/* xsns_08_htu21.ino - HTU21 temperature and humidity sensor support for Tasmota Copyright (C) 2019 Heiko Krupp and Theo Arends This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see . */ #ifdef USE_I2C #ifdef USE_HTU /*********************************************************************************************\ * HTU21 - Temperature and Humidy * * Source: Heiko Krupp * * I2C Address: 0x40 \*********************************************************************************************/ #define XSNS_08 8 #define XI2C_09 9 // See I2CDEVICES.md #define HTU21_ADDR 0x40 #define SI7013_CHIPID 0x0D #define SI7020_CHIPID 0x14 #define SI7021_CHIPID 0x15 #define HTU21_CHIPID 0x32 #define HTU21_READTEMP 0xE3 #define HTU21_READHUM 0xE5 #define HTU21_WRITEREG 0xE6 #define HTU21_READREG 0xE7 #define HTU21_RESET 0xFE #define HTU21_HEATER_WRITE 0x51 #define HTU21_HEATER_READ 0x11 #define HTU21_SERIAL2_READ1 0xFC /* Read 3rd two Serial bytes */ #define HTU21_SERIAL2_READ2 0xC9 /* Read 4th two Serial bytes */ #define HTU21_HEATER_ON 0x04 #define HTU21_HEATER_OFF 0xFB #define HTU21_RES_RH12_T14 0x00 // Default #define HTU21_RES_RH8_T12 0x01 #define HTU21_RES_RH10_T13 0x80 #define HTU21_RES_RH11_T11 0x81 #define HTU21_CRC8_POLYNOM 0x13100 const char kHtuTypes[] PROGMEM = "HTU21|SI7013|SI7020|SI7021|T/RH?"; uint8_t htu_address; uint8_t htu_type = 0; uint8_t htu_delay_temp; uint8_t htu_delay_humidity = 50; uint8_t htu_valid = 0; float htu_temperature = 0; float htu_humidity = 0; char htu_types[7]; uint8_t HtuCheckCrc8(uint16_t data) { for (uint32_t bit = 0; bit < 16; bit++) { if (data & 0x8000) { data = (data << 1) ^ HTU21_CRC8_POLYNOM; } else { data <<= 1; } } return data >>= 8; } uint8_t HtuReadDeviceId(void) { uint16_t deviceID = 0; uint8_t checksum = 0; Wire.beginTransmission(HTU21_ADDR); Wire.write(HTU21_SERIAL2_READ1); Wire.write(HTU21_SERIAL2_READ2); Wire.endTransmission(); Wire.requestFrom(HTU21_ADDR, 3); deviceID = Wire.read() << 8; deviceID |= Wire.read(); checksum = Wire.read(); if (HtuCheckCrc8(deviceID) == checksum) { deviceID = deviceID >> 8; } else { deviceID = 0; } return (uint8_t)deviceID; } void HtuSetResolution(uint8_t resolution) { uint8_t current = I2cRead8(HTU21_ADDR, HTU21_READREG); current &= 0x7E; // Replace current resolution bits with 0 current |= resolution; // Add new resolution bits to register I2cWrite8(HTU21_ADDR, HTU21_WRITEREG, current); } void HtuReset(void) { Wire.beginTransmission(HTU21_ADDR); Wire.write(HTU21_RESET); Wire.endTransmission(); delay(15); // Reset takes 15ms } void HtuHeater(uint8_t heater) { uint8_t current = I2cRead8(HTU21_ADDR, HTU21_READREG); switch(heater) { case HTU21_HEATER_ON : current |= heater; break; case HTU21_HEATER_OFF : current &= heater; break; default : current &= heater; break; } I2cWrite8(HTU21_ADDR, HTU21_WRITEREG, current); } void HtuInit(void) { HtuReset(); HtuHeater(HTU21_HEATER_OFF); HtuSetResolution(HTU21_RES_RH12_T14); } bool HtuRead(void) { uint8_t checksum = 0; uint16_t sensorval = 0; if (htu_valid) { htu_valid--; } Wire.beginTransmission(HTU21_ADDR); Wire.write(HTU21_READTEMP); if (Wire.endTransmission() != 0) { return false; } // In case of error delay(htu_delay_temp); // Sensor time at max resolution Wire.requestFrom(HTU21_ADDR, 3); if (3 == Wire.available()) { sensorval = Wire.read() << 8; // MSB sensorval |= Wire.read(); // LSB checksum = Wire.read(); } if (HtuCheckCrc8(sensorval) != checksum) { return false; } // Checksum mismatch htu_temperature = ConvertTemp(0.002681 * (float)sensorval - 46.85); Wire.beginTransmission(HTU21_ADDR); Wire.write(HTU21_READHUM); if (Wire.endTransmission() != 0) { return false; } // In case of error delay(htu_delay_humidity); // Sensor time at max resolution Wire.requestFrom(HTU21_ADDR, 3); if (3 <= Wire.available()) { sensorval = Wire.read() << 8; // MSB sensorval |= Wire.read(); // LSB checksum = Wire.read(); } if (HtuCheckCrc8(sensorval) != checksum) { return false; } // Checksum mismatch sensorval ^= 0x02; // clear status bits htu_humidity = 0.001907 * (float)sensorval - 6; if (htu_humidity > 100) { htu_humidity = 100.0; } if (htu_humidity < 0) { htu_humidity = 0.01; } if ((0.00 == htu_humidity) && (0.00 == htu_temperature)) { htu_humidity = 0.0; } if ((htu_temperature > 0.00) && (htu_temperature < 80.00)) { htu_humidity = (-0.15) * (25 - htu_temperature) + htu_humidity; } ConvertHumidity(htu_humidity); // Set global humidity htu_valid = SENSOR_MAX_MISS; return true; } /********************************************************************************************/ void HtuDetect(void) { if (htu_type) { return; } htu_address = HTU21_ADDR; if (I2cActive(htu_address)) { return; } htu_type = HtuReadDeviceId(); if (htu_type) { uint8_t index = 0; HtuInit(); switch (htu_type) { case HTU21_CHIPID: htu_delay_temp = 50; htu_delay_humidity = 16; break; case SI7021_CHIPID: index++; // 3 case SI7020_CHIPID: index++; // 2 case SI7013_CHIPID: index++; // 1 htu_delay_temp = 12; htu_delay_humidity = 23; break; default: index = 4; htu_delay_temp = 50; htu_delay_humidity = 23; } GetTextIndexed(htu_types, sizeof(htu_types), index, kHtuTypes); I2cSetActiveFound(htu_address, htu_types); } } void HtuEverySecond(void) { if (92 == (uptime %100)) { // 1mS HtuDetect(); } else if (uptime &1) { // HTU21: 68mS, SI70xx: 37mS if (htu_type) { if (!HtuRead()) { AddLogMissed(htu_types, htu_valid); // if (!htu_valid) { htu_type = 0; } } } } } void HtuShow(bool json) { if (htu_valid) { char temperature[33]; dtostrfd(htu_temperature, Settings.flag2.temperature_resolution, temperature); char humidity[33]; dtostrfd(htu_humidity, Settings.flag2.humidity_resolution, humidity); if (json) { ResponseAppend_P(JSON_SNS_TEMPHUM, htu_types, temperature, humidity); #ifdef USE_DOMOTICZ if (0 == tele_period) { DomoticzTempHumSensor(temperature, humidity); } #endif // USE_DOMOTICZ #ifdef USE_KNX if (0 == tele_period) { KnxSensor(KNX_TEMPERATURE, htu_temperature); KnxSensor(KNX_HUMIDITY, htu_humidity); } #endif // USE_KNX #ifdef USE_WEBSERVER } else { WSContentSend_PD(HTTP_SNS_TEMP, htu_types, temperature, TempUnit()); WSContentSend_PD(HTTP_SNS_HUM, htu_types, humidity); #endif // USE_WEBSERVER } } } /*********************************************************************************************\ * Interface \*********************************************************************************************/ bool Xsns08(uint8_t function) { if (!I2cEnabled(XI2C_09)) { return false; } bool result = false; switch (function) { case FUNC_INIT: HtuDetect(); break; case FUNC_EVERY_SECOND: HtuEverySecond(); break; case FUNC_JSON_APPEND: HtuShow(1); break; #ifdef USE_WEBSERVER case FUNC_WEB_SENSOR: HtuShow(0); break; #endif // USE_WEBSERVER } return result; } #endif // USE_HTU #endif // USE_I2C