
double d_buf;
ResponseAppend_P(PSTR(",\"PID\":{"));
d_buf = Pid.pid.getPv();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidPv\":%s,"), str_buf);
d_buf = Pid.pid.getSp();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidSp\":%s,"), str_buf);
ResponseAppend_P(PSTR("\"PidShutdown\":%d,"), Pid.shutdown);
#if PID_REPORT_MORE_SETTINGS
d_buf = Pid.pid.getPb();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidPb\":%s,"), str_buf);
d_buf = Pid.pid.getTi();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidTi\":%s,"), str_buf);
d_buf = Pid.pid.getTd();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidTd\":%s,"), str_buf);
d_buf = Pid.pid.getInitialInt();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidInitialInt\":%s,"), str_buf);
d_buf = Pid.pid.getDSmooth();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidDSmooth\":%s,"), str_buf);
chr_buf = Pid.pid.getAuto();
ResponseAppend_P(PSTR("\"PidAuto\":%d,"), chr_buf);
d_buf = Pid.pid.getManualPower();
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidManualPower\":%s,"), str_buf);
i_buf = Pid.pid.getMaxInterval();
ResponseAppend_P(PSTR("\"PidMaxInterval\":%d,"), i_buf);
i_buf = Pid.current_time_secs - Pid.last_pv_update_secs;
ResponseAppend_P(PSTR("\"PidInterval\":%d,"), i_buf);
ResponseAppend_P(PSTR("\"PidUpdateSecs\":%d,"), Pid.update_secs);
#endif // PID_REPORT_MORE_SETTINGS
i_buf = (Pid.current_time_secs - Pid.last_pv_update_secs) > Pid.pid.getMaxInterval();
ResponseAppend_P(PSTR("\"PidSensorLost\":%d,"), i_buf);
// The actual power value
d_buf = Pid.pid.tick(Pid.current_time_secs);
dtostrfd(d_buf, 2, str_buf);
ResponseAppend_P(PSTR("\"PidPower\":%s"), str_buf);
ResponseAppend_P(PSTR("}"));
}
#ifdef USE_WEBSERVER
#define D_PID_DISPLAY_NAME "PID Controller"
#define D_PID_SET_POINT "Set Point"
#define D_PID_PRESENT_VALUE "Current Value"
#define D_PID_POWER "Power"
#define D_PID_MODE "Controller Mode"
#define D_PID_MODE_AUTO "Auto"
#define D_PID_MODE_MANUAL "Manual"
#define D_PID_MODE_OFF "Off"
const char HTTP_PID_HL[] PROGMEM = "{s}
{m}
{e}";
const char HTTP_PID_INFO[] PROGMEM = "{s}" D_PID_DISPLAY_NAME "{m}%s{e}";
const char HTTP_PID_SP_FORMAT[] PROGMEM = "{s}%s " "{m}%*_f ";
const char HTTP_PID_PV_FORMAT[] PROGMEM = "{s}%s " "{m}%*_f ";
const char HTTP_PID_POWER_FORMAT[] PROGMEM = "{s}%s " "{m}%*_f " D_UNIT_PERCENT;
void PIDShowValuesWeb(void) {
float f_buf;
WSContentSend_P(HTTP_PID_HL);
WSContentSend_P(HTTP_PID_INFO, (Pid.pid.getAuto()==1) ? D_PID_MODE_AUTO : Pid.pid.tick(Pid.current_time_secs)>0.0f ? D_PID_MODE_MANUAL : D_PID_MODE_OFF);
if (Pid.pid.getAuto()==1 || Pid.pid.tick(Pid.current_time_secs)>0.0f) {
f_buf = (float)Pid.pid.getSp();
WSContentSend_PD(HTTP_PID_SP_FORMAT, D_PID_SET_POINT, 1, &f_buf);
f_buf = (float)Pid.pid.getPv();
WSContentSend_PD(HTTP_PID_PV_FORMAT, D_PID_PRESENT_VALUE, 1, &f_buf);
f_buf = Pid.pid.tick(Pid.current_time_secs)*100.0f;
WSContentSend_PD(HTTP_PID_POWER_FORMAT, D_PID_POWER, 0, &f_buf);
}
}
#endif // USE_WEBSERVER
void PIDRun(void) {
double power = Pid.pid.tick(Pid.current_time_secs);
#ifdef PID_DONT_USE_PID_TOPIC
// This part is left inside to regularly publish the PID Power via
// `%topic%/PID {"power":"0.000"}`
char str_buf[FLOATSZ];
dtostrfd(power, 3, str_buf);
Response_P(PSTR("{\"%s\":\"%s\"}"), "power", str_buf);
MqttPublishPrefixTopicRulesProcess_P(TELE, "PID");
#endif // PID_DONT_USE_PID_TOPIC
#if defined PID_SHUTTER
// send output as a position from 0-100 to defined shutter
int pos = power * 100;
ShutterSetPosition(PID_SHUTTER, pos);
#endif //PID_SHUTTER
#if defined(PID_USE_TIMPROP) && (PID_USE_TIMPROP > 0)
// send power to appropriate timeprop output
TimepropSetPower( PID_USE_TIMPROP-1, power );
#endif // PID_USE_TIMPROP
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
#define XDRV_49 49
bool Xdrv49(uint32_t function) {
bool result = false;
switch (function) {
case FUNC_INIT:
PIDInit();
break;
case FUNC_EVERY_SECOND:
PIDEverySecond();
break;
case FUNC_SHOW_SENSOR:
// only use this if the pid loop is to use the local sensor for pv
#if defined PID_USE_LOCAL_SENSOR
PIDShowSensor();
#endif // PID_USE_LOCAL_SENSOR
break;
case FUNC_COMMAND:
result = DecodeCommand(kPIDCommands, PIDCommand);
break;
case FUNC_JSON_APPEND:
PIDShowValues();
break;
#ifdef USE_WEBSERVER
case FUNC_WEB_SENSOR:
PIDShowValuesWeb();
break;
#endif // USE_WEBSERVER
case FUNC_ACTIVE:
result = true;
break;
}
return result;
}
#endif //FIRMWARE_MINIMAL
#endif // USE_PID