/*
xnrg_22_bl6523.ino - BL6523 based Watt hour meter support for Tasmota
Copyright (C) 2022 Jeevas Vasudevan
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see .
*/
#ifdef USE_ENERGY_SENSOR
#ifdef USE_BL6523
/*********************************************************************************************\
* Chinese BL6523 based Watt hour meter
*
* This meter provides accurate Voltage, Frequency, Ampere, Wattage, Power Factor, KWh
* To use Tasmota the user needs to add an ESP8266 or ESP32
* Three lines need to be connected via 1KOhh resistors to ESP from the main board(RX,TX GND)
*
* Connection Eg (ESP8266) - Non - Isolated:
* BL6523 RX ->1KOhm-> ESP IO4(D2) (Should be Input Capable)
* BL6523 TX ->1KOhm-> ESP IO5(D1) (Should be Input Capable)
* BL6523 GND -> ESP GND
*
* Connection Eg (ESP32) - Non - Isolated:
* BL6523 RX ->1KOhm-> ESP IO4 (Should be Input Capable)
* BL6523 TX ->1KOhm-> ESP IO5 (Should be Input Capable)
* BL6523 GND -> ESP GND
*
* To build add the below to user_config_override.h
* #define USE_ENERGY_SENSOR // Enable Energy sensor framework
* #define USE_BL6523 // Add support for Chinese BL6523 based Watt hour meter (+1k code)¸
*
* After Installation use the below template sample:
* {"NAME":"BL6523 Smart Meter","GPIO":[0,0,0,0,7488,7520,0,0,0,0,0,0,0,0],"FLAG":0,"BASE":18}
\*********************************************************************************************/
#define XNRG_22 22
#include
#define BL6523_RX_DATASET_SIZE 2
#define BL6523_TX_DATASET_SIZE 4
#define BL6523_BAUD 4800
#define BL6523_REG_AMPS 0x05
#define BL6523_REG_VOLTS 0x07
#define BL6523_REG_FREQ 0x09
#define BL6523_REG_WATTS 0x0A
#define BL6523_REG_POWF 0x08
#define BL6523_REG_WATTHR 0x0C
#define SINGLE_PHASE 0
#define RX_WAIT 100
#define BL6523_IREF 297899
#define BL6523_UREF 13304
#define BL6523_FREF 3907
#define BL6523_PREF 707
#define BL6523_PWHRREF_D 33 // Substract this from BL6523_PREF to get WattHr Div.
TasmotaSerial *Bl6523RxSerial;
TasmotaSerial *Bl6523TxSerial;
struct BL6523
{
uint8_t type = 1;
uint8_t valid = 0;
uint8_t got_data_stone = 0;
bool discovery_triggered = false;
} Bl6523;
bool Bl6523ReadData(void)
{
uint32_t powf_word = 0, powf_buf = 0, i = 0;
float powf = 0.0f;
if (!Bl6523RxSerial->available())
{
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:No Rx Data available" ));
return false;
}
while ((Bl6523RxSerial->peek() != 0x35) && Bl6523RxSerial->available())
{
Bl6523RxSerial->read();
}
if (Bl6523RxSerial->available() < BL6523_RX_DATASET_SIZE)
{
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:Rx less than expected" ));
return false;
}
uint8_t rx_buffer[BL6523_RX_DATASET_SIZE];
Bl6523RxSerial->readBytes(rx_buffer, BL6523_RX_DATASET_SIZE);
Bl6523RxSerial->flush(); // Make room for another burst
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, rx_buffer, BL6523_RX_DATASET_SIZE);
i=0;
while (Bl6523TxSerial->available() < BL6523_TX_DATASET_SIZE)
{
// sleep till TX buffer is full
delay(10);
if ( i++ > RX_WAIT ){
break;
}
}
uint8_t tx_buffer[BL6523_TX_DATASET_SIZE];
Bl6523TxSerial->readBytes(tx_buffer, BL6523_TX_DATASET_SIZE);
Bl6523TxSerial->flush(); // Make room for another burst
AddLogBuffer(LOG_LEVEL_DEBUG_MORE, tx_buffer, BL6523_TX_DATASET_SIZE);
/* Checksum: (Addr+Data_L+Data_M+Data_H) & 0xFF, then byte invert */
uint8_t crc = rx_buffer[1]; //Addr
for (uint32_t i = 0; i < (BL6523_TX_DATASET_SIZE - 1); i++)
{
crc += tx_buffer[i]; //Add Data_L,Data_M and Data_H to Addr
}
crc &= 0xff; // Bitwise AND 0xFF
crc = ~crc; // Invert the byte
if (crc != tx_buffer[BL6523_TX_DATASET_SIZE - 1])
{
AddLog(LOG_LEVEL_DEBUG_MORE, PSTR("BL6:" D_CHECKSUM_FAILURE));
Bl6523TxSerial->flush();
Bl6523RxSerial->flush();
return false;
}
/* WRITE DATA (format: command(write->0xCA) address data_low data_mid data_high checksum )
WRITE Sample(RX):
RX: CA 3E 55 00 00 6C (WRPROT - allow)
RX: CA 14 00 00 10 DB (MODE)
RX: CA 15 04 00 00 E6 (GAIN - IB 16x gain )
RX: CA 19 08 00 00 DE (WA_CFDIV )
RX: CA 3E AA 00 00 17 (WRPROT - disable)
*/
/* READ DATA (format: command(read->0x35) address data_low data_mid data_high checksum )
READ Sample(RX-TX) Data:
RX: 35 05 TX: E4 00 00 16 (IA rms )
RX: 35 07 TX: D5 A3 2E 52 (V rms )
RX: 35 09 TX: F0 FB 02 09 (FREQ)
RX: 35 0A TX: 00 00 00 F5 (WATT)
RX: 35 08 TX: 00 00 00 F7 (PF)
RX: 35 0C TX: 00 00 00 F3 (WATT_HR)
*/
switch(rx_buffer[1]) {
case BL6523_REG_AMPS :
Energy->current[SINGLE_PHASE] = (float)((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]) / EnergyGetCalibration(ENERGY_CURRENT_CALIBRATION); // 1.260 A
break;
case BL6523_REG_VOLTS :
Energy->voltage[SINGLE_PHASE] = (float)((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]) / EnergyGetCalibration(ENERGY_VOLTAGE_CALIBRATION); // 230.2 V
break;
case BL6523_REG_FREQ :
Energy->frequency[SINGLE_PHASE] = (float)((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]) / EnergyGetCalibration(ENERGY_FREQUENCY_CALIBRATION); // 50.0 Hz
break;
case BL6523_REG_WATTS :
Energy->active_power[SINGLE_PHASE] = (float)((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]) / EnergyGetCalibration(ENERGY_POWER_CALIBRATION); // -196.3 W
break;
case BL6523_REG_POWF :
/* Power factor =(sign bit)*((PF[22]×2^-1)+(PF[21]×2^-2)+。。。)
Eg., reg value 0x7FFFFF(HEX) -> PF 1, 0x800000(HEX) -> -1, 0x400000(HEX) -> 0.5
*/
powf = 0.0f;
powf_buf = ((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]);
powf_word = (powf_buf >> 23) ? ~(powf_buf & 0x7fffff) : powf_buf & 0x7fffff; //Extract the 23 bits and invert if sign bit(24) is set
for (int i = 0; i < 23; i++){ // Accumulate powf from 23 bits
powf += ((powf_word >> (22-i)) * pow(2,(0-(i+1))));
powf_word = powf_word & (0x7fffff >> (1+i));
}
powf = (powf_buf >> 23) ? (0.0f - (powf)) : powf; // Negate if sign bit(24) is set
Energy->power_factor[SINGLE_PHASE] = powf;
break;
case BL6523_REG_WATTHR :
Energy->import_active[SINGLE_PHASE] = (float)((tx_buffer[2] << 16) | (tx_buffer[1] << 8) | tx_buffer[0]) / ( EnergyGetCalibration(ENERGY_POWER_CALIBRATION) - BL6523_PWHRREF_D ); // 6.216 kWh => used in EnergyUpdateTotal()
break;
default :
break;
}
Energy->data_valid[SINGLE_PHASE] = 0;
EnergyUpdateTotal();
if (!Bl6523.discovery_triggered)
{
TasmotaGlobal.discovery_counter = 1; // force TasDiscovery()
Bl6523.discovery_triggered = true;
}
return true;
}
/*********************************************************************************************/
void Bl6523Update(void)
{ // Every 250 millisecond
if (Bl6523ReadData())
{
Bl6523.valid = 60;
}
else
{
if (Bl6523.valid) {
Bl6523.valid--;
}
}
}
/*********************************************************************************************/
void Bl6523Init(void)
{
Bl6523.type = 0;
Bl6523RxSerial = new TasmotaSerial(Pin(GPIO_BL6523_RX), -1, 1);
Bl6523TxSerial = new TasmotaSerial(Pin(GPIO_BL6523_TX), -1, 1);
if ((Bl6523RxSerial->begin(BL6523_BAUD)) && (Bl6523TxSerial->begin(BL6523_BAUD)))
{
if (Bl6523RxSerial->hardwareSerial())
{
ClaimSerial();
}
if (Bl6523TxSerial->hardwareSerial())
{
ClaimSerial();
}
#ifdef ESP32
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6: Serial UART%d and UART%d"), Bl6523RxSerial->getUart(), Bl6523TxSerial->getUart());
#endif
Bl6523.type = 1;
Energy->phase_count = 1;
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:Init Success" ));
}
else
{
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:Init Failure!" ));
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
bool Bl6523Command(void) {
bool serviced = true;
int32_t value = (int32_t)(CharToFloat(XdrvMailbox.data) * 1000); // 1.234 = 1234, -1.234 = -1234
uint32_t abs_value = abs(value) / 10; // 1.23 = 123, -1.23 = 123
if ((CMND_POWERCAL == Energy->command_code) || (CMND_VOLTAGECAL == Energy->command_code) || (CMND_CURRENTCAL == Energy->command_code)) {
// Service in xdrv_03_energy.ino
}
else if (CMND_POWERSET == Energy->command_code) {
if (XdrvMailbox.data_len) {
if ((abs_value > 100) && (abs_value < 200000)) { // Between 1.00 and 2000.00 W
XdrvMailbox.payload = abs_value;
}
}
}
else if (CMND_VOLTAGESET == Energy->command_code) {
if (XdrvMailbox.data_len) {
if ((abs_value > 10000) && (abs_value < 26000)) { // Between 100.00 and 260.00 V
XdrvMailbox.payload = abs_value;
}
}
}
else if (CMND_CURRENTSET == Energy->command_code) {
if (XdrvMailbox.data_len) {
if ((abs_value > 1000) && (abs_value < 1000000)) { // Between 10.00 mA and 10.00000 A
XdrvMailbox.payload = abs_value;
}
}
}
else if (CMND_FREQUENCYSET == Energy->command_code) {
if (XdrvMailbox.data_len) {
if ((abs_value > 4500) && (abs_value < 6500)) { // Between 45.00 and 65.00 Hz
XdrvMailbox.payload = abs_value;
}
}
}
else if (CMND_ENERGYCONFIG == Energy->command_code) {
AddLog(LOG_LEVEL_DEBUG, PSTR("NRG: Config index %d, payload %d, value %d, data '%s'"),
XdrvMailbox.index, XdrvMailbox.payload, value, XdrvMailbox.data ? XdrvMailbox.data : "null" );
// EnergyConfig1 to 3 = Set Energy->current[channel] in A like 0.417 for 417mA
if ((XdrvMailbox.index > 0) && (XdrvMailbox.index < 4)) {
//Bl6523.current[XdrvMailbox.index -1] = value;
}
// EnergyConfig4 to 6 = Set Energy->active_power[channel] in W like 100 for 100W
if ((XdrvMailbox.index > 3) && (XdrvMailbox.index < 7)) {
//Bl6523.power[XdrvMailbox.index -4] = value;
}
}
else serviced = false; // Unknown command
return serviced;
}
void Bl6523DrvInit(void)
{
if (PinUsed(GPIO_BL6523_RX) && PinUsed(GPIO_BL6523_TX)) {
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:PreInit Success" ));
TasmotaGlobal.energy_driver = XNRG_22;
if (HLW_PREF_PULSE == EnergyGetCalibration(ENERGY_POWER_CALIBRATION)) {
EnergySetCalibration(ENERGY_POWER_CALIBRATION, BL6523_PREF);
EnergySetCalibration(ENERGY_VOLTAGE_CALIBRATION, BL6523_UREF);
EnergySetCalibration(ENERGY_CURRENT_CALIBRATION, BL6523_IREF);
EnergySetCalibration(ENERGY_FREQUENCY_CALIBRATION, BL6523_FREF);
}
}
else
{
AddLog(LOG_LEVEL_DEBUG, PSTR("BL6:PreInit Failure!" ));
TasmotaGlobal.energy_driver = ENERGY_NONE;
}
}
/*********************************************************************************************\
* Interface
\*********************************************************************************************/
bool Xnrg22(uint32_t function)
{
bool result = false;
switch (function)
{
case FUNC_EVERY_250_MSECOND:
Bl6523Update();
break;
case FUNC_COMMAND:
result = Bl6523Command();
break;
case FUNC_INIT:
Bl6523Init();
break;
case FUNC_PRE_INIT:
Bl6523DrvInit();
break;
}
return result;
}
#endif // USE_BL6523
#endif // USE_ENERGY_SENSOR